android_kernel_xiaomi_sm8350/include/asm-x86/paravirt.h
Ingo Molnar 365d46dc9b Merge branch 'linus' into x86/xen
Conflicts:
	arch/x86/kernel/cpu/common.c
	arch/x86/kernel/process_64.c
	arch/x86/xen/enlighten.c
2008-10-12 12:37:32 +02:00

1651 lines
44 KiB
C

#ifndef ASM_X86__PARAVIRT_H
#define ASM_X86__PARAVIRT_H
/* Various instructions on x86 need to be replaced for
* para-virtualization: those hooks are defined here. */
#ifdef CONFIG_PARAVIRT
#include <asm/page.h>
#include <asm/asm.h>
/* Bitmask of what can be clobbered: usually at least eax. */
#define CLBR_NONE 0
#define CLBR_EAX (1 << 0)
#define CLBR_ECX (1 << 1)
#define CLBR_EDX (1 << 2)
#ifdef CONFIG_X86_64
#define CLBR_RSI (1 << 3)
#define CLBR_RDI (1 << 4)
#define CLBR_R8 (1 << 5)
#define CLBR_R9 (1 << 6)
#define CLBR_R10 (1 << 7)
#define CLBR_R11 (1 << 8)
#define CLBR_ANY ((1 << 9) - 1)
#include <asm/desc_defs.h>
#else
/* CLBR_ANY should match all regs platform has. For i386, that's just it */
#define CLBR_ANY ((1 << 3) - 1)
#endif /* X86_64 */
#ifndef __ASSEMBLY__
#include <linux/types.h>
#include <linux/cpumask.h>
#include <asm/kmap_types.h>
#include <asm/desc_defs.h>
struct page;
struct thread_struct;
struct desc_ptr;
struct tss_struct;
struct mm_struct;
struct desc_struct;
/* general info */
struct pv_info {
unsigned int kernel_rpl;
int shared_kernel_pmd;
int paravirt_enabled;
const char *name;
};
struct pv_init_ops {
/*
* Patch may replace one of the defined code sequences with
* arbitrary code, subject to the same register constraints.
* This generally means the code is not free to clobber any
* registers other than EAX. The patch function should return
* the number of bytes of code generated, as we nop pad the
* rest in generic code.
*/
unsigned (*patch)(u8 type, u16 clobber, void *insnbuf,
unsigned long addr, unsigned len);
/* Basic arch-specific setup */
void (*arch_setup)(void);
char *(*memory_setup)(void);
void (*post_allocator_init)(void);
/* Print a banner to identify the environment */
void (*banner)(void);
};
struct pv_lazy_ops {
/* Set deferred update mode, used for batching operations. */
void (*enter)(void);
void (*leave)(void);
};
struct pv_time_ops {
void (*time_init)(void);
/* Set and set time of day */
unsigned long (*get_wallclock)(void);
int (*set_wallclock)(unsigned long);
unsigned long long (*sched_clock)(void);
unsigned long (*get_tsc_khz)(void);
};
struct pv_cpu_ops {
/* hooks for various privileged instructions */
unsigned long (*get_debugreg)(int regno);
void (*set_debugreg)(int regno, unsigned long value);
void (*clts)(void);
unsigned long (*read_cr0)(void);
void (*write_cr0)(unsigned long);
unsigned long (*read_cr4_safe)(void);
unsigned long (*read_cr4)(void);
void (*write_cr4)(unsigned long);
#ifdef CONFIG_X86_64
unsigned long (*read_cr8)(void);
void (*write_cr8)(unsigned long);
#endif
/* Segment descriptor handling */
void (*load_tr_desc)(void);
void (*load_gdt)(const struct desc_ptr *);
void (*load_idt)(const struct desc_ptr *);
void (*store_gdt)(struct desc_ptr *);
void (*store_idt)(struct desc_ptr *);
void (*set_ldt)(const void *desc, unsigned entries);
unsigned long (*store_tr)(void);
void (*load_tls)(struct thread_struct *t, unsigned int cpu);
#ifdef CONFIG_X86_64
void (*load_gs_index)(unsigned int idx);
#endif
void (*write_ldt_entry)(struct desc_struct *ldt, int entrynum,
const void *desc);
void (*write_gdt_entry)(struct desc_struct *,
int entrynum, const void *desc, int size);
void (*write_idt_entry)(gate_desc *,
int entrynum, const gate_desc *gate);
void (*alloc_ldt)(struct desc_struct *ldt, unsigned entries);
void (*free_ldt)(struct desc_struct *ldt, unsigned entries);
void (*load_sp0)(struct tss_struct *tss, struct thread_struct *t);
void (*set_iopl_mask)(unsigned mask);
void (*wbinvd)(void);
void (*io_delay)(void);
/* cpuid emulation, mostly so that caps bits can be disabled */
void (*cpuid)(unsigned int *eax, unsigned int *ebx,
unsigned int *ecx, unsigned int *edx);
/* MSR, PMC and TSR operations.
err = 0/-EFAULT. wrmsr returns 0/-EFAULT. */
u64 (*read_msr_amd)(unsigned int msr, int *err);
u64 (*read_msr)(unsigned int msr, int *err);
int (*write_msr)(unsigned int msr, unsigned low, unsigned high);
u64 (*read_tsc)(void);
u64 (*read_pmc)(int counter);
unsigned long long (*read_tscp)(unsigned int *aux);
/*
* Atomically enable interrupts and return to userspace. This
* is only ever used to return to 32-bit processes; in a
* 64-bit kernel, it's used for 32-on-64 compat processes, but
* never native 64-bit processes. (Jump, not call.)
*/
void (*irq_enable_sysexit)(void);
/*
* Switch to usermode gs and return to 64-bit usermode using
* sysret. Only used in 64-bit kernels to return to 64-bit
* processes. Usermode register state, including %rsp, must
* already be restored.
*/
void (*usergs_sysret64)(void);
/*
* Switch to usermode gs and return to 32-bit usermode using
* sysret. Used to return to 32-on-64 compat processes.
* Other usermode register state, including %esp, must already
* be restored.
*/
void (*usergs_sysret32)(void);
/* Normal iret. Jump to this with the standard iret stack
frame set up. */
void (*iret)(void);
void (*swapgs)(void);
struct pv_lazy_ops lazy_mode;
};
struct pv_irq_ops {
void (*init_IRQ)(void);
/*
* Get/set interrupt state. save_fl and restore_fl are only
* expected to use X86_EFLAGS_IF; all other bits
* returned from save_fl are undefined, and may be ignored by
* restore_fl.
