android_kernel_xiaomi_sm8350/arch/x86/pci/common.c
Tony Camuso a167607255 PCI: Correct last two HP entries in the bfsort whitelist
Greetings.

There is a code flaw in the bfsort whitelist, where there are redundant
entries for the same two HP systems, DL385 G2 and DL585 G2. This patch
replaces those redundant entries with the correct ones. The correct
entries are for large-volume systems, the DL360 and DL380.

-----------------------------------------------------------------------

commit ec69f0374c3b0ad7ea991b0e9ac00377acfe5b1a
Author: Tony Camuso <tony.camuso@hp.com>
Date:   Wed May 14 07:09:28 2008 -0400

     Replace Redundant Whitelist Entries with the Correct Ones

     The ProLiant DL585 G2 and the DL585 G2 are entered reundantly
     in the dmi_system_id table. What should have been there are the
     DL360 and DL380. This patch simply replaces the redundant
     entries with the correct entries.

 arch/x86/pci/common.c |    8 ++++----
 1 file changed, 4 insertions(+), 4 deletions(-)

     Signed-off-by: Tony Camuso <tony.camuso@hp.com>
     Signed-off-by: Pat Schoeller <patrick.schoeller@hp.com>

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-22 18:16:24 +02:00

552 lines
12 KiB
C

/*
* Low-Level PCI Support for PC
*
* (c) 1999--2000 Martin Mares <mj@ucw.cz>
*/
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/dmi.h>
#include <asm/acpi.h>
#include <asm/segment.h>
#include <asm/io.h>
#include <asm/smp.h>
#include "pci.h"
unsigned int pci_probe = PCI_PROBE_BIOS | PCI_PROBE_CONF1 | PCI_PROBE_CONF2 |
PCI_PROBE_MMCONF;
static int pci_bf_sort;
int pci_routeirq;
int pcibios_last_bus = -1;
unsigned long pirq_table_addr;
struct pci_bus *pci_root_bus;
struct pci_raw_ops *raw_pci_ops;
struct pci_raw_ops *raw_pci_ext_ops;
int raw_pci_read(unsigned int domain, unsigned int bus, unsigned int devfn,
int reg, int len, u32 *val)
{
if (reg < 256 && raw_pci_ops)
return raw_pci_ops->read(domain, bus, devfn, reg, len, val);
if (raw_pci_ext_ops)
return raw_pci_ext_ops->read(domain, bus, devfn, reg, len, val);
return -EINVAL;
}
int raw_pci_write(unsigned int domain, unsigned int bus, unsigned int devfn,
int reg, int len, u32 val)
{
if (reg < 256 && raw_pci_ops)
return raw_pci_ops->write(domain, bus, devfn, reg, len, val);
if (raw_pci_ext_ops)
return raw_pci_ext_ops->write(domain, bus, devfn, reg, len, val);
return -EINVAL;
}
static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
{
return raw_pci_read(pci_domain_nr(bus), bus->number,
devfn, where, size, value);
}
static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
{
return raw_pci_write(pci_domain_nr(bus), bus->number,
devfn, where, size, value);
}
struct pci_ops pci_root_ops = {
.read = pci_read,
.write = pci_write,
};
/*
* legacy, numa, and acpi all want to call pcibios_scan_root
* from their initcalls. This flag prevents that.
*/
int pcibios_scanned;
/*
* This interrupt-safe spinlock protects all accesses to PCI
* configuration space.
*/
DEFINE_SPINLOCK(pci_config_lock);
static int __devinit can_skip_ioresource_align(const struct dmi_system_id *d)
{
pci_probe |= PCI_CAN_SKIP_ISA_ALIGN;
printk(KERN_INFO "PCI: %s detected, can skip ISA alignment\n", d->ident);
return 0;
}
static struct dmi_system_id can_skip_pciprobe_dmi_table[] __devinitdata = {
/*
* Systems where PCI IO resource ISA alignment can be skipped
* when the ISA enable bit in the bridge control is not set
*/
{
.callback = can_skip_ioresource_align,
.ident = "IBM System x3800",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
DMI_MATCH(DMI_PRODUCT_NAME, "x3800"),
},
},
{
.callback = can_skip_ioresource_align,
.ident = "IBM System x3850",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
DMI_MATCH(DMI_PRODUCT_NAME, "x3850"),
},
},
{
.callback = can_skip_ioresource_align,
.ident = "IBM System x3950",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
DMI_MATCH(DMI_PRODUCT_NAME, "x3950"),
},
},
{}
};
void __init dmi_check_skip_isa_align(void)
{
dmi_check_system(can_skip_pciprobe_dmi_table);
}
/*
* Called after each bus is probed, but before its children
* are examined.
*/
void __devinit pcibios_fixup_bus(struct pci_bus *b)
{
pci_read_bridge_bases(b);
}
/*
