a7a7c0e1d1
Presently The SH-4 cache flushing code uses flush_cache_4096() for most of the real flushing work, which breaks down to a fixed 4096 unroll and increment. Not only is this sub-optimal for larger page sizes, it's also uncovered a bug in sh4_flush_dcache_page() when large page sizes are used and we have no cache aliases -- resulting in only a part of the page's D-cache lines being written back. Signed-off-by: Valentin Sitdikov <valentin.sitdikov@siemens.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org>
746 lines
19 KiB
C
746 lines
19 KiB
C
/*
|
|
* arch/sh/mm/cache-sh4.c
|
|
*
|
|
* Copyright (C) 1999, 2000, 2002 Niibe Yutaka
|
|
* Copyright (C) 2001 - 2007 Paul Mundt
|
|
* Copyright (C) 2003 Richard Curnow
|
|
* Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/io.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/fs.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/cacheflush.h>
|
|
|
|
/*
|
|
* The maximum number of pages we support up to when doing ranged dcache
|
|
* flushing. Anything exceeding this will simply flush the dcache in its
|
|
* entirety.
|
|
*/
|
|
#define MAX_DCACHE_PAGES 64 /* XXX: Tune for ways */
|
|
#define MAX_ICACHE_PAGES 32
|
|
|
|
static void __flush_cache_one(unsigned long addr, unsigned long phys,
|
|
unsigned long exec_offset);
|
|
|
|
/*
|
|
* This is initialised here to ensure that it is not placed in the BSS. If
|
|
* that were to happen, note that cache_init gets called before the BSS is
|
|
* cleared, so this would get nulled out which would be hopeless.
|
|
*/
|
|
static void (*__flush_dcache_segment_fn)(unsigned long, unsigned long) =
|
|
(void (*)(unsigned long, unsigned long))0xdeadbeef;
|
|
|
|
/*
|
|
* Write back the range of D-cache, and purge the I-cache.
|
|
*
|
|
* Called from kernel/module.c:sys_init_module and routine for a.out format,
|
|
* signal handler code and kprobes code
|
|
*/
|
|
static void __uses_jump_to_uncached sh4_flush_icache_range(void *args)
|
|
{
|
|
struct flusher_data *data = args;
|
|
unsigned long start, end;
|
|
unsigned long flags, v;
|
|
int i;
|
|
|
|
start = data->addr1;
|
|
end = data->addr2;
|
|
|
|
/* If there are too many pages then just blow away the caches */
|
|
if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
|
|
local_flush_cache_all(NULL);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Selectively flush d-cache then invalidate the i-cache.
|
|
* This is inefficient, so only use this for small ranges.
|
|
*/
|
|
start &= ~(L1_CACHE_BYTES-1);
|
|
end += L1_CACHE_BYTES-1;
|
|
end &= ~(L1_CACHE_BYTES-1);
|
|
|
|
local_irq_save(flags);
|
|
jump_to_uncached();
|
|
|
|
for (v = start; v < end; v += L1_CACHE_BYTES) {
|
|
unsigned long icacheaddr;
|
|
|
|
__ocbwb(v);
|
|
|
|
icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
|
|
cpu_data->icache.entry_mask);
|
|
|
|
/* Clear i-cache line valid-bit */
|
|
for (i = 0; i < cpu_data->icache.ways; i++) {
|
|
__raw_writel(0, icacheaddr);
|
|
icacheaddr += cpu_data->icache.way_incr;
|
|
}
|
|
}
|
|
|
|
back_to_cached();
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static inline void flush_cache_one(unsigned long start, unsigned long phys)
|
|
{
|
|
unsigned long flags, exec_offset = 0;
|
|
|
|
/*
|
|
* All types of SH-4 require PC to be in P2 to operate on the I-cache.
|
|
* Some types of SH-4 require PC to be in P2 to operate on the D-cache.
|
|
*/
|
|
if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
|
|
(start < CACHE_OC_ADDRESS_ARRAY))
|
|
exec_offset = 0x20000000;
|
|
|
|
local_irq_save(flags);
|
|
__flush_cache_one(start | SH_CACHE_ASSOC, P1SEGADDR(phys), exec_offset);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Write back & invalidate the D-cache of the page.