*/
unsigned long (*save_fl)(void);
void (*restore_fl)(unsigned long);
void (*irq_disable)(void);
void (*irq_enable)(void);
void (*safe_halt)(void);
void (*halt)(void);
#ifdef CONFIG_X86_64
void (*adjust_exception_frame)(void);
#endif
};
struct pv_apic_ops {
#ifdef CONFIG_X86_LOCAL_APIC
void (*setup_boot_clock)(void);
void (*setup_secondary_clock)(void);
void (*startup_ipi_hook)(int phys_apicid,
unsigned long start_eip,
unsigned long start_esp);
#endif
};
struct pv_mmu_ops {
/*
* Called before/after init_mm pagetable setup. setup_start
* may reset %cr3, and may pre-install parts of the pagetable;
* pagetable setup is expected to preserve any existing
* mapping.
*/
void (*pagetable_setup_start)(pgd_t *pgd_base);
void (*pagetable_setup_done)(pgd_t *pgd_base);
unsigned long (*read_cr2)(void);
void (*write_cr2)(unsigned long);
unsigned long (*read_cr3)(void);
void (*write_cr3)(unsigned long);
/*
* Hooks for intercepting the creation/use/destruction of an
* mm_struct.
*/
void (*activate_mm)(struct mm_struct *prev,
struct mm_struct *next);
void (*dup_mmap)(struct mm_struct *oldmm,
struct mm_struct *mm);
void (*exit_mmap)(struct mm_struct *mm);
/* TLB operations */
void (*flush_tlb_user)(void);
void (*flush_tlb_kernel)(void);
void (*flush_tlb_single)(unsigned long addr);
void (*flush_tlb_others)(const cpumask_t *cpus, struct mm_struct *mm,
unsigned long va);
/* Hooks for allocating and freeing a pagetable top-level */
int (*pgd_alloc)(struct mm_struct *mm);
void (*pgd_free)(struct mm_struct *mm, pgd_t *pgd);
/*
* Hooks for allocating/releasing pagetable pages when they're
* attached to a pagetable
*/
void (*alloc_pte)(struct mm_struct *mm, unsigned long pfn);
void (*alloc_pmd)(struct mm_struct *mm, unsigned long pfn);
void (*alloc_pmd_clone)(unsigned long pfn, unsigned long clonepfn, unsigned long start, unsigned long count);
void (*alloc_pud)(struct mm_struct *mm, unsigned long pfn);
void (*release_pte)(unsigned long pfn);
void (*release_pmd)(unsigned long pfn);
void (*release_pud)(unsigned long pfn);
/* Pagetable manipulation functions */
void (*set_pte)(pte_t *ptep, pte_t pteval);
void (*set_pte_at)(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pteval);
void (*set_pmd)(pmd_t *pmdp, pmd_t pmdval);
void (*pte_update)(struct mm_struct *mm, unsigned long addr,
pte_t *ptep);
void (*pte_update_defer)(struct mm_struct *mm,
unsigned long addr, pte_t *ptep);
pte_t (*ptep_modify_prot_start)(struct mm_struct *mm, unsigned long addr,
pte_t *ptep);
void (*ptep_modify_prot_commit)(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte);
pteval_t (*pte_val)(pte_t);
pteval_t (*pte_flags)(pte_t);
pte_t (*make_pte)(pteval_t pte);
pgdval_t (*pgd_val)(pgd_t);
pgd_t (*make_pgd)(pgdval_t pgd);
#if PAGETABLE_LEVELS >= 3
#ifdef CONFIG_X86_PAE
void (*set_pte_atomic)(pte_t *ptep, pte_t pteval);
void (*set_pte_present)(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte);
void (*pte_clear)(struct mm_struct *mm, unsigned long addr,
pte_t *ptep);
void (*pmd_clear)(pmd_t *pmdp);
#endif /* CONFIG_X86_PAE */
void (*set_pud)(pud_t *pudp, pud_t pudval);
pmdval_t (*pmd_val)(pmd_t);
pmd_t (*make_pmd)(pmdval_t pmd);
#if PAGETABLE_LEVELS == 4
pudval_t (*pud_val)(pud_t);
pud_t (*make_pud)(pudval_t pud);
void (*set_pgd)(pgd_t *pudp, pgd_t pgdval);
#endif /* PAGETABLE_LEVELS == 4 */
#endif /* PAGETABLE_LEVELS >= 3 */
#ifdef CONFIG_HIGHPTE
void *(*kmap_atomic_pte)(struct page *page, enum km_type type);
#endif
struct pv_lazy_ops lazy_mode;
/* dom0 ops */
/* Sometimes the physical address is a pfn, and sometimes its
an mfn. We can tell which is which from the index. */
void (*set_fixmap)(unsigned /* enum fixed_addresses */ idx,
unsigned long phys, pgprot_t flags);
};
struct raw_spinlock;
struct pv_lock_ops {
int (*spin_is_locked)(struct raw_spinlock *lock);
int (*spin_is_contended)(struct raw_spinlock *lock);
void (*spin_lock)(struct raw_spinlock *lock);
void (*spin_lock_flags)(struct raw_spinlock *lock, unsigned long flags);
int (*spin_trylock)(struct raw_spinlock *lock);
void (*spin_unlock)(struct raw_spinlock *lock);
};
/* This contains all the paravirt structures: we get a convenient
* number for each function using the offset which we use to indicate
* what to patch. */
struct paravirt_patch_template {
struct pv_init_ops pv_init_ops;
struct pv_time_ops pv_time_ops;
struct pv_cpu_ops pv_cpu_ops;
struct pv_irq_ops pv_irq_ops;
struct pv_apic_ops pv_apic_ops;
struct pv_mmu_ops pv_mmu_ops;
struct pv_lock_ops pv_lock_ops;
};
extern struct pv_info pv_info;
extern struct pv_init_ops pv_init_ops;
extern struct pv_time_ops pv_time_ops;
extern struct pv_cpu_ops pv_cpu_ops;
extern struct pv_irq_ops pv_irq_ops;
extern struct pv_apic_ops pv_apic_ops;
extern struct pv_mmu_ops pv_mmu_ops;
extern struct pv_lock_ops pv_lock_ops;
#define PARAVIRT_PATCH(x) \
(offsetof(struct paravirt_patch_template, x) / sizeof(void *))
#define paravirt_type(op) \
[paravirt_typenum] "i" (PARAVIRT_PATCH(op)), \
[paravirt_opptr] "m" (op)
#define paravirt_clobber(clobber) \
[paravirt_clobber] "i" (clobber)
/*
* Generate some code, and mark it as patchable by the
* apply_paravirt() alternate instruction patcher.