* Only use DMI information to set this if nothing was passed
* on the kernel command line (which was parsed earlier).
*/
static int __devinit set_bf_sort(const struct dmi_system_id *d)
{
if (pci_bf_sort == pci_bf_sort_default) {
pci_bf_sort = pci_dmi_bf;
printk(KERN_INFO "PCI: %s detected, enabling pci=bfsort.\n", d->ident);
}
return 0;
}
/*
* Enable renumbering of PCI bus# ranges to reach all PCI busses (Cardbus)
*/
#ifdef __i386__
static int __devinit assign_all_busses(const struct dmi_system_id *d)
{
pci_probe |= PCI_ASSIGN_ALL_BUSSES;
printk(KERN_INFO "%s detected: enabling PCI bus# renumbering"
" (pci=assign-busses)\n", d->ident);
return 0;
}
#endif
static struct dmi_system_id __devinitdata pciprobe_dmi_table[] = {
#ifdef __i386__
/*
* Laptops which need pci=assign-busses to see Cardbus cards
*/
{
.callback = assign_all_busses,
.ident = "Samsung X20 Laptop",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Samsung Electronics"),
DMI_MATCH(DMI_PRODUCT_NAME, "SX20S"),
},
},
#endif /* __i386__ */
{
.callback = set_bf_sort,
.ident = "Dell PowerEdge 1950",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 1950"),
},
},
{
.callback = set_bf_sort,
.ident = "Dell PowerEdge 1955",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 1955"),
},
},
{
.callback = set_bf_sort,
.ident = "Dell PowerEdge 2900",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 2900"),
},
},
{
.callback = set_bf_sort,
.ident = "Dell PowerEdge 2950",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 2950"),
},
},
{
.callback = set_bf_sort,
.ident = "Dell PowerEdge R900",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge R900"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL20p G3",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL20p G3"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL20p G4",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL20p G4"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL30p G1",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL30p G1"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL25p G1",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL25p G1"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL35p G1",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL35p G1"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL45p G1",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL45p G1"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL45p G2",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL45p G2"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL460c G1",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL460c G1"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL465c G1",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL465c G1"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL480c G1",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL480c G1"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL685c G1",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL685c G1"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant DL360",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL360"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant DL380",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL380"),
},
},
#ifdef __i386__
{
.callback = assign_all_busses,
.ident = "Compaq EVO N800c",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Compaq"),
DMI_MATCH(DMI_PRODUCT_NAME, "EVO N800c"),
},
},
#endif
{
.callback = set_bf_sort,
.ident = "HP ProLiant DL360",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL360"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant DL380",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL380"),
},
},
{}
};
void __init dmi_check_pciprobe(void)
{
dmi_check_system(pciprobe_dmi_table);
}
struct pci_bus * __devinit pcibios_scan_root(int busnum)
{
struct pci_bus *bus = NULL;
struct pci_sysdata *sd;
while ((bus = pci_find_next_bus(bus)) != NULL) {
if (bus->number == busnum) {
/* Already scanned */
return bus;
}
}
/* Allocate per-root-bus (not per bus) arch-specific data.
* TODO: leak; this memory is never freed.
* It's arguable whether it's worth the trouble to care.
