7f6ee1adc7
Currently the spi mode can be set to the wrong mode if you are switching from any mode other than mode 0. This is because the mode is set using a bitwise or on uncleared bits. The following patch clears the mode bits before setting the new mode. I've also modified it to use the appropriate defines from pxa-regs.h for readability. Signed-off-by: Justin Clacherty <justin@redfish-group.com> Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1636 lines
42 KiB
C
1636 lines
42 KiB
C
/*
|
|
* Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/hardware.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/dma.h>
|
|
|
|
#include <asm/arch/hardware.h>
|
|
#include <asm/arch/pxa-regs.h>
|
|
#include <asm/arch/pxa2xx_spi.h>
|
|
|
|
MODULE_AUTHOR("Stephen Street");
|
|
MODULE_DESCRIPTION("PXA2xx SSP SPI Contoller");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#define MAX_BUSES 3
|
|
|
|
#define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
|
|
#define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
|
|
#define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
|
|
|
|
/* for testing SSCR1 changes that require SSP restart, basically
|
|
* everything except the service and interrupt enables */
|
|
#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_EBCEI | SSCR1_SCFR \
|
|
| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
|
|
| SSCR1_RWOT | SSCR1_TRAIL | SSCR1_PINTE \
|
|
| SSCR1_STRF | SSCR1_EFWR |SSCR1_RFT \
|
|
| SSCR1_TFT | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
|
|
|
|
#define DEFINE_SSP_REG(reg, off) \
|
|
static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \
|
|
static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); }
|
|
|
|
DEFINE_SSP_REG(SSCR0, 0x00)
|
|
DEFINE_SSP_REG(SSCR1, 0x04)
|
|
DEFINE_SSP_REG(SSSR, 0x08)
|
|
DEFINE_SSP_REG(SSITR, 0x0c)
|
|
DEFINE_SSP_REG(SSDR, 0x10)
|
|
DEFINE_SSP_REG(SSTO, 0x28)
|
|
DEFINE_SSP_REG(SSPSP, 0x2c)
|
|
|
|
#define START_STATE ((void*)0)
|
|
#define RUNNING_STATE ((void*)1)
|
|
#define DONE_STATE ((void*)2)
|
|
#define ERROR_STATE ((void*)-1)
|
|
|
|
#define QUEUE_RUNNING 0
|
|
#define QUEUE_STOPPED 1
|
|
|
|
struct driver_data {
|
|
/* Driver model hookup */
|
|
struct platform_device *pdev;
|
|
|
|
/* SPI framework hookup */
|
|
enum pxa_ssp_type ssp_type;
|
|
struct spi_master *master;
|
|
|
|
/* PXA hookup */
|
|
struct pxa2xx_spi_master *master_info;
|
|
|
|
/* DMA setup stuff */
|
|
int rx_channel;
|
|
int tx_channel;
|
|
u32 *null_dma_buf;
|
|
|
|
/* SSP register addresses */
|
|
void *ioaddr;
|
|
u32 ssdr_physical;
|
|
|
|
/* SSP masks*/
|
|
u32 dma_cr1;
|
|
u32 int_cr1;
|
|
u32 clear_sr;
|
|
u32 mask_sr;
|
|
|
|
/* Driver message queue */
|
|
struct workqueue_struct *workqueue;
|
|
struct work_struct pump_messages;
|
|
spinlock_t lock;
|
|
struct list_head queue;
|
|
int busy;
|
|
int run;
|
|
|
|
/* Message Transfer pump */
|
|
struct tasklet_struct pump_transfers;
|
|
|
|
/* Current message transfer state info */
|
|
struct spi_message* cur_msg;
|
|
struct spi_transfer* cur_transfer;
|
|
struct chip_data *cur_chip;
|
|
size_t len;
|
|
void *tx;
|
|
void *tx_end;
|
|
void *rx;
|
|
void *rx_end;
|
|
int dma_mapped;
|
|
dma_addr_t rx_dma;
|
|
dma_addr_t tx_dma;
|
|
size_t rx_map_len;
|
|
size_t tx_map_len;
|
|
u8 n_bytes;
|
|
u32 dma_width;
|
|
int cs_change;
|
|
int (*write)(struct driver_data *drv_data);
|
|
int (*read)(struct driver_data *drv_data);
|
|
irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
|
|
void (*cs_control)(u32 command);
|
|
};
|
|
|
|
struct chip_data {
|
|
u32 cr0;
|
|
u32 cr1;
|
|
u32 psp;
|
|
u32 timeout;
|
|
u8 n_bytes;
|
|
u32 dma_width;
|
|
u32 dma_burst_size;
|
|
u32 threshold;
|
|
u32 dma_threshold;
|
|
u8 enable_dma;
|
|
u8 bits_per_word;
|
|
u32 speed_hz;
|
|
int (*write)(struct driver_data *drv_data);
|
|
int (*read)(struct driver_data *drv_data);
|
|
void (*cs_control)(u32 command);
|
|
};
|
|
|
|
static void pump_messages(struct work_struct *work);
|
|
|
|
static int flush(struct driver_data *drv_data)
|
|
{
|
|
unsigned long limit = loops_per_jiffy << 1;
|
|
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
do {
|
|
while (read_SSSR(reg) & SSSR_RNE) {
|
|
read_SSDR(reg);
|
|
}
|
|
} while ((read_SSSR(reg) & SSSR_BSY) && limit--);
|
|
write_SSSR(SSSR_ROR, reg);
|
|
|
|
return limit;
|
|
}
|
|
|
|
static void null_cs_control(u32 command)
|
|
{
|
|
}
|
|
|
|
static int null_writer(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
u8 n_bytes = drv_data->n_bytes;
|
|
|
|
if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
|
|
|| (drv_data->tx == drv_data->tx_end))
|
|
return 0;
|
|
|
|
write_SSDR(0, reg);
|
|
drv_data->tx += n_bytes;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int null_reader(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
u8 n_bytes = drv_data->n_bytes;
|
|
|
|
while ((read_SSSR(reg) & SSSR_RNE)
|
|
&& (drv_data->rx < drv_data->rx_end)) {
|
|
read_SSDR(reg);
|
|
drv_data->rx += n_bytes;
|
|
}
|
|
|
|
return drv_data->rx == drv_data->rx_end;
|
|
}
|
|
|
|
static int u8_writer(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
|
|
|| (drv_data->tx == drv_data->tx_end))
|
|
return 0;
|
|
|
|
write_SSDR(*(u8 *)(drv_data->tx), reg);
|
|
++drv_data->tx;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int u8_reader(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
while ((read_SSSR(reg) & SSSR_RNE)
|
|
&& (drv_data->rx < drv_data->rx_end)) {
|
|
*(u8 *)(drv_data->rx) = read_SSDR(reg);
|
|
++drv_data->rx;
|
|
}
|
|
|
|
return drv_data->rx == drv_data->rx_end;
|
|
}
|
|
|
|
static int u16_writer(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
|
|
|| (drv_data->tx == drv_data->tx_end))
|
|
return 0;
|
|
|
|
write_SSDR(*(u16 *)(drv_data->tx), reg);
|
|
drv_data->tx += 2;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int u16_reader(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
while ((read_SSSR(reg) & SSSR_RNE)
|
|
&& (drv_data->rx < drv_data->rx_end)) {
|
|
*(u16 *)(drv_data->rx) = read_SSDR(reg);
|
|
drv_data->rx += 2;
|
|
}
|
|
|
|
return drv_data->rx == drv_data->rx_end;
|
|
}
|
|
|
|
static int u32_writer(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
|
|
|| (drv_data->tx == drv_data->tx_end))
|
|
return 0;
|
|
|
|