|
|
* (To avoid "alias" issues)
|
|
*/
|
|
static void sh4_flush_dcache_page(void *arg)
|
|
{
|
|
struct page *page = arg;
|
|
#ifndef CONFIG_SMP
|
|
struct address_space *mapping = page_mapping(page);
|
|
|
|
if (mapping && !mapping_mapped(mapping))
|
|
set_bit(PG_dcache_dirty, &page->flags);
|
|
else
|
|
#endif
|
|
{
|
|
unsigned long phys = PHYSADDR(page_address(page));
|
|
unsigned long addr = CACHE_OC_ADDRESS_ARRAY;
|
|
int i, n;
|
|
|
|
/* Loop all the D-cache */
|
|
n = boot_cpu_data.dcache.n_aliases;
|
|
for (i = 0; i < n; i++, addr += PAGE_SIZE)
|
|
flush_cache_one(addr, phys);
|
|
}
|
|
|
|
wmb();
|
|
}
|
|
|
|
/* TODO: Selective icache invalidation through IC address array.. */
|
|
static void __uses_jump_to_uncached flush_icache_all(void)
|
|
{
|
|
unsigned long flags, ccr;
|
|
|
|
local_irq_save(flags);
|
|
jump_to_uncached();
|
|
|
|
/* Flush I-cache */
|
|
ccr = ctrl_inl(CCR);
|
|
ccr |= CCR_CACHE_ICI;
|
|
ctrl_outl(ccr, CCR);
|
|
|
|
/*
|
|
* back_to_cached() will take care of the barrier for us, don't add
|
|
* another one!
|
|
*/
|
|
|
|
back_to_cached();
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static inline void flush_dcache_all(void)
|
|
{
|
|
(*__flush_dcache_segment_fn)(0UL, boot_cpu_data.dcache.way_size);
|
|
wmb();
|
|
}
|
|
|
|
static void sh4_flush_cache_all(void *unused)
|
|
{
|
|
flush_dcache_all();
|
|
flush_icache_all();
|
|
}
|
|
|
|
static void __flush_cache_mm(struct mm_struct *mm, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
unsigned long d = 0, p = start & PAGE_MASK;
|
|
unsigned long alias_mask = boot_cpu_data.dcache.alias_mask;
|
|
unsigned long n_aliases = boot_cpu_data.dcache.n_aliases;
|
|
unsigned long select_bit;
|
|
unsigned long all_aliases_mask;
|
|
unsigned long addr_offset;
|
|
pgd_t *dir;
|
|
pmd_t *pmd;
|
|
pud_t *pud;
|
|
pte_t *pte;
|
|
int i;
|
|
|
|
dir = pgd_offset(mm, p);
|
|
pud = pud_offset(dir, p);
|
|
pmd = pmd_offset(pud, p);
|
|
end = PAGE_ALIGN(end);
|
|
|
|
all_aliases_mask = (1 << n_aliases) - 1;
|
|
|
|
do {
|
|
if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) {
|
|
p &= PMD_MASK;
|
|
p += PMD_SIZE;
|
|
pmd++;
|
|
|
|
continue;
|
|
}
|
|
|
|
pte = pte_offset_kernel(pmd, p);
|
|
|
|
do {
|
|
unsigned long phys;
|
|
pte_t entry = *pte;
|
|
|
|
if (!(pte_val(entry) & _PAGE_PRESENT)) {
|
|
pte++;
|
|
p += PAGE_SIZE;
|
|
continue;
|
|
}
|
|
|
|
phys = pte_val(entry) & PTE_PHYS_MASK;
|
|
|
|
if ((p ^ phys) & alias_mask) {
|
|
d |= 1 << ((p & alias_mask) >> PAGE_SHIFT);
|
|
d |= 1 << ((phys & alias_mask) >> PAGE_SHIFT);
|
|
|
|
if (d == all_aliases_mask)
|
|
goto loop_exit;
|
|
}
|
|
|
|
pte++;
|
|
p += PAGE_SIZE;
|
|
} while (p < end && ((unsigned long)pte & ~PAGE_MASK));
|
|
pmd++;
|
|
} while (p < end);
|
|
|
|
loop_exit:
|
|
addr_offset = 0;
|
|
select_bit = 1;
|
|
|
|
for (i = 0; i < n_aliases; i++) {
|
|
if (d & select_bit) {
|
|
(*__flush_dcache_segment_fn)(addr_offset, PAGE_SIZE);
|
|
wmb();
|
|
}
|
|
|
|
select_bit <<= 1;
|
|
addr_offset += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Note : (RPC) since the caches are physically tagged, the only point
|
|
* of flush_cache_mm for SH-4 is to get rid of aliases from the
|
|
* D-cache. The assumption elsewhere, e.g. flush_cache_range, is that
|
|
* lines can stay resident so long as the virtual address they were
|
|
* accessed with (hence cache set) is in accord with the physical
|
|
* address (i.e. tag). It's no different here. So I reckon we don't
|
|
* need to flush the I-cache, since aliases don't matter for that. We
|
|
* should try that.