*/
#define _paravirt_alt(insn_string, type, clobber) \
"771:\n\t" insn_string "\n" "772:\n" \
".pushsection .parainstructions,\"a\"\n" \
_ASM_ALIGN "\n" \
_ASM_PTR " 771b\n" \
" .byte " type "\n" \
" .byte 772b-771b\n" \
" .short " clobber "\n" \
".popsection\n"
/* Generate patchable code, with the default asm parameters. */
#define paravirt_alt(insn_string) \
_paravirt_alt(insn_string, "%c[paravirt_typenum]", "%c[paravirt_clobber]")
/* Simple instruction patching code. */
#define DEF_NATIVE(ops, name, code) \
extern const char start_##ops##_##name[], end_##ops##_##name[]; \
asm("start_" #ops "_" #name ": " code "; end_" #ops "_" #name ":")
unsigned paravirt_patch_nop(void);
unsigned paravirt_patch_ignore(unsigned len);
unsigned paravirt_patch_call(void *insnbuf,
const void *target, u16 tgt_clobbers,
unsigned long addr, u16 site_clobbers,
unsigned len);
unsigned paravirt_patch_jmp(void *insnbuf, const void *target,
unsigned long addr, unsigned len);
unsigned paravirt_patch_default(u8 type, u16 clobbers, void *insnbuf,
unsigned long addr, unsigned len);
unsigned paravirt_patch_insns(void *insnbuf, unsigned len,
const char *start, const char *end);
unsigned native_patch(u8 type, u16 clobbers, void *ibuf,
unsigned long addr, unsigned len);
int paravirt_disable_iospace(void);
/*
* This generates an indirect call based on the operation type number.
* The type number, computed in PARAVIRT_PATCH, is derived from the
* offset into the paravirt_patch_template structure, and can therefore be
* freely converted back into a structure offset.
*/
#define PARAVIRT_CALL "call *%[paravirt_opptr];"
/*
* These macros are intended to wrap calls through one of the paravirt
* ops structs, so that they can be later identified and patched at
* runtime.
*
* Normally, a call to a pv_op function is a simple indirect call:
* (pv_op_struct.operations)(args...).
*
* Unfortunately, this is a relatively slow operation for modern CPUs,
* because it cannot necessarily determine what the destination
* address is. In this case, the address is a runtime constant, so at
* the very least we can patch the call to e a simple direct call, or
* ideally, patch an inline implementation into the callsite. (Direct
* calls are essentially free, because the call and return addresses
* are completely predictable.)
*
* For i386, these macros rely on the standard gcc "regparm(3)" calling
* convention, in which the first three arguments are placed in %eax,
* %edx, %ecx (in that order), and the remaining arguments are placed
* on the stack. All caller-save registers (eax,edx,ecx) are expected
* to be modified (either clobbered or used for return values).
* X86_64, on the other hand, already specifies a register-based calling
* conventions, returning at %rax, with parameteres going on %rdi, %rsi,
* %rdx, and %rcx. Note that for this reason, x86_64 does not need any
* special handling for dealing with 4 arguments, unlike i386.
* However, x86_64 also have to clobber all caller saved registers, which
* unfortunately, are quite a bit (r8 - r11)
*
* The call instruction itself is marked by placing its start address
* and size into the .parainstructions section, so that
* apply_paravirt() in arch/i386/kernel/alternative.c can do the
* appropriate patching under the control of the backend pv_init_ops
* implementation.
*
* Unfortunately there's no way to get gcc to generate the args setup
* for the call, and then allow the call itself to be generated by an
* inline asm. Because of this, we must do the complete arg setup and
* return value handling from within these macros. This is fairly
* cumbersome.
*
* There are 5 sets of PVOP_* macros for dealing with 0-4 arguments.
* It could be extended to more arguments, but there would be little
* to be gained from that. For each number of arguments, there are
* the two VCALL and CALL variants for void and non-void functions.
*
* When there is a return value, the invoker of the macro must specify
* the return type. The macro then uses sizeof() on that type to
* determine whether its a 32 or 64 bit value, and places the return
* in the right register(s) (just %eax for 32-bit, and %edx:%eax for
* 64-bit). For x86_64 machines, it just returns at %rax regardless of
* the return value size.
*
* 64-bit arguments are passed as a pair of adjacent 32-bit arguments
* i386 also passes 64-bit arguments as a pair of adjacent 32-bit arguments
* in low,high order
*
* Small structures are passed and returned in registers. The macro
* calling convention can't directly deal with this, so the wrapper
* functions must do this.
*
* These PVOP_* macros are only defined within this header. This
* means that all uses must be wrapped in inline functions. This also
* makes sure the incoming and outgoing types are always correct.
*/
#ifdef CONFIG_X86_32
#define PVOP_VCALL_ARGS unsigned long __eax, __edx, __ecx
#define PVOP_CALL_ARGS PVOP_VCALL_ARGS
#define PVOP_VCALL_CLOBBERS "=a" (__eax), "=d" (__edx), \
"=c" (__ecx)
#define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS
#define EXTRA_CLOBBERS
#define VEXTRA_CLOBBERS
#else
#define PVOP_VCALL_ARGS unsigned long __edi, __esi, __edx, __ecx
#define PVOP_CALL_ARGS PVOP_VCALL_ARGS, __eax
#define PVOP_VCALL_CLOBBERS "=D" (__edi), \
"=S" (__esi), "=d" (__edx), \
"=c" (__ecx)
#define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS, "=a" (__eax)