write_SSDR(*(u32 *)(drv_data->tx), reg);
|
|
drv_data->tx += 4;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int u32_reader(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
while ((read_SSSR(reg) & SSSR_RNE)
|
|
&& (drv_data->rx < drv_data->rx_end)) {
|
|
*(u32 *)(drv_data->rx) = read_SSDR(reg);
|
|
drv_data->rx += 4;
|
|
}
|
|
|
|
return drv_data->rx == drv_data->rx_end;
|
|
}
|
|
|
|
static void *next_transfer(struct driver_data *drv_data)
|
|
{
|
|
struct spi_message *msg = drv_data->cur_msg;
|
|
struct spi_transfer *trans = drv_data->cur_transfer;
|
|
|
|
/* Move to next transfer */
|
|
if (trans->transfer_list.next != &msg->transfers) {
|
|
drv_data->cur_transfer =
|
|
list_entry(trans->transfer_list.next,
|
|
struct spi_transfer,
|
|
transfer_list);
|
|
return RUNNING_STATE;
|
|
} else
|
|
return DONE_STATE;
|
|
}
|
|
|
|
static int map_dma_buffers(struct driver_data *drv_data)
|
|
{
|
|
struct spi_message *msg = drv_data->cur_msg;
|
|
struct device *dev = &msg->spi->dev;
|
|
|
|
if (!drv_data->cur_chip->enable_dma)
|
|
return 0;
|
|
|
|
if (msg->is_dma_mapped)
|
|
return drv_data->rx_dma && drv_data->tx_dma;
|
|
|
|
if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
|
|
return 0;
|
|
|
|
/* Modify setup if rx buffer is null */
|
|
if (drv_data->rx == NULL) {
|
|
*drv_data->null_dma_buf = 0;
|
|
drv_data->rx = drv_data->null_dma_buf;
|
|
drv_data->rx_map_len = 4;
|
|
} else
|
|
drv_data->rx_map_len = drv_data->len;
|
|
|
|
|
|
/* Modify setup if tx buffer is null */
|
|
if (drv_data->tx == NULL) {
|
|
*drv_data->null_dma_buf = 0;
|
|
drv_data->tx = drv_data->null_dma_buf;
|
|
drv_data->tx_map_len = 4;
|
|
} else
|
|
drv_data->tx_map_len = drv_data->len;
|
|
|
|
/* Stream map the rx buffer */
|
|
drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
|
|
drv_data->rx_map_len,
|
|
DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(drv_data->rx_dma))
|
|
return 0;
|
|
|
|
/* Stream map the tx buffer */
|
|
drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
|
|
drv_data->tx_map_len,
|
|
DMA_TO_DEVICE);
|
|
|
|
if (dma_mapping_error(drv_data->tx_dma)) {
|
|
dma_unmap_single(dev, drv_data->rx_dma,
|
|
drv_data->rx_map_len, DMA_FROM_DEVICE);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void unmap_dma_buffers(struct driver_data *drv_data)
|
|
{
|
|
struct device *dev;
|
|
|
|
if (!drv_data->dma_mapped)
|
|
return;
|
|
|
|
if (!drv_data->cur_msg->is_dma_mapped) {
|
|
dev = &drv_data->cur_msg->spi->dev;
|
|
dma_unmap_single(dev, drv_data->rx_dma,
|
|
drv_data->rx_map_len, DMA_FROM_DEVICE);
|
|
dma_unmap_single(dev, drv_data->tx_dma,
|
|
drv_data->tx_map_len, DMA_TO_DEVICE);
|
|
}
|
|
|
|
drv_data->dma_mapped = 0;
|
|
}
|
|
|
|
/* caller already set message->status; dma and pio irqs are blocked */
|
|
static void giveback(struct driver_data *drv_data)
|
|
{
|
|
struct spi_transfer* last_transfer;
|
|
unsigned long flags;
|
|
struct spi_message *msg;
|
|
|
|
spin_lock_irqsave(&drv_data->lock, flags);
|
|
msg = drv_data->cur_msg;
|
|
drv_data->cur_msg = NULL;
|
|
drv_data->cur_transfer = NULL;
|
|
drv_data->cur_chip = NULL;
|
|
queue_work(drv_data->workqueue, &drv_data->pump_messages);
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
|
|
last_transfer = list_entry(msg->transfers.prev,
|
|
struct spi_transfer,
|
|
transfer_list);
|
|
|
|
if (!last_transfer->cs_change)
|
|
drv_data->cs_control(PXA2XX_CS_DEASSERT);
|
|
|
|
msg->state = NULL;
|
|
if (msg->complete)
|
|
msg->complete(msg->context);
|
|
}
|
|
|
|
static int wait_ssp_rx_stall(void *ioaddr)
|
|
{
|
|
unsigned long limit = loops_per_jiffy << 1;
|
|
|
|
while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
|
|
cpu_relax();
|
|
|
|
return limit;
|
|
}
|
|
|
|
static int wait_dma_channel_stop(int channel)
|
|
{
|
|
unsigned long limit = loops_per_jiffy << 1;
|
|
|
|
while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
|
|
cpu_relax();
|
|
|
|
return limit;
|
|
}
|
|
|
|
void dma_error_stop(struct driver_data *drv_data, const char *msg)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
/* Stop and reset */
|
|
DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
|
|
DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
|
|
write_SSSR(drv_data->clear_sr, reg);
|
|
write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
|
|
if (drv_data->ssp_type != PXA25x_SSP)
|
|
write_SSTO(0, reg);
|
|
flush(drv_data);
|
|
write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
|
|
|
|
unmap_dma_buffers(drv_data);
|
|
|
|
dev_err(&drv_data->pdev->dev, "%s\n", msg);
|
|
|
|
drv_data->cur_msg->state = ERROR_STATE;
|
|
tasklet_schedule(&drv_data->pump_transfers);
|
|
}
|
|
|
|
static void dma_transfer_complete(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
struct spi_message *msg = drv_data->cur_msg;
|
|
|
|
/* Clear and disable interrupts on SSP and DMA channels*/
|
|
write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
|
|
write_SSSR(drv_data->clear_sr, reg);
|
|
DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
|
|
DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
|
|
|
|
if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
|
|
dev_err(&drv_data->pdev->dev,
|
|
"dma_handler: dma rx channel stop failed\n");
|
|
|
|
if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
|
|
dev_err(&drv_data->pdev->dev,
|
|
"dma_transfer: ssp rx stall failed\n");
|
|
|
|
unmap_dma_buffers(drv_data);
|
|
|
|
/* update the buffer pointer for the amount completed in dma */
|
|
drv_data->rx += drv_data->len -
|
|
(DCMD(drv_data->rx_channel) & DCMD_LENGTH);
|
|
|
|
/* read trailing data from fifo, it does not matter how many
|
|
* bytes are in the fifo just read until buffer is full
|
|
* or fifo is empty, which ever occurs first */
|
|
drv_data->read(drv_data);
|
|
|
|
/* return count of what was actually read */
|
|
msg->actual_length += drv_data->len -
|
|
(drv_data->rx_end - drv_data->rx);
|
|
|
|
/* Release chip select if requested, transfer delays are
|
|
* handled in pump_transfers */
|
|
if (drv_data->cs_change)
|
|
drv_data->cs_control(PXA2XX_CS_DEASSERT);
|
|
|
|
/* Move to next transfer */
|
|
msg->state = next_transfer(drv_data);
|
|
|
|
/* Schedule transfer tasklet */
|
|
tasklet_schedule(&drv_data->pump_transfers);
|
|
}
|
|