|
|
*
|
|
* Caller takes mm->mmap_sem.
|
|
*/
|
|
static void sh4_flush_cache_mm(void *arg)
|
|
{
|
|
struct mm_struct *mm = arg;
|
|
|
|
if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
|
|
return;
|
|
|
|
/*
|
|
* If cache is only 4k-per-way, there are never any 'aliases'. Since
|
|
* the cache is physically tagged, the data can just be left in there.
|
|
*/
|
|
if (boot_cpu_data.dcache.n_aliases == 0)
|
|
return;
|
|
|
|
/*
|
|
* Don't bother groveling around the dcache for the VMA ranges
|
|
* if there are too many PTEs to make it worthwhile.
|
|
*/
|
|
if (mm->nr_ptes >= MAX_DCACHE_PAGES)
|
|
flush_dcache_all();
|
|
else {
|
|
struct vm_area_struct *vma;
|
|
|
|
/*
|
|
* In this case there are reasonably sized ranges to flush,
|
|
* iterate through the VMA list and take care of any aliases.
|
|
*/
|
|
for (vma = mm->mmap; vma; vma = vma->vm_next)
|
|
__flush_cache_mm(mm, vma->vm_start, vma->vm_end);
|
|
}
|
|
|
|
/* Only touch the icache if one of the VMAs has VM_EXEC set. */
|
|
if (mm->exec_vm)
|
|
flush_icache_all();
|
|
}
|
|
|
|
/*
|
|
* Write back and invalidate I/D-caches for the page.
|
|
*
|
|
* ADDR: Virtual Address (U0 address)
|
|
* PFN: Physical page number
|
|
*/
|
|
static void sh4_flush_cache_page(void *args)
|
|
{
|
|
struct flusher_data *data = args;
|
|
struct vm_area_struct *vma;
|
|
unsigned long address, pfn, phys;
|
|
unsigned int alias_mask;
|
|
|
|
vma = data->vma;
|
|
address = data->addr1;
|
|
pfn = data->addr2;
|
|
phys = pfn << PAGE_SHIFT;
|
|
|
|
if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
|
|
return;
|
|
|
|
alias_mask = boot_cpu_data.dcache.alias_mask;
|
|
|
|
/* We only need to flush D-cache when we have alias */
|
|
if ((address^phys) & alias_mask) {
|
|
/* Loop 4K of the D-cache */
|
|
flush_cache_one(
|
|
CACHE_OC_ADDRESS_ARRAY | (address & alias_mask),
|
|
phys);
|
|
/* Loop another 4K of the D-cache */
|
|
flush_cache_one(
|
|
CACHE_OC_ADDRESS_ARRAY | (phys & alias_mask),
|
|
phys);
|
|
}
|
|
|
|
alias_mask = boot_cpu_data.icache.alias_mask;
|
|
if (vma->vm_flags & VM_EXEC) {
|
|
/*
|
|
* Evict entries from the portion of the cache from which code
|
|
* may have been executed at this address (virtual). There's
|
|
* no need to evict from the portion corresponding to the
|
|
* physical address as for the D-cache, because we know the
|
|
* kernel has never executed the code through its identity
|
|
* translation.
|
|
*/
|
|
flush_cache_one(
|
|
CACHE_IC_ADDRESS_ARRAY | (address & alias_mask),
|
|
phys);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write back and invalidate D-caches.
|
|
*
|
|
* START, END: Virtual Address (U0 address)
|
|
*
|
|
* NOTE: We need to flush the _physical_ page entry.