#define EXTRA_CLOBBERS , "r8", "r9", "r10", "r11"
#define VEXTRA_CLOBBERS , "rax", "r8", "r9", "r10", "r11"
#endif
#ifdef CONFIG_PARAVIRT_DEBUG
#define PVOP_TEST_NULL(op) BUG_ON(op == NULL)
#else
#define PVOP_TEST_NULL(op) ((void)op)
#endif
#define __PVOP_CALL(rettype, op, pre, post, ...) \
({ \
rettype __ret; \
PVOP_CALL_ARGS; \
PVOP_TEST_NULL(op); \
/* This is 32-bit specific, but is okay in 64-bit */ \
/* since this condition will never hold */ \
if (sizeof(rettype) > sizeof(unsigned long)) { \
asm volatile(pre \
paravirt_alt(PARAVIRT_CALL) \
post \
: PVOP_CALL_CLOBBERS \
: paravirt_type(op), \
paravirt_clobber(CLBR_ANY), \
##__VA_ARGS__ \
: "memory", "cc" EXTRA_CLOBBERS); \
__ret = (rettype)((((u64)__edx) << 32) | __eax); \
} else { \
asm volatile(pre \
paravirt_alt(PARAVIRT_CALL) \
post \
: PVOP_CALL_CLOBBERS \
: paravirt_type(op), \
paravirt_clobber(CLBR_ANY), \
##__VA_ARGS__ \
: "memory", "cc" EXTRA_CLOBBERS); \
__ret = (rettype)__eax; \
} \
__ret; \
})
#define __PVOP_VCALL(op, pre, post, ...) \
({ \
PVOP_VCALL_ARGS; \
PVOP_TEST_NULL(op); \
asm volatile(pre \
paravirt_alt(PARAVIRT_CALL) \
post \
: PVOP_VCALL_CLOBBERS \
: paravirt_type(op), \
paravirt_clobber(CLBR_ANY), \
##__VA_ARGS__ \
: "memory", "cc" VEXTRA_CLOBBERS); \
})
#define PVOP_CALL0(rettype, op) \
__PVOP_CALL(rettype, op, "", "")
#define PVOP_VCALL0(op) \
__PVOP_VCALL(op, "", "")
#define PVOP_CALL1(rettype, op, arg1) \
__PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)))
#define PVOP_VCALL1(op, arg1) \
__PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)))
#define PVOP_CALL2(rettype, op, arg1, arg2) \
__PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \
"1" ((unsigned long)(arg2)))
#define PVOP_VCALL2(op, arg1, arg2) \
__PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \
"1" ((unsigned long)(arg2)))
#define PVOP_CALL3(rettype, op, arg1, arg2, arg3) \
__PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \
"1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)))
#define PVOP_VCALL3(op, arg1, arg2, arg3) \
__PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \
"1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)))
/* This is the only difference in x86_64. We can make it much simpler */
#ifdef CONFIG_X86_32
#define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \
__PVOP_CALL(rettype, op, \
"push %[_arg4];", "lea 4(%%esp),%%esp;", \
"0" ((u32)(arg1)), "1" ((u32)(arg2)), \
"2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4)))
#define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \
__PVOP_VCALL(op, \
"push %[_arg4];", "lea 4(%%esp),%%esp;", \
"0" ((u32)(arg1)), "1" ((u32)(arg2)), \
"2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4)))
#else
#define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \
__PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \
"1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)), \
"3"((unsigned long)(arg4)))
#define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \
__PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \
"1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)), \
"3"((unsigned long)(arg4)))
#endif
static inline int paravirt_enabled(void)
{
return pv_info.paravirt_enabled;
}
static inline void load_sp0(struct tss_struct *tss,
struct thread_struct *thread)
{
PVOP_VCALL2(pv_cpu_ops.load_sp0, tss, thread);
}
#define ARCH_SETUP pv_init_ops.arch_setup();
static inline unsigned long get_wallclock(void)
{
return PVOP_CALL0(unsigned long, pv_time_ops.get_wallclock);
}
static inline int set_wallclock(unsigned long nowtime)
{
return PVOP_CALL1(int, pv_time_ops.set_wallclock, nowtime);
}
static inline void (*choose_time_init(void))(void)
{
return pv_time_ops.time_init;
}
/* The paravirtualized CPUID instruction. */
static inline void __cpuid(unsigned int *eax, unsigned int *ebx,
unsigned int *ecx, unsigned int *edx)
{
PVOP_VCALL4(pv_cpu_ops.cpuid, eax, ebx, ecx, edx);
}
/*
* These special macros can be used to get or set a debugging register
*/
static inline unsigned long paravirt_get_debugreg(int reg)
{
return PVOP_CALL1(unsigned long, pv_cpu_ops.get_debugreg, reg);
}
#define get_debugreg(var, reg) var = paravirt_get_debugreg(reg)
static inline void set_debugreg(unsigned long val, int reg)
{
PVOP_VCALL2(pv_cpu_ops.set_debugreg, reg, val);
}
static inline void clts(void)
{
PVOP_VCALL0(pv_cpu_ops.clts);
}
static inline unsigned long read_cr0(void)
{
return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr0);
}
static inline void write_cr0(unsigned long x)
{
PVOP_VCALL1(pv_cpu_ops.write_cr0, x);
}
static inline unsigned long read_cr2(void)
{
return PVOP_CALL0(unsigned long, pv_mmu_ops.read_cr2);
}
static inline void write_cr2(unsigned long x)
{
PVOP_VCALL1(pv_mmu_ops.write_cr2, x);
}
static inline unsigned long read_cr3(void)
{
return PVOP_CALL0(unsigned long, pv_mmu_ops.read_cr3);
}
static inline void write_cr3(unsigned long x)
{
PVOP_VCALL1(pv_mmu_ops.write_cr3, x);
}
static inline unsigned long read_cr4(void)
{
return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr4);
}
static inline unsigned long read_cr4_safe(void)
{
return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr4_safe);
}
static inline void write_cr4(unsigned long x)
{
PVOP_VCALL1(pv_cpu_ops.write_cr4, x);
}
#ifdef CONFIG_X86_64
static inline unsigned long read_cr8(void)
{
return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr8);