|
|
static void dma_handler(int channel, void *data)
|
|
{
|
|
struct driver_data *drv_data = data;
|
|
u32 irq_status = DCSR(channel) & DMA_INT_MASK;
|
|
|
|
if (irq_status & DCSR_BUSERR) {
|
|
|
|
if (channel == drv_data->tx_channel)
|
|
dma_error_stop(drv_data,
|
|
"dma_handler: "
|
|
"bad bus address on tx channel");
|
|
else
|
|
dma_error_stop(drv_data,
|
|
"dma_handler: "
|
|
"bad bus address on rx channel");
|
|
return;
|
|
}
|
|
|
|
/* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
|
|
if ((channel == drv_data->tx_channel)
|
|
&& (irq_status & DCSR_ENDINTR)
|
|
&& (drv_data->ssp_type == PXA25x_SSP)) {
|
|
|
|
/* Wait for rx to stall */
|
|
if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
|
|
dev_err(&drv_data->pdev->dev,
|
|
"dma_handler: ssp rx stall failed\n");
|
|
|
|
/* finish this transfer, start the next */
|
|
dma_transfer_complete(drv_data);
|
|
}
|
|
}
|
|
|
|
static irqreturn_t dma_transfer(struct driver_data *drv_data)
|
|
{
|
|
u32 irq_status;
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
irq_status = read_SSSR(reg) & drv_data->mask_sr;
|
|
if (irq_status & SSSR_ROR) {
|
|
dma_error_stop(drv_data, "dma_transfer: fifo overrun");
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Check for false positive timeout */
|
|
if ((irq_status & SSSR_TINT)
|
|
&& (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
|
|
write_SSSR(SSSR_TINT, reg);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
|
|
|
|
/* Clear and disable timeout interrupt, do the rest in
|
|
* dma_transfer_complete */
|
|
if (drv_data->ssp_type != PXA25x_SSP)
|
|
write_SSTO(0, reg);
|
|
|
|
/* finish this transfer, start the next */
|
|
dma_transfer_complete(drv_data);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Opps problem detected */
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
static void int_error_stop(struct driver_data *drv_data, const char* msg)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
/* Stop and reset SSP */
|
|
write_SSSR(drv_data->clear_sr, reg);
|
|
write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
|
|
if (drv_data->ssp_type != PXA25x_SSP)
|
|
write_SSTO(0, reg);
|
|
flush(drv_data);
|
|
write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
|
|
|
|
dev_err(&drv_data->pdev->dev, "%s\n", msg);
|
|
|
|
drv_data->cur_msg->state = ERROR_STATE;
|
|
tasklet_schedule(&drv_data->pump_transfers);
|
|
}
|
|
|
|
static void int_transfer_complete(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
/* Stop SSP */
|
|
write_SSSR(drv_data->clear_sr, reg);
|
|
write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
|
|
if (drv_data->ssp_type != PXA25x_SSP)
|
|
write_SSTO(0, reg);
|
|
|
|
/* Update total byte transfered return count actual bytes read */
|
|
drv_data->cur_msg->actual_length += drv_data->len -
|
|
(drv_data->rx_end - drv_data->rx);
|
|
|
|
/* Release chip select if requested, transfer delays are
|
|
* handled in pump_transfers */
|
|
if (drv_data->cs_change)
|
|
drv_data->cs_control(PXA2XX_CS_DEASSERT);
|
|
|
|
/* Move to next transfer */
|
|
drv_data->cur_msg->state = next_transfer(drv_data);
|
|
|
|
/* Schedule transfer tasklet */
|
|
tasklet_schedule(&drv_data->pump_transfers);
|
|
}
|
|
|
|
static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
|
|
drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
|
|
|
|
u32 irq_status = read_SSSR(reg) & irq_mask;
|
|
|
|
if (irq_status & SSSR_ROR) {
|
|
int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
if (irq_status & SSSR_TINT) {
|
|
write_SSSR(SSSR_TINT, reg);
|
|
if (drv_data->read(drv_data)) {
|
|
int_transfer_complete(drv_data);
|
|
return IRQ_HANDLED;
|
|
}
|
|
}
|
|
|
|
/* Drain rx fifo, Fill tx fifo and prevent overruns */
|
|
do {
|
|
if (drv_data->read(drv_data)) {
|
|
int_transfer_complete(drv_data);
|
|
return IRQ_HANDLED;
|
|
}
|
|
} while (drv_data->write(drv_data));
|
|
|
|
if (drv_data->read(drv_data)) {
|
|
int_transfer_complete(drv_data);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
if (drv_data->tx == drv_data->tx_end) {
|
|
write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
|
|
/* PXA25x_SSP has no timeout, read trailing bytes */
|
|
if (drv_data->ssp_type == PXA25x_SSP) {
|
|
if (!wait_ssp_rx_stall(reg))
|
|
{
|
|
int_error_stop(drv_data, "interrupt_transfer: "
|
|
"rx stall failed");
|
|
return IRQ_HANDLED;
|
|
}
|
|
if (!drv_data->read(drv_data))
|
|
{
|
|
int_error_stop(drv_data,
|
|
"interrupt_transfer: "
|
|
"trailing byte read failed");
|
|
return IRQ_HANDLED;
|
|
}
|
|
int_transfer_complete(drv_data);
|
|
}
|
|
}
|
|
|
|
/* We did something */
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t ssp_int(int irq, void *dev_id)
|
|
{
|
|
struct driver_data *drv_data = dev_id;
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
if (!drv_data->cur_msg) {
|
|
|
|
write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
|
|
write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
|
|
if (drv_data->ssp_type != PXA25x_SSP)
|
|
write_SSTO(0, reg);
|
|
write_SSSR(drv_data->clear_sr, reg);
|
|
|
|
dev_err(&drv_data->pdev->dev, "bad message state "
|
|
"in interrupt handler\n");
|
|
|
|
/* Never fail */
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
return drv_data->transfer_handler(drv_data);
|
|
}
|
|
|
|
int set_dma_burst_and_threshold(struct chip_data *chip, struct spi_device *spi,
|
|
u8 bits_per_word, u32 *burst_code,
|
|
u32 *threshold)
|
|
{
|
|
struct pxa2xx_spi_chip *chip_info =
|
|
(struct pxa2xx_spi_chip *)spi->controller_data;
|
|
int bytes_per_word;
|
|
int burst_bytes;
|
|
int thresh_words;
|
|
int req_burst_size;
|
|
int retval = 0;
|
|
|
|
/* Set the threshold (in registers) to equal the same amount of data
|
|
* as represented by burst size (in bytes). The computation below
|
|
* is (burst_size rounded up to nearest 8 byte, word or long word)
|
|
* divided by (bytes/register); the tx threshold is the inverse of
|
|
* the rx, so that there will always be enough data in the rx fifo
|
|
* to satisfy a burst, and there will always be enough space in the
|
|
* tx fifo to accept a burst (a tx burst will overwrite the fifo if
|
|
* there is not enough space), there must always remain enough empty
|
|
* space in the rx fifo for any data loaded to the tx fifo.