|
|
* Flushing the cache lines for U0 only isn't enough.
|
|
* We need to flush for P1 too, which may contain aliases.
|
|
*/
|
|
static void sh4_flush_cache_range(void *args)
|
|
{
|
|
struct flusher_data *data = args;
|
|
struct vm_area_struct *vma;
|
|
unsigned long start, end;
|
|
|
|
vma = data->vma;
|
|
start = data->addr1;
|
|
end = data->addr2;
|
|
|
|
if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
|
|
return;
|
|
|
|
/*
|
|
* If cache is only 4k-per-way, there are never any 'aliases'. Since
|
|
* the cache is physically tagged, the data can just be left in there.
|
|
*/
|
|
if (boot_cpu_data.dcache.n_aliases == 0)
|
|
return;
|
|
|
|
/*
|
|
* Don't bother with the lookup and alias check if we have a
|
|
* wide range to cover, just blow away the dcache in its
|
|
* entirety instead. -- PFM.
|
|
*/
|
|
if (((end - start) >> PAGE_SHIFT) >= MAX_DCACHE_PAGES)
|
|
flush_dcache_all();
|
|
else
|
|
__flush_cache_mm(vma->vm_mm, start, end);
|
|
|
|
if (vma->vm_flags & VM_EXEC) {
|
|
/*
|
|
* TODO: Is this required??? Need to look at how I-cache
|
|
* coherency is assured when new programs are loaded to see if
|
|
* this matters.
|
|
*/
|
|
flush_icache_all();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* __flush_cache_one
|
|
*
|
|
* @addr: address in memory mapped cache array
|
|
* @phys: P1 address to flush (has to match tags if addr has 'A' bit
|
|
* set i.e. associative write)
|
|
* @exec_offset: set to 0x20000000 if flush has to be executed from P2
|
|
* region else 0x0
|
|
*
|
|
* The offset into the cache array implied by 'addr' selects the
|
|
* 'colour' of the virtual address range that will be flushed. The
|
|
* operation (purge/write-back) is selected by the lower 2 bits of
|
|
* 'phys'.
|
|
*/
|
|
static void __flush_cache_one(unsigned long addr, unsigned long phys,
|
|
unsigned long exec_offset)
|
|
{
|
|
int way_count;
|
|
unsigned long base_addr = addr;
|
|
struct cache_info *dcache;
|
|
unsigned long way_incr;
|
|
unsigned long a, ea, p;
|
|
unsigned long temp_pc;
|
|
|
|
dcache = &boot_cpu_data.dcache;
|
|
/* Write this way for better assembly. */
|
|
way_count = dcache->ways;
|
|
way_incr = dcache->way_incr;
|
|
|
|
/*
|
|
* Apply exec_offset (i.e. branch to P2 if required.).
|
|
*
|
|
* FIXME:
|
|
*
|
|
* If I write "=r" for the (temp_pc), it puts this in r6 hence
|
|
* trashing exec_offset before it's been added on - why? Hence
|
|
* "=&r" as a 'workaround'
|
|
*/
|
|
asm volatile("mov.l 1f, %0\n\t"
|
|
"add %1, %0\n\t"
|
|
"jmp @%0\n\t"
|
|
"nop\n\t"
|
|
".balign 4\n\t"
|
|
"1: .long 2f\n\t"
|
|
"2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
|
|
|
|
/*
|
|
* We know there will be >=1 iteration, so write as do-while to avoid
|
|
* pointless nead-of-loop check for 0 iterations.
|
|
*/
|
|
do {
|
|
ea = base_addr + PAGE_SIZE;
|
|
a = base_addr;
|
|
p = phys;
|
|
|
|
do {
|
|
*(volatile unsigned long *)a = p;
|
|
/*
|
|
* Next line: intentionally not p+32, saves an add, p
|
|
* will do since only the cache tag bits need to
|
|
* match.
|
|
*/
|
|
*(volatile unsigned long *)(a+32) = p;
|
|
a += 64;
|
|
p += 64;
|
|
} while (a < ea);
|
|
|
|
base_addr += way_incr;
|
|
} while (--way_count != 0);
|
|
}
|
|
|
|
/*
|
|
* Break the 1, 2 and 4 way variants of this out into separate functions to
|
|
* avoid nearly all the overhead of having the conditional stuff in the function
|
|
* bodies (+ the 1 and 2 way cases avoid saving any registers too).