}
static inline void write_cr8(unsigned long x)
{
PVOP_VCALL1(pv_cpu_ops.write_cr8, x);
}
#endif
static inline void raw_safe_halt(void)
{
PVOP_VCALL0(pv_irq_ops.safe_halt);
}
static inline void halt(void)
{
PVOP_VCALL0(pv_irq_ops.safe_halt);
}
static inline void wbinvd(void)
{
PVOP_VCALL0(pv_cpu_ops.wbinvd);
}
#define get_kernel_rpl() (pv_info.kernel_rpl)
static inline u64 paravirt_read_msr(unsigned msr, int *err)
{
return PVOP_CALL2(u64, pv_cpu_ops.read_msr, msr, err);
}
static inline u64 paravirt_read_msr_amd(unsigned msr, int *err)
{
return PVOP_CALL2(u64, pv_cpu_ops.read_msr_amd, msr, err);
}
static inline int paravirt_write_msr(unsigned msr, unsigned low, unsigned high)
{
return PVOP_CALL3(int, pv_cpu_ops.write_msr, msr, low, high);
}
/* These should all do BUG_ON(_err), but our headers are too tangled. */
#define rdmsr(msr, val1, val2) \
do { \
int _err; \
u64 _l = paravirt_read_msr(msr, &_err); \
val1 = (u32)_l; \
val2 = _l >> 32; \
} while (0)
#define wrmsr(msr, val1, val2) \
do { \
paravirt_write_msr(msr, val1, val2); \
} while (0)
#define rdmsrl(msr, val) \
do { \
int _err; \
val = paravirt_read_msr(msr, &_err); \
} while (0)
#define wrmsrl(msr, val) wrmsr(msr, (u32)((u64)(val)), ((u64)(val))>>32)
#define wrmsr_safe(msr, a, b) paravirt_write_msr(msr, a, b)
/* rdmsr with exception handling */
#define rdmsr_safe(msr, a, b) \
({ \
int _err; \
u64 _l = paravirt_read_msr(msr, &_err); \
(*a) = (u32)_l; \
(*b) = _l >> 32; \
_err; \
})
static inline int rdmsrl_safe(unsigned msr, unsigned long long *p)
{
int err;
*p = paravirt_read_msr(msr, &err);
return err;
}
static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p)
{
int err;
*p = paravirt_read_msr_amd(msr, &err);
return err;
}
static inline u64 paravirt_read_tsc(void)
{
return PVOP_CALL0(u64, pv_cpu_ops.read_tsc);
}
#define rdtscl(low) \
do { \
u64 _l = paravirt_read_tsc(); \
low = (int)_l; \
} while (0)
#define rdtscll(val) (val = paravirt_read_tsc())
static inline unsigned long long paravirt_sched_clock(void)
{
return PVOP_CALL0(unsigned long long, pv_time_ops.sched_clock);
}
#define calibrate_tsc() (pv_time_ops.get_tsc_khz())
static inline unsigned long long paravirt_read_pmc(int counter)
{
return PVOP_CALL1(u64, pv_cpu_ops.read_pmc, counter);
}
#define rdpmc(counter, low, high) \
do { \
u64 _l = paravirt_read_pmc(counter); \
low = (u32)_l; \
high = _l >> 32; \
} while (0)
static inline unsigned long long paravirt_rdtscp(unsigned int *aux)
{
return PVOP_CALL1(u64, pv_cpu_ops.read_tscp, aux);
}
#define rdtscp(low, high, aux) \
do { \
int __aux; \
unsigned long __val = paravirt_rdtscp(&__aux); \
(low) = (u32)__val; \
(high) = (u32)(__val >> 32); \
(aux) = __aux; \
} while (0)
#define rdtscpll(val, aux) \
do { \
unsigned long __aux; \
val = paravirt_rdtscp(&__aux); \
(aux) = __aux; \
} while (0)
static inline void paravirt_alloc_ldt(struct desc_struct *ldt, unsigned entries)
{
PVOP_VCALL2(pv_cpu_ops.alloc_ldt, ldt, entries);
}
static inline void paravirt_free_ldt(struct desc_struct *ldt, unsigned entries)
{
PVOP_VCALL2(pv_cpu_ops.free_ldt, ldt, entries);
}
static inline void load_TR_desc(void)
{
PVOP_VCALL0(pv_cpu_ops.load_tr_desc);
}
static inline void load_gdt(const struct desc_ptr *dtr)
{
PVOP_VCALL1(pv_cpu_ops.load_gdt, dtr);
}
static inline void load_idt(const struct desc_ptr *dtr)
{
PVOP_VCALL1(pv_cpu_ops.load_idt, dtr);
}
static inline void set_ldt(const void *addr, unsigned entries)
{
PVOP_VCALL2(pv_cpu_ops.set_ldt, addr, entries);
}
static inline void store_gdt(struct desc_ptr *dtr)
{
PVOP_VCALL1(pv_cpu_ops.store_gdt, dtr);
}
static inline void store_idt(struct desc_ptr *dtr)
{
PVOP_VCALL1(pv_cpu_ops.store_idt, dtr);
}
static inline unsigned long paravirt_store_tr(void)
{
return PVOP_CALL0(unsigned long, pv_cpu_ops.store_tr);
}
#define store_tr(tr) ((tr) = paravirt_store_tr())
static inline void load_TLS(struct thread_struct *t, unsigned cpu)
{
PVOP_VCALL2(pv_cpu_ops.load_tls, t, cpu);
}
#ifdef CONFIG_X86_64
static inline void load_gs_index(unsigned int gs)
{
PVOP_VCALL1(pv_cpu_ops.load_gs_index, gs);
}
#endif
static inline void write_ldt_entry(struct desc_struct *dt, int entry,
const void *desc)
{
PVOP_VCALL3(pv_cpu_ops.write_ldt_entry, dt, entry, desc);
}
static inline void write_gdt_entry(struct desc_struct *dt, int entry,
void *desc, int type)
{
PVOP_VCALL4(pv_cpu_ops.write_gdt_entry, dt, entry, desc, type);
}
static inline void write_idt_entry(gate_desc *dt, int entry, const gate_desc *g)
{
PVOP_VCALL3(pv_cpu_ops.write_idt_entry, dt, entry, g);
}
static inline void set_iopl_mask(unsigned mask)
{
PVOP_VCALL1(pv_cpu_ops.set_iopl_mask, mask);
}
/* The paravirtualized I/O functions */
static inline void slow_down_io(void)
{
pv_cpu_ops.io_delay();
#ifdef REALLY_SLOW_IO
pv_cpu_ops.io_delay();
pv_cpu_ops.io_delay();
pv_cpu_ops.io_delay();
#endif
}
#ifdef CONFIG_X86_LOCAL_APIC
static inline void setup_boot_clock(void)
{
PVOP_VCALL0(pv_apic_ops.setup_boot_clock);
}
static inline void setup_secondary_clock(void)
{
PVOP_VCALL0(pv_apic_ops.setup_secondary_clock);
}
#endif
static inline void paravirt_post_allocator_init(void)
{
if (pv_init_ops.post_allocator_init)
(*pv_init_ops.post_allocator_init)();
}
static inline void paravirt_pagetable_setup_start(pgd_t *base)
{
(*pv_mmu_ops.pagetable_setup_start)(base);
}
static inline void paravirt_pagetable_setup_done(pgd_t *base)
{
(*pv_mmu_ops.pagetable_setup_done)(base);