|
|
* Whenever burst_size (in bytes) equals bits/word, the fifo threshold
|
|
* will be 8, or half the fifo;
|
|
* The threshold can only be set to 2, 4 or 8, but not 16, because
|
|
* to burst 16 to the tx fifo, the fifo would have to be empty;
|
|
* however, the minimum fifo trigger level is 1, and the tx will
|
|
* request service when the fifo is at this level, with only 15 spaces.
|
|
*/
|
|
|
|
/* find bytes/word */
|
|
if (bits_per_word <= 8)
|
|
bytes_per_word = 1;
|
|
else if (bits_per_word <= 16)
|
|
bytes_per_word = 2;
|
|
else
|
|
bytes_per_word = 4;
|
|
|
|
/* use struct pxa2xx_spi_chip->dma_burst_size if available */
|
|
if (chip_info)
|
|
req_burst_size = chip_info->dma_burst_size;
|
|
else {
|
|
switch (chip->dma_burst_size) {
|
|
default:
|
|
/* if the default burst size is not set,
|
|
* do it now */
|
|
chip->dma_burst_size = DCMD_BURST8;
|
|
case DCMD_BURST8:
|
|
req_burst_size = 8;
|
|
break;
|
|
case DCMD_BURST16:
|
|
req_burst_size = 16;
|
|
break;
|
|
case DCMD_BURST32:
|
|
req_burst_size = 32;
|
|
break;
|
|
}
|
|
}
|
|
if (req_burst_size <= 8) {
|
|
*burst_code = DCMD_BURST8;
|
|
burst_bytes = 8;
|
|
} else if (req_burst_size <= 16) {
|
|
if (bytes_per_word == 1) {
|
|
/* don't burst more than 1/2 the fifo */
|
|
*burst_code = DCMD_BURST8;
|
|
burst_bytes = 8;
|
|
retval = 1;
|
|
} else {
|
|
*burst_code = DCMD_BURST16;
|
|
burst_bytes = 16;
|
|
}
|
|
} else {
|
|
if (bytes_per_word == 1) {
|
|
/* don't burst more than 1/2 the fifo */
|
|
*burst_code = DCMD_BURST8;
|
|
burst_bytes = 8;
|
|
retval = 1;
|
|
} else if (bytes_per_word == 2) {
|
|
/* don't burst more than 1/2 the fifo */
|
|
*burst_code = DCMD_BURST16;
|
|
burst_bytes = 16;
|
|
retval = 1;
|
|
} else {
|
|
*burst_code = DCMD_BURST32;
|
|
burst_bytes = 32;
|
|
}
|
|
}
|
|
|
|
thresh_words = burst_bytes / bytes_per_word;
|
|
|
|
/* thresh_words will be between 2 and 8 */
|
|
*threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
|
|
| (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static void pump_transfers(unsigned long data)
|
|
{
|
|
struct driver_data *drv_data = (struct driver_data *)data;
|
|
struct spi_message *message = NULL;
|
|
struct spi_transfer *transfer = NULL;
|
|
struct spi_transfer *previous = NULL;
|
|
struct chip_data *chip = NULL;
|
|
void *reg = drv_data->ioaddr;
|
|
u32 clk_div = 0;
|
|
u8 bits = 0;
|
|
u32 speed = 0;
|
|
u32 cr0;
|
|
u32 cr1;
|
|
u32 dma_thresh = drv_data->cur_chip->dma_threshold;
|
|
u32 dma_burst = drv_data->cur_chip->dma_burst_size;
|
|
|
|
/* Get current state information */
|
|
message = drv_data->cur_msg;
|
|
transfer = drv_data->cur_transfer;
|
|
chip = drv_data->cur_chip;
|
|
|
|
/* Handle for abort */
|
|
if (message->state == ERROR_STATE) {
|
|
message->status = -EIO;
|
|
giveback(drv_data);
|
|
return;
|
|
}
|
|
|
|
/* Handle end of message */
|
|
if (message->state == DONE_STATE) {
|
|
message->status = 0;
|
|
giveback(drv_data);
|
|
return;
|
|
}
|
|
|
|
/* Delay if requested at end of transfer*/
|
|
if (message->state == RUNNING_STATE) {
|
|
previous = list_entry(transfer->transfer_list.prev,
|
|
struct spi_transfer,
|
|
transfer_list);
|
|
if (previous->delay_usecs)
|
|
udelay(previous->delay_usecs);
|
|
}
|
|
|
|
/* Check transfer length */
|
|
if (transfer->len > 8191)
|
|
{
|
|
dev_warn(&drv_data->pdev->dev, "pump_transfers: transfer "
|
|
"length greater than 8191\n");
|
|
message->status = -EINVAL;
|
|
giveback(drv_data);
|
|
return;
|
|
}
|
|
|
|
/* Setup the transfer state based on the type of transfer */
|
|
if (flush(drv_data) == 0) {
|
|
dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
|
|
message->status = -EIO;
|
|
giveback(drv_data);
|
|
return;
|
|
}
|
|
drv_data->n_bytes = chip->n_bytes;
|
|
drv_data->dma_width = chip->dma_width;
|
|
drv_data->cs_control = chip->cs_control;
|
|
drv_data->tx = (void *)transfer->tx_buf;
|
|
drv_data->tx_end = drv_data->tx + transfer->len;
|
|
drv_data->rx = transfer->rx_buf;
|
|
drv_data->rx_end = drv_data->rx + transfer->len;
|
|
drv_data->rx_dma = transfer->rx_dma;
|
|
drv_data->tx_dma = transfer->tx_dma;
|
|
drv_data->len = transfer->len & DCMD_LENGTH;
|
|
drv_data->write = drv_data->tx ? chip->write : null_writer;
|
|
drv_data->read = drv_data->rx ? chip->read : null_reader;
|
|
drv_data->cs_change = transfer->cs_change;
|
|
|
|
/* Change speed and bit per word on a per transfer */
|
|
cr0 = chip->cr0;
|
|
if (transfer->speed_hz || transfer->bits_per_word) {
|
|
|
|
bits = chip->bits_per_word;
|
|
speed = chip->speed_hz;
|
|
|
|
if (transfer->speed_hz)
|
|
speed = transfer->speed_hz;
|
|
|
|
if (transfer->bits_per_word)
|
|
bits = transfer->bits_per_word;
|
|
|
|
if (reg == SSP1_VIRT)
|
|
clk_div = SSP1_SerClkDiv(speed);
|
|
else if (reg == SSP2_VIRT)
|
|
clk_div = SSP2_SerClkDiv(speed);
|
|
else if (reg == SSP3_VIRT)
|
|
clk_div = SSP3_SerClkDiv(speed);
|
|
|
|
if (bits <= 8) {
|
|
drv_data->n_bytes = 1;
|
|
drv_data->dma_width = DCMD_WIDTH1;
|
|
drv_data->read = drv_data->read != null_reader ?