|
|
*
|
|
* We want to eliminate unnecessary bus transactions, so this code uses
|
|
* a non-obvious technique.
|
|
*
|
|
* Loop over a cache way sized block of, one cache line at a time. For each
|
|
* line, use movca.a to cause the current cache line contents to be written
|
|
* back, but without reading anything from main memory. However this has the
|
|
* side effect that the cache is now caching that memory location. So follow
|
|
* this with a cache invalidate to mark the cache line invalid. And do all
|
|
* this with interrupts disabled, to avoid the cache line being accidently
|
|
* evicted while it is holding garbage.
|
|
*
|
|
* This also breaks in a number of circumstances:
|
|
* - if there are modifications to the region of memory just above
|
|
* empty_zero_page (for example because a breakpoint has been placed
|
|
* there), then these can be lost.
|
|
*
|
|
* This is because the the memory address which the cache temporarily
|
|
* caches in the above description is empty_zero_page. So the
|
|
* movca.l hits the cache (it is assumed that it misses, or at least
|
|
* isn't dirty), modifies the line and then invalidates it, losing the
|
|
* required change.
|
|
*
|
|
* - If caches are disabled or configured in write-through mode, then
|
|
* the movca.l writes garbage directly into memory.
|
|
*/
|
|
static void __flush_dcache_segment_writethrough(unsigned long start,
|
|
unsigned long extent_per_way)
|
|
{
|
|
unsigned long addr;
|
|
int i;
|
|
|
|
addr = CACHE_OC_ADDRESS_ARRAY | (start & cpu_data->dcache.entry_mask);
|
|
|
|
while (extent_per_way) {
|
|
for (i = 0; i < cpu_data->dcache.ways; i++)
|
|
__raw_writel(0, addr + cpu_data->dcache.way_incr * i);
|
|
|
|
addr += cpu_data->dcache.linesz;
|
|
extent_per_way -= cpu_data->dcache.linesz;
|
|
}
|
|
}
|
|
|
|
static void __flush_dcache_segment_1way(unsigned long start,
|
|
unsigned long extent_per_way)
|
|
{
|
|
unsigned long orig_sr, sr_with_bl;
|
|
unsigned long base_addr;
|
|
unsigned long way_incr, linesz, way_size;
|
|
struct cache_info *dcache;
|
|
register unsigned long a0, a0e;
|
|
|
|
asm volatile("stc sr, %0" : "=r" (orig_sr));
|
|
sr_with_bl = orig_sr | (1<<28);
|
|
base_addr = ((unsigned long)&empty_zero_page[0]);
|
|
|
|
/*
|
|
* The previous code aligned base_addr to 16k, i.e. the way_size of all
|
|
* existing SH-4 D-caches. Whilst I don't see a need to have this
|
|
* aligned to any better than the cache line size (which it will be
|
|
* anyway by construction), let's align it to at least the way_size of
|
|
* any existing or conceivable SH-4 D-cache. -- RPC
|
|
*/
|
|
base_addr = ((base_addr >> 16) << 16);
|
|
base_addr |= start;
|
|
|
|
dcache = &boot_cpu_data.dcache;
|
|
linesz = dcache->linesz;
|
|
way_incr = dcache->way_incr;
|
|
way_size = dcache->way_size;
|
|
|
|