}
#ifdef CONFIG_SMP
static inline void startup_ipi_hook(int phys_apicid, unsigned long start_eip,
unsigned long start_esp)
{
PVOP_VCALL3(pv_apic_ops.startup_ipi_hook,
phys_apicid, start_eip, start_esp);
}
#endif
static inline void paravirt_activate_mm(struct mm_struct *prev,
struct mm_struct *next)
{
PVOP_VCALL2(pv_mmu_ops.activate_mm, prev, next);
}
static inline void arch_dup_mmap(struct mm_struct *oldmm,
struct mm_struct *mm)
{
PVOP_VCALL2(pv_mmu_ops.dup_mmap, oldmm, mm);
}
static inline void arch_exit_mmap(struct mm_struct *mm)
{
PVOP_VCALL1(pv_mmu_ops.exit_mmap, mm);
}
static inline void __flush_tlb(void)
{
PVOP_VCALL0(pv_mmu_ops.flush_tlb_user);
}
static inline void __flush_tlb_global(void)
{
PVOP_VCALL0(pv_mmu_ops.flush_tlb_kernel);
}
static inline void __flush_tlb_single(unsigned long addr)
{
PVOP_VCALL1(pv_mmu_ops.flush_tlb_single, addr);
}
static inline void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
unsigned long va)
{
PVOP_VCALL3(pv_mmu_ops.flush_tlb_others, &cpumask, mm, va);
}
static inline int paravirt_pgd_alloc(struct mm_struct *mm)
{
return PVOP_CALL1(int, pv_mmu_ops.pgd_alloc, mm);
}
static inline void paravirt_pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
PVOP_VCALL2(pv_mmu_ops.pgd_free, mm, pgd);
}
static inline void paravirt_alloc_pte(struct mm_struct *mm, unsigned long pfn)
{
PVOP_VCALL2(pv_mmu_ops.alloc_pte, mm, pfn);
}
static inline void paravirt_release_pte(unsigned long pfn)
{
PVOP_VCALL1(pv_mmu_ops.release_pte, pfn);
}
static inline void paravirt_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
{
PVOP_VCALL2(pv_mmu_ops.alloc_pmd, mm, pfn);
}
static inline void paravirt_alloc_pmd_clone(unsigned long pfn, unsigned long clonepfn,
unsigned long start, unsigned long count)
{
PVOP_VCALL4(pv_mmu_ops.alloc_pmd_clone, pfn, clonepfn, start, count);
}
static inline void paravirt_release_pmd(unsigned long pfn)
{
PVOP_VCALL1(pv_mmu_ops.release_pmd, pfn);
}
static inline void paravirt_alloc_pud(struct mm_struct *mm, unsigned long pfn)
{
PVOP_VCALL2(pv_mmu_ops.alloc_pud, mm, pfn);
}
static inline void paravirt_release_pud(unsigned long pfn)
{
PVOP_VCALL1(pv_mmu_ops.release_pud, pfn);
}
#ifdef CONFIG_HIGHPTE
static inline void *kmap_atomic_pte(struct page *page, enum km_type type)
{
unsigned long ret;
ret = PVOP_CALL2(unsigned long, pv_mmu_ops.kmap_atomic_pte, page, type);
return (void *)ret;
}
#endif
static inline void pte_update(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
PVOP_VCALL3(pv_mmu_ops.pte_update, mm, addr, ptep);
}
static inline void pte_update_defer(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
PVOP_VCALL3(pv_mmu_ops.pte_update_defer, mm, addr, ptep);
}
static inline pte_t __pte(pteval_t val)
{
pteval_t ret;
if (sizeof(pteval_t) > sizeof(long))
ret = PVOP_CALL2(pteval_t,
pv_mmu_ops.make_pte,
val, (u64)val >> 32);
else
ret = PVOP_CALL1(pteval_t,
pv_mmu_ops.make_pte,
val);
return (pte_t) { .pte = ret };
}
static inline pteval_t pte_val(pte_t pte)
{
pteval_t ret;
if (sizeof(pteval_t) > sizeof(long))
ret = PVOP_CALL2(pteval_t, pv_mmu_ops.pte_val,
pte.pte, (u64)pte.pte >> 32);
else
ret = PVOP_CALL1(pteval_t, pv_mmu_ops.pte_val,
pte.pte);
return ret;
}
static inline pteval_t pte_flags(pte_t pte)
{
pteval_t ret;
if (sizeof(pteval_t) > sizeof(long))
ret = PVOP_CALL2(pteval_t, pv_mmu_ops.pte_flags,
pte.pte, (u64)pte.pte >> 32);
else
ret = PVOP_CALL1(pteval_t, pv_mmu_ops.pte_flags,
pte.pte);
#ifdef CONFIG_PARAVIRT_DEBUG
BUG_ON(ret & PTE_PFN_MASK);
#endif
return ret;
}
static inline pgd_t __pgd(pgdval_t val)
{
pgdval_t ret;
if (sizeof(pgdval_t) > sizeof(long))
ret = PVOP_CALL2(pgdval_t, pv_mmu_ops.make_pgd,
val, (u64)val >> 32);
else
ret = PVOP_CALL1(pgdval_t, pv_mmu_ops.make_pgd,
val);
return (pgd_t) { ret };
}
static inline pgdval_t pgd_val(pgd_t pgd)
{
pgdval_t ret;
if (sizeof(pgdval_t) > sizeof(long))
ret = PVOP_CALL2(pgdval_t, pv_mmu_ops.pgd_val,
pgd.pgd, (u64)pgd.pgd >> 32);
else
ret = PVOP_CALL1(pgdval_t, pv_mmu_ops.pgd_val,
pgd.pgd);
return ret;
}
#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
pteval_t ret;
ret = PVOP_CALL3(pteval_t, pv_mmu_ops.ptep_modify_prot_start,
mm, addr, ptep);
return (pte_t) { .pte = ret };
}
static inline void ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte)
{
if (sizeof(pteval_t) > sizeof(long))
/* 5 arg words */
pv_mmu_ops.ptep_modify_prot_commit(mm, addr, ptep, pte);
else
PVOP_VCALL4(pv_mmu_ops.ptep_modify_prot_commit,
mm, addr, ptep, pte.pte);
}
static inline void set_pte(pte_t *ptep, pte_t pte)
{
if (sizeof(pteval_t) > sizeof(long))
PVOP_VCALL3(pv_mmu_ops.set_pte, ptep,
pte.pte, (u64)pte.pte >> 32);
else
PVOP_VCALL2(pv_mmu_ops.set_pte, ptep,
pte.pte);
}
static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte)
{
if (sizeof(pteval_t) > sizeof(long))
/* 5 arg words */
pv_mmu_ops.set_pte_at(mm, addr, ptep, pte);
else
PVOP_VCALL4(pv_mmu_ops.set_pte_at, mm, addr, ptep, pte.pte);
}
static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
{
pmdval_t val = native_pmd_val(pmd);
if (sizeof(pmdval_t) > sizeof(long))
PVOP_VCALL3(pv_mmu_ops.set_pmd, pmdp, val, (u64)val >> 32);
else
PVOP_VCALL2(pv_mmu_ops.set_pmd, pmdp, val);
}
#if PAGETABLE_LEVELS >= 3
static inline pmd_t __pmd(pmdval_t val)
{
pmdval_t ret;
if (sizeof(pmdval_t) > sizeof(long))
ret = PVOP_CALL2(pmdval_t, pv_mmu_ops.make_pmd,
val, (u64)val >> 32);
else
ret = PVOP_CALL1(pmdval_t, pv_mmu_ops.make_pmd,