|
|
u8_reader : null_reader;
|
|
drv_data->write = drv_data->write != null_writer ?
|
|
u8_writer : null_writer;
|
|
} else if (bits <= 16) {
|
|
drv_data->n_bytes = 2;
|
|
drv_data->dma_width = DCMD_WIDTH2;
|
|
drv_data->read = drv_data->read != null_reader ?
|
|
u16_reader : null_reader;
|
|
drv_data->write = drv_data->write != null_writer ?
|
|
u16_writer : null_writer;
|
|
} else if (bits <= 32) {
|
|
drv_data->n_bytes = 4;
|
|
drv_data->dma_width = DCMD_WIDTH4;
|
|
drv_data->read = drv_data->read != null_reader ?
|
|
u32_reader : null_reader;
|
|
drv_data->write = drv_data->write != null_writer ?
|
|
u32_writer : null_writer;
|
|
}
|
|
/* if bits/word is changed in dma mode, then must check the
|
|
* thresholds and burst also */
|
|
if (chip->enable_dma) {
|
|
if (set_dma_burst_and_threshold(chip, message->spi,
|
|
bits, &dma_burst,
|
|
&dma_thresh))
|
|
if (printk_ratelimit())
|
|
dev_warn(&message->spi->dev,
|
|
"pump_transfer: "
|
|
"DMA burst size reduced to "
|
|
"match bits_per_word\n");
|
|
}
|
|
|
|
cr0 = clk_div
|
|
| SSCR0_Motorola
|
|
| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
|
|
| SSCR0_SSE
|
|
| (bits > 16 ? SSCR0_EDSS : 0);
|
|
}
|
|
|
|
message->state = RUNNING_STATE;
|
|
|
|
/* Try to map dma buffer and do a dma transfer if successful */
|
|
if ((drv_data->dma_mapped = map_dma_buffers(drv_data))) {
|
|
|
|
/* Ensure we have the correct interrupt handler */
|
|
drv_data->transfer_handler = dma_transfer;
|
|
|
|
/* Setup rx DMA Channel */
|
|
DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
|
|
DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
|
|
DTADR(drv_data->rx_channel) = drv_data->rx_dma;
|
|
if (drv_data->rx == drv_data->null_dma_buf)
|
|
/* No target address increment */
|
|
DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
|
|
| drv_data->dma_width
|
|
| dma_burst
|
|
| drv_data->len;
|
|
else
|
|
DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
|
|
| DCMD_FLOWSRC
|
|
| drv_data->dma_width
|
|
| dma_burst
|
|
| drv_data->len;
|
|
|
|
/* Setup tx DMA Channel */
|
|
DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
|
|
DSADR(drv_data->tx_channel) = drv_data->tx_dma;
|
|
DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
|
|
if (drv_data->tx == drv_data->null_dma_buf)
|
|
/* No source address increment */
|
|
DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
|
|
| drv_data->dma_width
|
|
| dma_burst
|
|
| drv_data->len;
|
|
else
|
|
DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
|
|
| DCMD_FLOWTRG
|
|
| drv_data->dma_width
|
|
| dma_burst
|
|
| drv_data->len;
|
|
|
|
/* Enable dma end irqs on SSP to detect end of transfer */
|
|
if (drv_data->ssp_type == PXA25x_SSP)
|
|
DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
|
|
|
|
/* Fix me, need to handle cs polarity */
|
|
drv_data->cs_control(PXA2XX_CS_ASSERT);
|
|
|
|
/* Clear status and start DMA engine */
|
|
cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
|
|
write_SSSR(drv_data->clear_sr, reg);
|
|
DCSR(drv_data->rx_channel) |= DCSR_RUN;
|
|
DCSR(drv_data->tx_channel) |= DCSR_RUN;
|
|
} else {
|
|
/* Ensure we have the correct interrupt handler */
|
|
drv_data->transfer_handler = interrupt_transfer;
|
|
|
|
/* Fix me, need to handle cs polarity */
|
|
drv_data->cs_control(PXA2XX_CS_ASSERT);
|
|
|
|
/* Clear status */
|
|
cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
|
|
write_SSSR(drv_data->clear_sr, reg);
|
|
}
|
|
|
|
/* see if we need to reload the config registers */
|
|
if ((read_SSCR0(reg) != cr0)
|
|
|| (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
|
|
(cr1 & SSCR1_CHANGE_MASK)) {
|
|
|
|
write_SSCR0(cr0 & ~SSCR0_SSE, reg);
|
|
if (drv_data->ssp_type != PXA25x_SSP)
|
|
write_SSTO(chip->timeout, reg);
|
|
write_SSCR1(cr1, reg);
|
|
write_SSCR0(cr0, reg);
|
|
} else {
|
|
if (drv_data->ssp_type != PXA25x_SSP)
|
|
write_SSTO(chip->timeout, reg);
|
|
write_SSCR1(cr1, reg);
|
|
}
|
|
}
|
|
|
|
static void pump_messages(struct work_struct *work)
|
|
{
|
|
struct driver_data *drv_data =
|
|
container_of(work, struct driver_data, pump_messages);
|
|
unsigned long flags;
|
|
|
|
/* Lock queue and check for queue work */
|
|
spin_lock_irqsave(&drv_data->lock, flags);
|
|
if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
|
|
drv_data->busy = 0;
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
return;
|
|
}
|
|
|
|
/* Make sure we are not already running a message */
|
|
if (drv_data->cur_msg) {
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
return;
|
|
}
|
|
|
|
/* Extract head of queue */
|
|
drv_data->cur_msg = list_entry(drv_data->queue.next,
|
|
struct spi_message, queue);
|
|
list_del_init(&drv_data->cur_msg->queue);
|
|
|
|
/* Initial message state*/
|
|
drv_data->cur_msg->state = START_STATE;
|
|
drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
|
|
struct spi_transfer,
|
|
transfer_list);
|
|
|
|
/* prepare to setup the SSP, in pump_transfers, using the per
|
|
* chip configuration */
|
|
drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
|
|
|
|
/* Mark as busy and launch transfers */
|
|
tasklet_schedule(&drv_data->pump_transfers);
|
|
|
|
drv_data->busy = 1;
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
}
|
|
|
|
static int transfer(struct spi_device *spi, struct spi_message *msg)
|
|
{
|
|
struct driver_data *drv_data = spi_master_get_devdata(spi->master);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&drv_data->lock, flags);
|
|
|
|
if (drv_data->run == QUEUE_STOPPED) {
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
return -ESHUTDOWN;
|
|
}
|
|
|
|
msg->actual_length = 0;
|
|
msg->status = -EINPROGRESS;
|
|
msg->state = START_STATE;
|
|
|
|
list_add_tail(&msg->queue, &drv_data->queue);
|
|
|
|
if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
|
|
queue_work(drv_data->workqueue, &drv_data->pump_messages);
|
|
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int setup(struct spi_device *spi)
|
|
{
|
|
struct pxa2xx_spi_chip *chip_info = NULL;
|
|