*/
sd = kzalloc(sizeof(*sd), GFP_KERNEL);
if (!sd) {
printk(KERN_ERR "PCI: OOM, not probing PCI bus %02x\n", busnum);
return NULL;
}
sd->node = get_mp_bus_to_node(busnum);
printk(KERN_DEBUG "PCI: Probing PCI hardware (bus %02x)\n", busnum);
bus = pci_scan_bus_parented(NULL, busnum, &pci_root_ops, sd);
if (!bus)
kfree(sd);
return bus;
}
extern u8 pci_cache_line_size;
static int __init pcibios_init(void)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
if (!raw_pci_ops) {
printk(KERN_WARNING "PCI: System does not support PCI\n");
return 0;
}
/*
* Assume PCI cacheline size of 32 bytes for all x86s except K7/K8
* and P4. It's also good for 386/486s (which actually have 16)
* as quite a few PCI devices do not support smaller values.
*/
pci_cache_line_size = 32 >> 2;
if (c->x86 >= 6 && c->x86_vendor == X86_VENDOR_AMD)
pci_cache_line_size = 64 >> 2; /* K7 & K8 */
else if (c->x86 > 6 && c->x86_vendor == X86_VENDOR_INTEL)
pci_cache_line_size = 128 >> 2; /* P4 */
pcibios_resource_survey();
if (pci_bf_sort >= pci_force_bf)
pci_sort_breadthfirst();
return 0;
}
subsys_initcall(pcibios_init);
char * __devinit pcibios_setup(char *str)
{
if (!strcmp(str, "off")) {
pci_probe = 0;
return NULL;
} else if (!strcmp(str, "bfsort")) {
pci_bf_sort = pci_force_bf;
return NULL;
} else if (!strcmp(str, "nobfsort")) {
pci_bf_sort = pci_force_nobf;
return NULL;
}
#ifdef CONFIG_PCI_BIOS
else if (!strcmp(str, "bios")) {
pci_probe = PCI_PROBE_BIOS;
return NULL;
} else if (!strcmp(str, "nobios")) {
pci_probe &= ~PCI_PROBE_BIOS;
return NULL;
} else if (!strcmp(str, "biosirq")) {
pci_probe |= PCI_BIOS_IRQ_SCAN;
return NULL;
} else if (!strncmp(str, "pirqaddr=", 9)) {
pirq_table_addr = simple_strtoul(str+9, NULL, 0);
return NULL;
}
#endif
#ifdef CONFIG_PCI_DIRECT
else if (!strcmp(str, "conf1")) {
pci_probe = PCI_PROBE_CONF1 | PCI_NO_CHECKS;
return NULL;
}
else if (!strcmp(str, "conf2")) {
pci_probe = PCI_PROBE_CONF2 | PCI_NO_CHECKS;
return NULL;
}
#endif
#ifdef CONFIG_PCI_MMCONFIG
else if (!strcmp(str, "nommconf")) {
pci_probe &= ~PCI_PROBE_MMCONF;
return NULL;
}
else if (!strcmp(str, "check_enable_amd_mmconf")) {
pci_probe |= PCI_CHECK_ENABLE_AMD_MMCONF;
return NULL;
}
#endif
else if (!strcmp(str, "noacpi")) {
acpi_noirq_set();
return NULL;
}
else if (!strcmp(str, "noearly")) {
pci_probe |= PCI_PROBE_NOEARLY;
return NULL;
}
#ifndef CONFIG_X86_VISWS
else if (!strcmp(str, "usepirqmask")) {
pci_probe |= PCI_USE_PIRQ_MASK;
return NULL;
} else if (!strncmp(str, "irqmask=", 8)) {
pcibios_irq_mask = simple_strtol(str+8, NULL, 0);
return NULL;
} else if (!strncmp(str, "lastbus=", 8)) {
pcibios_last_bus = simple_strtol(str+8, NULL, 0);
return NULL;
}
#endif
else if (!strcmp(str, "rom")) {
pci_probe |= PCI_ASSIGN_ROMS;
return NULL;
} else if (!strcmp(str, "assign-busses")) {
pci_probe |= PCI_ASSIGN_ALL_BUSSES;
return NULL;
} else if (!strcmp(str, "use_crs")) {
pci_probe |= PCI_USE__CRS;
return NULL;
} else if (!strcmp(str, "routeirq")) {
pci_routeirq = 1;
return NULL;
} else if (!strcmp(str, "skip_isa_align")) {
pci_probe |= PCI_CAN_SKIP_ISA_ALIGN;
return NULL;
}
return str;
}
unsigned int pcibios_assign_all_busses(void)
{
return (pci_probe & PCI_ASSIGN_ALL_BUSSES) ? 1 : 0;
}
int pcibios_enable_device(struct pci_dev *dev, int mask)
{
int err;
if ((err = pci_enable_resources(dev, mask)) < 0)
return err;
if (!dev->msi_enabled)
return pcibios_enable_irq(dev);
return 0;
}
void pcibios_disable_device (struct pci_dev *dev)
{
if (!dev->msi_enabled && pcibios_disable_irq)
pcibios_disable_irq(dev);
}
struct pci_bus * __devinit pci_scan_bus_on_node(int busno, struct pci_ops *ops, int node)
{
struct pci_bus *bus = NULL;
struct pci_sysdata *sd;
/*
* Allocate per-root-bus (not per bus) arch-specific data.
* TODO: leak; this memory is never freed.
* It's arguable whether it's worth the trouble to care.
*/
sd = kzalloc(sizeof(*sd), GFP_KERNEL);
if (!sd) {
printk(KERN_ERR "PCI: OOM, skipping PCI bus %02x\n", busno);
return NULL;
}
sd->node = node;
bus = pci_scan_bus(busno, ops, sd);
if (!bus)
kfree(sd);
return bus;
}
struct pci_bus * __devinit pci_scan_bus_with_sysdata(int busno)
{
return pci_scan_bus_on_node(busno, &pci_root_ops, -1);
}