val);
return (pmd_t) { ret };
}
static inline pmdval_t pmd_val(pmd_t pmd)
{
pmdval_t ret;
if (sizeof(pmdval_t) > sizeof(long))
ret = PVOP_CALL2(pmdval_t, pv_mmu_ops.pmd_val,
pmd.pmd, (u64)pmd.pmd >> 32);
else
ret = PVOP_CALL1(pmdval_t, pv_mmu_ops.pmd_val,
pmd.pmd);
return ret;
}
static inline void set_pud(pud_t *pudp, pud_t pud)
{
pudval_t val = native_pud_val(pud);
if (sizeof(pudval_t) > sizeof(long))
PVOP_VCALL3(pv_mmu_ops.set_pud, pudp,
val, (u64)val >> 32);
else
PVOP_VCALL2(pv_mmu_ops.set_pud, pudp,
val);
}
#if PAGETABLE_LEVELS == 4
static inline pud_t __pud(pudval_t val)
{
pudval_t ret;
if (sizeof(pudval_t) > sizeof(long))
ret = PVOP_CALL2(pudval_t, pv_mmu_ops.make_pud,
val, (u64)val >> 32);
else
ret = PVOP_CALL1(pudval_t, pv_mmu_ops.make_pud,
val);
return (pud_t) { ret };
}
static inline pudval_t pud_val(pud_t pud)
{
pudval_t ret;
if (sizeof(pudval_t) > sizeof(long))
ret = PVOP_CALL2(pudval_t, pv_mmu_ops.pud_val,
pud.pud, (u64)pud.pud >> 32);
else
ret = PVOP_CALL1(pudval_t, pv_mmu_ops.pud_val,
pud.pud);
return ret;
}
static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
{
pgdval_t val = native_pgd_val(pgd);
if (sizeof(pgdval_t) > sizeof(long))
PVOP_VCALL3(pv_mmu_ops.set_pgd, pgdp,
val, (u64)val >> 32);
else
PVOP_VCALL2(pv_mmu_ops.set_pgd, pgdp,
val);
}
static inline void pgd_clear(pgd_t *pgdp)
{
set_pgd(pgdp, __pgd(0));
}
static inline void pud_clear(pud_t *pudp)
{
set_pud(pudp, __pud(0));
}
#endif /* PAGETABLE_LEVELS == 4 */
#endif /* PAGETABLE_LEVELS >= 3 */
#ifdef CONFIG_X86_PAE
/* Special-case pte-setting operations for PAE, which can't update a
64-bit pte atomically */
static inline void set_pte_atomic(pte_t *ptep, pte_t pte)
{
PVOP_VCALL3(pv_mmu_ops.set_pte_atomic, ptep,
pte.pte, pte.pte >> 32);
}
static inline void set_pte_present(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte)
{
/* 5 arg words */
pv_mmu_ops.set_pte_present(mm, addr, ptep, pte);
}
static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
PVOP_VCALL3(pv_mmu_ops.pte_clear, mm, addr, ptep);
}
static inline void pmd_clear(pmd_t *pmdp)
{
PVOP_VCALL1(pv_mmu_ops.pmd_clear, pmdp);
}
#else /* !CONFIG_X86_PAE */
static inline void set_pte_atomic(pte_t *ptep, pte_t pte)
{
set_pte(ptep, pte);
}
static inline void set_pte_present(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte)
{
set_pte(ptep, pte);
}
static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
set_pte_at(mm, addr, ptep, __pte(0));
}
static inline void pmd_clear(pmd_t *pmdp)
{
set_pmd(pmdp, __pmd(0));
}
#endif /* CONFIG_X86_PAE */
/* Lazy mode for batching updates / context switch */
enum paravirt_lazy_mode {
PARAVIRT_LAZY_NONE,
PARAVIRT_LAZY_MMU,
PARAVIRT_LAZY_CPU,
};
enum paravirt_lazy_mode paravirt_get_lazy_mode(void);
void paravirt_enter_lazy_cpu(void);
void paravirt_leave_lazy_cpu(void);
void paravirt_enter_lazy_mmu(void);
void paravirt_leave_lazy_mmu(void);
void paravirt_leave_lazy(enum paravirt_lazy_mode mode);
#define __HAVE_ARCH_ENTER_LAZY_CPU_MODE
static inline void arch_enter_lazy_cpu_mode(void)
{
PVOP_VCALL0(pv_cpu_ops.lazy_mode.enter);
}
static inline void arch_leave_lazy_cpu_mode(void)
{
PVOP_VCALL0(pv_cpu_ops.lazy_mode.leave);
}
static inline void arch_flush_lazy_cpu_mode(void)
{
if (unlikely(paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)) {
arch_leave_lazy_cpu_mode();
arch_enter_lazy_cpu_mode();
}
}
#define __HAVE_ARCH_ENTER_LAZY_MMU_MODE
static inline void arch_enter_lazy_mmu_mode(void)
{
PVOP_VCALL0(pv_mmu_ops.lazy_mode.enter);
}
static inline void arch_leave_lazy_mmu_mode(void)
{
PVOP_VCALL0(pv_mmu_ops.lazy_mode.leave);
}
static inline void arch_flush_lazy_mmu_mode(void)
{
if (unlikely(paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU)) {
arch_leave_lazy_mmu_mode();
arch_enter_lazy_mmu_mode();
}
}
static inline void __set_fixmap(unsigned /* enum fixed_addresses */ idx,
unsigned long phys, pgprot_t flags)
{
pv_mmu_ops.set_fixmap(idx, phys, flags);
}
void _paravirt_nop(void);
#define paravirt_nop ((void *)_paravirt_nop)
void paravirt_use_bytelocks(void);
#ifdef CONFIG_SMP
static inline int __raw_spin_is_locked(struct raw_spinlock *lock)
{
return PVOP_CALL1(int, pv_lock_ops.spin_is_locked, lock);
}
static inline int __raw_spin_is_contended(struct raw_spinlock *lock)
{
return PVOP_CALL1(int, pv_lock_ops.spin_is_contended, lock);
}
static __always_inline void __raw_spin_lock(struct raw_spinlock *lock)
{
PVOP_VCALL1(pv_lock_ops.spin_lock, lock);
}
static __always_inline void __raw_spin_lock_flags(struct raw_spinlock *lock,
unsigned long flags)
{
PVOP_VCALL2(pv_lock_ops.spin_lock_flags, lock, flags);
}
static __always_inline int __raw_spin_trylock(struct raw_spinlock *lock)
{
return PVOP_CALL1(int, pv_lock_ops.spin_trylock, lock);
}
static __always_inline void __raw_spin_unlock(struct raw_spinlock *lock)
{
PVOP_VCALL1(pv_lock_ops.spin_unlock, lock);
}
#endif
/* These all sit in the .parainstructions section to tell us what to patch. */
struct paravirt_patch_site {
u8 *instr; /* original instructions */
u8 instrtype; /* type of this instruction */
u8 len; /* length of original instruction */
u16 clobbers; /* what registers you may clobber */
};
extern struct paravirt_patch_site __parainstructions[],
__parainstructions_end[];
#ifdef CONFIG_X86_32
#define PV_SAVE_REGS "pushl %%ecx; pushl %%edx;"
#define PV_RESTORE_REGS "popl %%edx; popl %%ecx"
#define PV_FLAGS_ARG "0"