struct chip_data *chip;
|
|
struct driver_data *drv_data = spi_master_get_devdata(spi->master);
|
|
unsigned int clk_div;
|
|
|
|
if (!spi->bits_per_word)
|
|
spi->bits_per_word = 8;
|
|
|
|
if (drv_data->ssp_type != PXA25x_SSP
|
|
&& (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
|
|
dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
|
|
"b/w not 4-32 for type non-PXA25x_SSP\n",
|
|
drv_data->ssp_type, spi->bits_per_word);
|
|
return -EINVAL;
|
|
}
|
|
else if (drv_data->ssp_type == PXA25x_SSP
|
|
&& (spi->bits_per_word < 4
|
|
|| spi->bits_per_word > 16)) {
|
|
dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
|
|
"b/w not 4-16 for type PXA25x_SSP\n",
|
|
drv_data->ssp_type, spi->bits_per_word);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Only alloc on first setup */
|
|
chip = spi_get_ctldata(spi);
|
|
if (!chip) {
|
|
chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
|
|
if (!chip) {
|
|
dev_err(&spi->dev,
|
|
"failed setup: can't allocate chip data\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
chip->cs_control = null_cs_control;
|
|
chip->enable_dma = 0;
|
|
chip->timeout = 1000;
|
|
chip->threshold = SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
|
|
chip->dma_burst_size = drv_data->master_info->enable_dma ?
|
|
DCMD_BURST8 : 0;
|
|
}
|
|
|
|
/* protocol drivers may change the chip settings, so...
|
|
* if chip_info exists, use it */
|
|
chip_info = spi->controller_data;
|
|
|
|
/* chip_info isn't always needed */
|
|
chip->cr1 = 0;
|
|
if (chip_info) {
|
|
if (chip_info->cs_control)
|
|
chip->cs_control = chip_info->cs_control;
|
|
|
|
chip->timeout = chip_info->timeout;
|
|
|
|
chip->threshold = (SSCR1_RxTresh(chip_info->rx_threshold) &
|
|
SSCR1_RFT) |
|
|
(SSCR1_TxTresh(chip_info->tx_threshold) &
|
|
SSCR1_TFT);
|
|
|
|
chip->enable_dma = chip_info->dma_burst_size != 0
|
|
&& drv_data->master_info->enable_dma;
|
|
chip->dma_threshold = 0;
|
|
|
|
if (chip_info->enable_loopback)
|
|
chip->cr1 = SSCR1_LBM;
|
|
}
|
|
|
|
/* set dma burst and threshold outside of chip_info path so that if
|
|
* chip_info goes away after setting chip->enable_dma, the
|
|
* burst and threshold can still respond to changes in bits_per_word */
|
|
if (chip->enable_dma) {
|
|
/* set up legal burst and threshold for dma */
|
|
if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
|
|
&chip->dma_burst_size,
|
|
&chip->dma_threshold)) {
|
|
dev_warn(&spi->dev, "in setup: DMA burst size reduced "
|
|
"to match bits_per_word\n");
|
|
}
|
|
}
|
|
|
|
if (drv_data->ioaddr == SSP1_VIRT)
|
|
clk_div = SSP1_SerClkDiv(spi->max_speed_hz);
|
|
else if (drv_data->ioaddr == SSP2_VIRT)
|
|
clk_div = SSP2_SerClkDiv(spi->max_speed_hz);
|
|
else if (drv_data->ioaddr == SSP3_VIRT)
|
|
clk_div = SSP3_SerClkDiv(spi->max_speed_hz);
|
|
else
|
|
{
|
|
dev_err(&spi->dev, "failed setup: unknown IO address=0x%p\n",
|
|
drv_data->ioaddr);
|
|
return -ENODEV;
|
|
}
|
|
chip->speed_hz = spi->max_speed_hz;
|
|
|
|
chip->cr0 = clk_div
|
|
| SSCR0_Motorola
|
|
| SSCR0_DataSize(spi->bits_per_word > 16 ?
|
|
spi->bits_per_word - 16 : spi->bits_per_word)
|
|
| SSCR0_SSE
|
|
| (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
|
|
chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
|
|
chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
|
|
| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
|
|
|
|
/* NOTE: PXA25x_SSP _could_ use external clocking ... */
|
|
if (drv_data->ssp_type != PXA25x_SSP)
|
|
dev_dbg(&spi->dev, "%d bits/word, %d Hz, mode %d\n",
|
|
spi->bits_per_word,
|
|
(CLOCK_SPEED_HZ)
|
|
/ (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
|
|
spi->mode & 0x3);
|
|
else
|
|
dev_dbg(&spi->dev, "%d bits/word, %d Hz, mode %d\n",
|
|
spi->bits_per_word,
|
|
(CLOCK_SPEED_HZ/2)
|
|
/ (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
|
|
spi->mode & 0x3);
|
|
|
|
if (spi->bits_per_word <= 8) {
|
|
chip->n_bytes = 1;
|
|
chip->dma_width = DCMD_WIDTH1;
|
|
chip->read = u8_reader;
|
|
chip->write = u8_writer;
|
|
} else if (spi->bits_per_word <= 16) {
|
|
chip->n_bytes = 2;
|
|
chip->dma_width = DCMD_WIDTH2;
|
|
chip->read = u16_reader;
|
|
chip->write = u16_writer;
|
|
} else if (spi->bits_per_word <= 32) {
|
|
chip->cr0 |= SSCR0_EDSS;
|
|
chip->n_bytes = 4;
|
|
chip->dma_width = DCMD_WIDTH4;
|
|
chip->read = u32_reader;
|
|
chip->write = u32_writer;
|
|
} else {
|
|
dev_err(&spi->dev, "invalid wordsize\n");
|
|
return -ENODEV;
|
|
}
|
|
chip->bits_per_word = spi->bits_per_word;
|
|
|
|
spi_set_ctldata(spi, chip);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cleanup(const struct spi_device *spi)
|
|
{
|
|
struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
|
|
|
|
kfree(chip);
|
|
}
|
|
|
|
static int init_queue(struct driver_data *drv_data)
|
|
{
|
|
INIT_LIST_HEAD(&drv_data->queue);
|
|
spin_lock_init(&drv_data->lock);
|
|
|
|
drv_data->run = QUEUE_STOPPED;
|
|
drv_data->busy = 0;
|
|
|
|
tasklet_init(&drv_data->pump_transfers,
|
|
pump_transfers, (unsigned long)drv_data);
|
|
|
|
INIT_WORK(&drv_data->pump_messages, pump_messages);
|
|
drv_data->workqueue = create_singlethread_workqueue(
|
|
drv_data->master->cdev.dev->bus_id);
|
|
if (drv_data->workqueue == NULL)
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int start_queue(struct driver_data *drv_data)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&drv_data->lock, flags);
|
|
|
|
if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
return -EBUSY;
|
|
}
|
|
|
|
drv_data->run = QUEUE_RUNNING;
|
|
drv_data->cur_msg = NULL;
|
|
drv_data->cur_transfer = NULL;
|
|
drv_data->cur_chip = NULL;
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
|
|
queue_work(drv_data->workqueue, &drv_data->pump_messages);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stop_queue(struct driver_data *drv_data)
|
|
{
|
|
unsigned long flags;
|
|
unsigned limit = 500;
|
|
int status = 0;
|
|
|
|
spin_lock_irqsave(&drv_data->lock, flags);
|
|
|
|
/* This is a bit lame, but is optimized for the common execution path.