a0 = base_addr;
|
|
a0e = base_addr + extent_per_way;
|
|
do {
|
|
asm volatile("ldc %0, sr" : : "r" (sr_with_bl));
|
|
asm volatile("movca.l r0, @%0\n\t"
|
|
"ocbi @%0" : : "r" (a0));
|
|
a0 += linesz;
|
|
asm volatile("movca.l r0, @%0\n\t"
|
|
"ocbi @%0" : : "r" (a0));
|
|
a0 += linesz;
|
|
asm volatile("movca.l r0, @%0\n\t"
|
|
"ocbi @%0" : : "r" (a0));
|
|
a0 += linesz;
|
|
asm volatile("movca.l r0, @%0\n\t"
|
|
"ocbi @%0" : : "r" (a0));
|
|
asm volatile("ldc %0, sr" : : "r" (orig_sr));
|
|
a0 += linesz;
|
|
} while (a0 < a0e);
|
|
}
|
|
|
|
static void __flush_dcache_segment_2way(unsigned long start,
|
|
unsigned long extent_per_way)
|
|
{
|
|
unsigned long orig_sr, sr_with_bl;
|
|
unsigned long base_addr;
|
|
unsigned long way_incr, linesz, way_size;
|
|
struct cache_info *dcache;
|
|
register unsigned long a0, a1, a0e;
|
|
|
|
asm volatile("stc sr, %0" : "=r" (orig_sr));
|
|
sr_with_bl = orig_sr | (1<<28);
|
|
base_addr = ((unsigned long)&empty_zero_page[0]);
|
|
|
|
/* See comment under 1-way above */
|
|
base_addr = ((base_addr >> 16) << 16);
|
|
base_addr |= start;
|
|
|
|
dcache = &boot_cpu_data.dcache;
|
|
linesz = dcache->linesz;
|
|
way_incr = dcache->way_incr;
|
|
way_size = dcache->way_size;
|
|
|
|
a0 = base_addr;
|
|
a1 = a0 + way_incr;
|
|
a0e = base_addr + extent_per_way;
|
|
do {
|
|
asm volatile("ldc %0, sr" : : "r" (sr_with_bl));
|
|
asm volatile("movca.l r0, @%0\n\t"
|
|
"movca.l r0, @%1\n\t"
|
|
"ocbi @%0\n\t"
|
|
"ocbi @%1" : :
|
|
"r" (a0), "r" (a1));
|
|
a0 += linesz;
|
|
a1 += linesz;
|
|
asm volatile("movca.l r0, @%0\n\t"
|
|
"movca.l r0, @%1\n\t"
|
|
"ocbi @%0\n\t"
|
|
"ocbi @%1" : :
|
|
"r" (a0), "r" (a1));
|
|
a0 += linesz;
|
|
a1 += linesz;
|
|
asm volatile("movca.l r0, @%0\n\t"
|
|
"movca.l r0, @%1\n\t"
|
|
"ocbi @%0\n\t"
|
|
"ocbi @%1" : :
|
|
"r" (a0), "r" (a1));
|
|
a0 += linesz;
|
|
a1 += linesz;
|
|
asm volatile("movca.l r0, @%0\n\t"
|
|
"movca.l r0, @%1\n\t"
|
|
"ocbi @%0\n\t"
|
|
"ocbi @%1" : :
|
|
"r" (a0), "r" (a1));
|
|
asm volatile("ldc %0, sr" : : "r" (orig_sr));
|
|
a0 += linesz;
|
|
a1 += linesz;
|
|
} while (a0 < a0e);
|
|
}
|
|
|
|
static void __flush_dcache_segment_4way(unsigned long start,
|
|
unsigned long extent_per_way)
|
|
{
|
|
unsigned long orig_sr, sr_with_bl;
|
|
unsigned long base_addr;
|
|
unsigned long way_incr, linesz, way_size;
|
|
struct cache_info *dcache;
|
|
register unsigned long a0, a1, a2, a3, a0e;
|
|
|
|
asm volatile("stc sr, %0" : "=r" (orig_sr));
|
|
sr_with_bl = orig_sr | (1<<28);
|
|
base_addr = ((unsigned long)&empty_zero_page[0]);
|
|
|
|
/* See comment under 1-way above */
|
|
base_addr = ((base_addr >> 16) << 16);
|
|
base_addr |= start;
|
|
|
|
dcache = &boot_cpu_data.dcache;
|
|
linesz = dcache->linesz;
|
|
way_incr = dcache->way_incr;
|
|
way_size = dcache->way_size;