#define PV_EXTRA_CLOBBERS
#define PV_VEXTRA_CLOBBERS
#else
/* We save some registers, but all of them, that's too much. We clobber all
* caller saved registers but the argument parameter */
#define PV_SAVE_REGS "pushq %%rdi;"
#define PV_RESTORE_REGS "popq %%rdi;"
#define PV_EXTRA_CLOBBERS EXTRA_CLOBBERS, "rcx" , "rdx", "rsi"
#define PV_VEXTRA_CLOBBERS EXTRA_CLOBBERS, "rdi", "rcx" , "rdx", "rsi"
#define PV_FLAGS_ARG "D"
#endif
static inline unsigned long __raw_local_save_flags(void)
{
unsigned long f;
asm volatile(paravirt_alt(PV_SAVE_REGS
PARAVIRT_CALL
PV_RESTORE_REGS)
: "=a"(f)
: paravirt_type(pv_irq_ops.save_fl),
paravirt_clobber(CLBR_EAX)
: "memory", "cc" PV_VEXTRA_CLOBBERS);
return f;
}
static inline void raw_local_irq_restore(unsigned long f)
{
asm volatile(paravirt_alt(PV_SAVE_REGS
PARAVIRT_CALL
PV_RESTORE_REGS)
: "=a"(f)
: PV_FLAGS_ARG(f),
paravirt_type(pv_irq_ops.restore_fl),
paravirt_clobber(CLBR_EAX)
: "memory", "cc" PV_EXTRA_CLOBBERS);
}
static inline void raw_local_irq_disable(void)
{
asm volatile(paravirt_alt(PV_SAVE_REGS
PARAVIRT_CALL
PV_RESTORE_REGS)
:
: paravirt_type(pv_irq_ops.irq_disable),
paravirt_clobber(CLBR_EAX)
: "memory", "eax", "cc" PV_EXTRA_CLOBBERS);
}
static inline void raw_local_irq_enable(void)
{
asm volatile(paravirt_alt(PV_SAVE_REGS
PARAVIRT_CALL
PV_RESTORE_REGS)
:
: paravirt_type(pv_irq_ops.irq_enable),
paravirt_clobber(CLBR_EAX)
: "memory", "eax", "cc" PV_EXTRA_CLOBBERS);
}
static inline unsigned long __raw_local_irq_save(void)
{
unsigned long f;
f = __raw_local_save_flags();
raw_local_irq_disable();
return f;
}
/* Make sure as little as possible of this mess escapes. */
#undef PARAVIRT_CALL
#undef __PVOP_CALL
#undef __PVOP_VCALL
#undef PVOP_VCALL0
#undef PVOP_CALL0
#undef PVOP_VCALL1
#undef PVOP_CALL1
#undef PVOP_VCALL2
#undef PVOP_CALL2
#undef PVOP_VCALL3
#undef PVOP_CALL3
#undef PVOP_VCALL4
#undef PVOP_CALL4
#else /* __ASSEMBLY__ */
#define _PVSITE(ptype, clobbers, ops, word, algn) \
771:; \
ops; \
772:; \
.pushsection .parainstructions,"a"; \
.align algn; \
word 771b; \
.byte ptype; \
.byte 772b-771b; \
.short clobbers; \
.popsection
#ifdef CONFIG_X86_64
#define PV_SAVE_REGS \
push %rax; \
push %rcx; \
push %rdx; \
push %rsi; \
push %rdi; \
push %r8; \
push %r9; \
push %r10; \
push %r11
#define PV_RESTORE_REGS \
pop %r11; \
pop %r10; \
pop %r9; \
pop %r8; \
pop %rdi; \
pop %rsi; \
pop %rdx; \
pop %rcx; \
pop %rax
#define PARA_PATCH(struct, off) ((PARAVIRT_PATCH_##struct + (off)) / 8)
#define PARA_SITE(ptype, clobbers, ops) _PVSITE(ptype, clobbers, ops, .quad, 8)
#define PARA_INDIRECT(addr) *addr(%rip)
#else
#define PV_SAVE_REGS pushl %eax; pushl %edi; pushl %ecx; pushl %edx
#define PV_RESTORE_REGS popl %edx; popl %ecx; popl %edi; popl %eax
#define PARA_PATCH(struct, off) ((PARAVIRT_PATCH_##struct + (off)) / 4)
#define PARA_SITE(ptype, clobbers, ops) _PVSITE(ptype, clobbers, ops, .long, 4)
#define PARA_INDIRECT(addr) *%cs:addr
#endif
#define INTERRUPT_RETURN \
PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_iret), CLBR_NONE, \
jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_iret))
#define DISABLE_INTERRUPTS(clobbers) \
PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_irq_disable), clobbers, \
PV_SAVE_REGS; \
call PARA_INDIRECT(pv_irq_ops+PV_IRQ_irq_disable); \
PV_RESTORE_REGS;) \
#define ENABLE_INTERRUPTS(clobbers) \
PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_irq_enable), clobbers, \
PV_SAVE_REGS; \
call PARA_INDIRECT(pv_irq_ops+PV_IRQ_irq_enable); \
PV_RESTORE_REGS;)
#define USERGS_SYSRET32 \
PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_usergs_sysret32), \
CLBR_NONE, \
jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_usergs_sysret32))
#ifdef CONFIG_X86_32
#define GET_CR0_INTO_EAX \
push %ecx; push %edx; \
call PARA_INDIRECT(pv_cpu_ops+PV_CPU_read_cr0); \
pop %edx; pop %ecx
#define ENABLE_INTERRUPTS_SYSEXIT \
PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_irq_enable_sysexit), \
CLBR_NONE, \
jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_irq_enable_sysexit))
#else /* !CONFIG_X86_32 */
/*
* If swapgs is used while the userspace stack is still current,
* there's no way to call a pvop. The PV replacement *must* be
* inlined, or the swapgs instruction must be trapped and emulated.
*/
#define SWAPGS_UNSAFE_STACK \
PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_swapgs), CLBR_NONE, \
swapgs)
#define SWAPGS \
PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_swapgs), CLBR_NONE, \
PV_SAVE_REGS; \
call PARA_INDIRECT(pv_cpu_ops+PV_CPU_swapgs); \
PV_RESTORE_REGS \
)
#define GET_CR2_INTO_RCX \
call PARA_INDIRECT(pv_mmu_ops+PV_MMU_read_cr2); \
movq %rax, %rcx; \
xorq %rax, %rax;
#define PARAVIRT_ADJUST_EXCEPTION_FRAME \
PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_adjust_exception_frame), \
CLBR_NONE, \
call PARA_INDIRECT(pv_irq_ops+PV_IRQ_adjust_exception_frame))
#define USERGS_SYSRET64 \
PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_usergs_sysret64), \
CLBR_NONE, \
jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_usergs_sysret64))
#define ENABLE_INTERRUPTS_SYSEXIT32 \
PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_irq_enable_sysexit), \
CLBR_NONE, \
jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_irq_enable_sysexit))
#endif /* CONFIG_X86_32 */
#endif /* __ASSEMBLY__ */
#endif /* CONFIG_PARAVIRT */
#endif /* ASM_X86__PARAVIRT_H */