|
|
* A wait_queue on the drv_data->busy could be used, but then the common
|
|
* execution path (pump_messages) would be required to call wake_up or
|
|
* friends on every SPI message. Do this instead */
|
|
drv_data->run = QUEUE_STOPPED;
|
|
while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
msleep(10);
|
|
spin_lock_irqsave(&drv_data->lock, flags);
|
|
}
|
|
|
|
if (!list_empty(&drv_data->queue) || drv_data->busy)
|
|
status = -EBUSY;
|
|
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
|
|
return status;
|
|
}
|
|
|
|
static int destroy_queue(struct driver_data *drv_data)
|
|
{
|
|
int status;
|
|
|
|
status = stop_queue(drv_data);
|
|
/* we are unloading the module or failing to load (only two calls
|
|
* to this routine), and neither call can handle a return value.
|
|
* However, destroy_workqueue calls flush_workqueue, and that will
|
|
* block until all work is done. If the reason that stop_queue
|
|
* timed out is that the work will never finish, then it does no
|
|
* good to call destroy_workqueue, so return anyway. */
|
|
if (status != 0)
|
|
return status;
|
|
|
|
destroy_workqueue(drv_data->workqueue);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pxa2xx_spi_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct pxa2xx_spi_master *platform_info;
|
|
struct spi_master *master;
|
|
struct driver_data *drv_data = 0;
|
|
struct resource *memory_resource;
|
|
int irq;
|
|
int status = 0;
|
|
|
|
platform_info = dev->platform_data;
|
|
|
|
if (platform_info->ssp_type == SSP_UNDEFINED) {
|
|
dev_err(&pdev->dev, "undefined SSP\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Allocate master with space for drv_data and null dma buffer */
|
|
master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
|
|
if (!master) {
|
|
dev_err(&pdev->dev, "can not alloc spi_master\n");
|
|
return -ENOMEM;
|
|
}
|
|
drv_data = spi_master_get_devdata(master);
|
|
drv_data->master = master;
|
|
drv_data->master_info = platform_info;
|
|
drv_data->pdev = pdev;
|
|
|
|
master->bus_num = pdev->id;
|
|
master->num_chipselect = platform_info->num_chipselect;
|
|
master->cleanup = cleanup;
|
|
master->setup = setup;
|
|
master->transfer = transfer;
|
|
|
|
drv_data->ssp_type = platform_info->ssp_type;
|
|
drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
|
|
sizeof(struct driver_data)), 8);
|
|
|
|
/* Setup register addresses */
|
|
memory_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (!memory_resource) {
|
|
dev_err(&pdev->dev, "memory resources not defined\n");
|
|
status = -ENODEV;
|
|
goto out_error_master_alloc;
|
|
}
|
|
|
|
drv_data->ioaddr = (void *)io_p2v((unsigned long)(memory_resource->start));
|
|
drv_data->ssdr_physical = memory_resource->start + 0x00000010;
|
|
if (platform_info->ssp_type == PXA25x_SSP) {
|
|
drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
|
|
drv_data->dma_cr1 = 0;
|
|
drv_data->clear_sr = SSSR_ROR;
|
|
drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
|
|
} else {
|
|
drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
|
|
drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
|
|
drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
|
|
drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
|
|
}
|
|
|
|
/* Attach to IRQ */
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0) {
|
|
dev_err(&pdev->dev, "irq resource not defined\n");
|
|
status = -ENODEV;
|
|
goto out_error_master_alloc;
|
|
}
|
|
|
|
status = request_irq(irq, ssp_int, 0, dev->bus_id, drv_data);
|
|
if (status < 0) {
|
|
dev_err(&pdev->dev, "can not get IRQ\n");
|
|
goto out_error_master_alloc;
|
|
}
|
|
|
|
/* Setup DMA if requested */
|
|
drv_data->tx_channel = -1;
|
|
drv_data->rx_channel = -1;
|
|
if (platform_info->enable_dma) {
|
|
|
|
/* Get two DMA channels (rx and tx) */
|
|
drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
|
|
DMA_PRIO_HIGH,
|
|
dma_handler,
|
|
drv_data);
|
|
if (drv_data->rx_channel < 0) {
|
|
dev_err(dev, "problem (%d) requesting rx channel\n",
|
|
drv_data->rx_channel);
|
|
status = -ENODEV;
|
|
goto out_error_irq_alloc;
|
|
}
|
|
drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
|
|
DMA_PRIO_MEDIUM,
|
|
dma_handler,
|
|
drv_data);
|
|
if (drv_data->tx_channel < 0) {
|
|
dev_err(dev, "problem (%d) requesting tx channel\n",
|
|
drv_data->tx_channel);
|
|
status = -ENODEV;
|
|
goto out_error_dma_alloc;
|
|
}
|
|
|
|
if (drv_data->ioaddr == SSP1_VIRT) {
|
|
DRCMRRXSSDR = DRCMR_MAPVLD
|
|
| drv_data->rx_channel;
|
|
DRCMRTXSSDR = DRCMR_MAPVLD
|
|
| drv_data->tx_channel;
|
|
} else if (drv_data->ioaddr == SSP2_VIRT) {
|
|
DRCMRRXSS2DR = DRCMR_MAPVLD
|
|
| drv_data->rx_channel;
|
|
DRCMRTXSS2DR = DRCMR_MAPVLD
|
|
| drv_data->tx_channel;
|
|
} else if (drv_data->ioaddr == SSP3_VIRT) {
|
|
DRCMRRXSS3DR = DRCMR_MAPVLD
|
|
| drv_data->rx_channel;
|
|
DRCMRTXSS3DR = DRCMR_MAPVLD
|
|
| drv_data->tx_channel;
|
|
} else {
|
|
dev_err(dev, "bad SSP type\n");
|
|
goto out_error_dma_alloc;
|
|
}
|
|
}
|
|
|
|
/* Enable SOC clock */
|
|
pxa_set_cken(platform_info->clock_enable, 1);
|
|
|
|
/* Load default SSP configuration */
|
|
write_SSCR0(0, drv_data->ioaddr);
|
|
write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data->ioaddr);
|
|
write_SSCR0(SSCR0_SerClkDiv(2)
|
|