|
|
|
|
a0 = base_addr;
|
|
a1 = a0 + way_incr;
|
|
a2 = a1 + way_incr;
|
|
a3 = a2 + way_incr;
|
|
a0e = base_addr + extent_per_way;
|
|
do {
|
|
asm volatile("ldc %0, sr" : : "r" (sr_with_bl));
|
|
asm volatile("movca.l r0, @%0\n\t"
|
|
"movca.l r0, @%1\n\t"
|
|
"movca.l r0, @%2\n\t"
|
|
"movca.l r0, @%3\n\t"
|
|
"ocbi @%0\n\t"
|
|
"ocbi @%1\n\t"
|
|
"ocbi @%2\n\t"
|
|
"ocbi @%3\n\t" : :
|
|
"r" (a0), "r" (a1), "r" (a2), "r" (a3));
|
|
a0 += linesz;
|
|
a1 += linesz;
|
|
a2 += linesz;
|
|
a3 += linesz;
|
|
asm volatile("movca.l r0, @%0\n\t"
|
|
"movca.l r0, @%1\n\t"
|
|
"movca.l r0, @%2\n\t"
|
|
"movca.l r0, @%3\n\t"
|
|
"ocbi @%0\n\t"
|
|
"ocbi @%1\n\t"
|
|
"ocbi @%2\n\t"
|
|
"ocbi @%3\n\t" : :
|
|
"r" (a0), "r" (a1), "r" (a2), "r" (a3));
|
|
a0 += linesz;
|
|
a1 += linesz;
|
|
a2 += linesz;
|
|
a3 += linesz;
|
|
asm volatile("movca.l r0, @%0\n\t"
|
|
"movca.l r0, @%1\n\t"
|
|
"movca.l r0, @%2\n\t"
|
|
"movca.l r0, @%3\n\t"
|
|
"ocbi @%0\n\t"
|
|
"ocbi @%1\n\t"
|
|
"ocbi @%2\n\t"
|
|
"ocbi @%3\n\t" : :
|
|
"r" (a0), "r" (a1), "r" (a2), "r" (a3));
|
|
a0 += linesz;
|
|
a1 += linesz;
|
|
a2 += linesz;
|
|
a3 += linesz;
|
|
asm volatile("movca.l r0, @%0\n\t"
|
|
"movca.l r0, @%1\n\t"
|
|
"movca.l r0, @%2\n\t"
|
|
"movca.l r0, @%3\n\t"
|
|
"ocbi @%0\n\t"
|
|
"ocbi @%1\n\t"
|
|
"ocbi @%2\n\t"
|
|
"ocbi @%3\n\t" : :
|
|
"r" (a0), "r" (a1), "r" (a2), "r" (a3));
|
|
asm volatile("ldc %0, sr" : : "r" (orig_sr));
|
|
a0 += linesz;
|
|
a1 += linesz;
|
|
a2 += linesz;
|
|
a3 += linesz;
|
|
} while (a0 < a0e);
|
|
}
|
|
|
|
extern void __weak sh4__flush_region_init(void);
|
|
|
|
/*
|
|
* SH-4 has virtually indexed and physically tagged cache.
|
|
*/
|
|
void __init sh4_cache_init(void)
|
|
{
|
|
unsigned int wt_enabled = !!(__raw_readl(CCR) & CCR_CACHE_WT);
|
|
|
|
printk("PVR=%08x CVR=%08x PRR=%08x\n",
|
|
ctrl_inl(CCN_PVR),
|
|
ctrl_inl(CCN_CVR),
|
|
ctrl_inl(CCN_PRR));
|
|
|
|
if (wt_enabled)
|
|
__flush_dcache_segment_fn = __flush_dcache_segment_writethrough;
|
|
else {
|
|
switch (boot_cpu_data.dcache.ways) {
|
|
case 1:
|
|
__flush_dcache_segment_fn = __flush_dcache_segment_1way;
|
|
break;
|
|
case 2:
|
|
__flush_dcache_segment_fn = __flush_dcache_segment_2way;
|
|
break;
|
|
case 4:
|
|
__flush_dcache_segment_fn = __flush_dcache_segment_4way;
|
|
break;
|
|
default:
|
|
panic("unknown number of cache ways\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
local_flush_icache_range = sh4_flush_icache_range;
|
|
local_flush_dcache_page = sh4_flush_dcache_page;
|
|
local_flush_cache_all = sh4_flush_cache_all;
|
|
local_flush_cache_mm = sh4_flush_cache_mm;
|
|
local_flush_cache_dup_mm = sh4_flush_cache_mm;
|
|
local_flush_cache_page = sh4_flush_cache_page;
|
|
local_flush_cache_range = sh4_flush_cache_range;
|
|
|
|
sh4__flush_region_init();
|
|
}
|