| SSCR0_Motorola
|
|
| SSCR0_DataSize(8),
|
|
drv_data->ioaddr);
|
|
if (drv_data->ssp_type != PXA25x_SSP)
|
|
write_SSTO(0, drv_data->ioaddr);
|
|
write_SSPSP(0, drv_data->ioaddr);
|
|
|
|
/* Initial and start queue */
|
|
status = init_queue(drv_data);
|
|
if (status != 0) {
|
|
dev_err(&pdev->dev, "problem initializing queue\n");
|
|
goto out_error_clock_enabled;
|
|
}
|
|
status = start_queue(drv_data);
|
|
if (status != 0) {
|
|
dev_err(&pdev->dev, "problem starting queue\n");
|
|
goto out_error_clock_enabled;
|
|
}
|
|
|
|
/* Register with the SPI framework */
|
|
platform_set_drvdata(pdev, drv_data);
|
|
status = spi_register_master(master);
|
|
if (status != 0) {
|
|
dev_err(&pdev->dev, "problem registering spi master\n");
|
|
goto out_error_queue_alloc;
|
|
}
|
|
|
|
return status;
|
|
|
|
out_error_queue_alloc:
|
|
destroy_queue(drv_data);
|
|
|
|
out_error_clock_enabled:
|
|
pxa_set_cken(platform_info->clock_enable, 0);
|
|
|
|
out_error_dma_alloc:
|
|
if (drv_data->tx_channel != -1)
|
|
pxa_free_dma(drv_data->tx_channel);
|
|
if (drv_data->rx_channel != -1)
|
|
pxa_free_dma(drv_data->rx_channel);
|
|
|
|
out_error_irq_alloc:
|
|
free_irq(irq, drv_data);
|
|
|
|
out_error_master_alloc:
|
|
spi_master_put(master);
|
|
return status;
|
|
}
|
|
|
|
static int pxa2xx_spi_remove(struct platform_device *pdev)
|
|
{
|
|
struct driver_data *drv_data = platform_get_drvdata(pdev);
|
|
int irq;
|
|
int status = 0;
|
|
|
|
if (!drv_data)
|
|
return 0;
|
|
|
|
/* Remove the queue */
|
|
status = destroy_queue(drv_data);
|
|
if (status != 0)
|
|
/* the kernel does not check the return status of this
|
|
* this routine (mod->exit, within the kernel). Therefore
|
|
* nothing is gained by returning from here, the module is
|
|
* going away regardless, and we should not leave any more
|
|
* resources allocated than necessary. We cannot free the
|
|
* message memory in drv_data->queue, but we can release the
|
|
* resources below. I think the kernel should honor -EBUSY
|
|
* returns but... */
|
|
dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
|
|
"complete, message memory not freed\n");
|
|
|
|
/* Disable the SSP at the peripheral and SOC level */
|
|
write_SSCR0(0, drv_data->ioaddr);
|
|
pxa_set_cken(drv_data->master_info->clock_enable, 0);
|
|
|
|
/* Release DMA */
|
|
if (drv_data->master_info->enable_dma) {
|
|
if (drv_data->ioaddr == SSP1_VIRT) {
|
|
DRCMRRXSSDR = 0;
|
|
DRCMRTXSSDR = 0;
|
|
} else if (drv_data->ioaddr == SSP2_VIRT) {
|
|
DRCMRRXSS2DR = 0;
|
|
DRCMRTXSS2DR = 0;
|
|
} else if (drv_data->ioaddr == SSP3_VIRT) {
|
|
DRCMRRXSS3DR = 0;
|
|
DRCMRTXSS3DR = 0;
|
|
}
|
|
pxa_free_dma(drv_data->tx_channel);
|
|
pxa_free_dma(drv_data->rx_channel);
|
|
}
|
|
|
|
/* Release IRQ */
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq >= 0)
|
|
free_irq(irq, drv_data);
|
|
|
|
/* Disconnect from the SPI framework */
|
|
spi_unregister_master(drv_data->master);
|
|
|
|
/* Prevent double remove */
|
|
platform_set_drvdata(pdev, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pxa2xx_spi_shutdown(struct platform_device *pdev)
|
|
{
|
|
int status = 0;
|
|
|
|
if ((status = pxa2xx_spi_remove(pdev)) != 0)
|
|
dev_err(&pdev->dev, "shutdown failed with %d\n", status);
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int suspend_devices(struct device *dev, void *pm_message)
|
|
{
|
|
pm_message_t *state = pm_message;
|
|
|
|
if (dev->power.power_state.event != state->event) {
|
|
dev_warn(dev, "pm state does not match request\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
|
|
{
|
|
struct driver_data *drv_data = platform_get_drvdata(pdev);
|
|
int status = 0;
|
|
|
|
/* Check all childern for current power state */
|
|
if (device_for_each_child(&pdev->dev, &state, suspend_devices) != 0) {
|
|
dev_warn(&pdev->dev, "suspend aborted\n");
|
|
return -1;
|
|
}
|
|
|
|
status = stop_queue(drv_data);
|
|
if (status != 0)
|
|
return status;
|
|
write_SSCR0(0, drv_data->ioaddr);
|
|
pxa_set_cken(drv_data->master_info->clock_enable, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pxa2xx_spi_resume(struct platform_device *pdev)
|
|
{
|
|
struct driver_data *drv_data = platform_get_drvdata(pdev);
|
|
int status = 0;
|
|
|
|
/* Enable the SSP clock */
|
|
pxa_set_cken(drv_data->master_info->clock_enable, 1);
|
|
|
|
/* Start the queue running */
|
|
status = start_queue(drv_data);
|
|
if (status != 0) {
|
|
dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
|
|
return status;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
#define pxa2xx_spi_suspend NULL
|
|
#define pxa2xx_spi_resume NULL
|
|
#endif /* CONFIG_PM */
|
|
|
|
static struct platform_driver driver = {
|
|
.driver = {
|
|
.name = "pxa2xx-spi",
|
|
.bus = &platform_bus_type,
|
|
.owner = THIS_MODULE,
|
|
},
|
|
.probe = pxa2xx_spi_probe,
|
|
.remove = __devexit_p(pxa2xx_spi_remove),
|
|
.shutdown = pxa2xx_spi_shutdown,
|
|
.suspend = pxa2xx_spi_suspend,
|
|
.resume = pxa2xx_spi_resume,
|
|
};
|
|
|
|
static int __init pxa2xx_spi_init(void)
|
|
{
|
|
platform_driver_register(&driver);
|
|
|
|
return 0;
|
|
}
|
|
module_init(pxa2xx_spi_init);
|
|
|
|
static void __exit pxa2xx_spi_exit(void)
|
|
{
|
|
platform_driver_unregister(&driver);
|
|
}
|
|
module_exit(pxa2xx_spi_exit);
|