android_kernel_xiaomi_sm8350/fs/ocfs2/suballoc.c
wengang wang 6ca497a83e ocfs2: fix rare stale inode errors when exporting via nfs
For nfs exporting, ocfs2_get_dentry() returns the dentry for fh.
ocfs2_get_dentry() may read from disk when the inode is not in memory,
without any cross cluster lock. this leads to the file system loading a
stale inode.

This patch fixes above problem.

Solution is that in case of inode is not in memory, we get the cluster
lock(PR) of alloc inode where the inode in question is allocated from (this
causes node on which deletion is done sync the alloc inode) before reading
out the inode itsself. then we check the bitmap in the group (the inode in
question allcated from) to see if the bit is clear. if it's clear then it's
stale. if the bit is set, we then check generation as the existing code
does.

We have to read out the inode in question from disk first to know its alloc
slot and allot bit. And if its not stale we read it out using ocfs2_iget().
The second read should then be from cache.

And also we have to add a per superblock nfs_sync_lock to cover the lock for
alloc inode and that for inode in question. this is because ocfs2_get_dentry()
and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked
in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so
that mutliple ocfs2_delete_inode() can run concurrently in normal case.

[mfasheh@suse.com: build warning fixes and comment cleanups]
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:25 -07:00

2347 lines
62 KiB
C

/* -*- mode: c; c-basic-offset: 8; -*-
* vim: noexpandtab sw=8 ts=8 sts=0:
*
* suballoc.c
*
* metadata alloc and free
* Inspired by ext3 block groups.
*
* Copyright (C) 2002, 2004 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#define MLOG_MASK_PREFIX ML_DISK_ALLOC
#include <cluster/masklog.h>
#include "ocfs2.h"
#include "alloc.h"
#include "blockcheck.h"
#include "dlmglue.h"
#include "inode.h"
#include "journal.h"
#include "localalloc.h"
#include "suballoc.h"
#include "super.h"
#include "sysfile.h"
#include "uptodate.h"
#include "buffer_head_io.h"
#define NOT_ALLOC_NEW_GROUP 0
#define ALLOC_NEW_GROUP 0x1
#define ALLOC_GROUPS_FROM_GLOBAL 0x2
#define OCFS2_MAX_INODES_TO_STEAL 1024
static inline void ocfs2_debug_bg(struct ocfs2_group_desc *bg);
static inline void ocfs2_debug_suballoc_inode(struct ocfs2_dinode *fe);
static inline u16 ocfs2_find_victim_chain(struct ocfs2_chain_list *cl);
static int ocfs2_block_group_fill(handle_t *handle,
struct inode *alloc_inode,
struct buffer_head *bg_bh,
u64 group_blkno,
u16 my_chain,
struct ocfs2_chain_list *cl);
static int ocfs2_block_group_alloc(struct ocfs2_super *osb,
struct inode *alloc_inode,
struct buffer_head *bh,
u64 max_block,
u64 *last_alloc_group,
int flags);
static int ocfs2_cluster_group_search(struct inode *inode,
struct buffer_head *group_bh,
u32 bits_wanted, u32 min_bits,
u64 max_block,
u16 *bit_off, u16 *bits_found);
static int ocfs2_block_group_search(struct inode *inode,
struct buffer_head *group_bh,
u32 bits_wanted, u32 min_bits,
u64 max_block,
u16 *bit_off, u16 *bits_found);
static int ocfs2_claim_suballoc_bits(struct ocfs2_super *osb,
struct ocfs2_alloc_context *ac,
handle_t *handle,
u32 bits_wanted,
u32 min_bits,
u16 *bit_off,
unsigned int *num_bits,
u64 *bg_blkno);
static int ocfs2_test_bg_bit_allocatable(struct buffer_head *bg_bh,
int nr);
static inline int ocfs2_block_group_set_bits(handle_t *handle,
struct inode *alloc_inode,
struct ocfs2_group_desc *bg,
struct buffer_head *group_bh,
unsigned int bit_off,
unsigned int num_bits);
static inline int ocfs2_block_group_clear_bits(handle_t *handle,
struct inode *alloc_inode,
struct ocfs2_group_desc *bg,
struct buffer_head *group_bh,
unsigned int bit_off,
unsigned int num_bits);
static int ocfs2_relink_block_group(handle_t *handle,
struct inode *alloc_inode,
struct buffer_head *fe_bh,
struct buffer_head *bg_bh,
struct buffer_head *prev_bg_bh,
u16 chain);
static inline int ocfs2_block_group_reasonably_empty(struct ocfs2_group_desc *bg,
u32 wanted);
static inline u32 ocfs2_desc_bitmap_to_cluster_off(struct inode *inode,
u64 bg_blkno,
u16 bg_bit_off);
static inline void ocfs2_block_to_cluster_group(struct inode *inode,
u64 data_blkno,
u64 *bg_blkno,
u16 *bg_bit_off);
static int ocfs2_reserve_clusters_with_limit(struct ocfs2_super *osb,
u32 bits_wanted, u64 max_block,
int flags,
struct ocfs2_alloc_context **ac);
void ocfs2_free_ac_resource(struct ocfs2_alloc_context *ac)
{
struct inode *inode = ac->ac_inode;
if (inode) {
if (ac->ac_which != OCFS2_AC_USE_LOCAL)
ocfs2_inode_unlock(inode, 1);
mutex_unlock(&inode->i_mutex);
iput(inode);
ac->ac_inode = NULL;
}
brelse(ac->ac_bh);
ac->ac_bh = NULL;
}
void ocfs2_free_alloc_context(struct ocfs2_alloc_context *ac)
{
ocfs2_free_ac_resource(ac);
kfree(ac);
}
static u32 ocfs2_bits_per_group(struct ocfs2_chain_list *cl)
{
return (u32)le16_to_cpu(cl->cl_cpg) * (u32)le16_to_cpu(cl->cl_bpc);
}
#define do_error(fmt, ...) \
do{ \
if (clean_error) \
mlog(ML_ERROR, fmt "\n", ##__VA_ARGS__); \
else \
ocfs2_error(sb, fmt, ##__VA_ARGS__); \
} while (0)
static int ocfs2_validate_gd_self(struct super_block *sb,
struct buffer_head *bh,
int clean_error)
{
struct ocfs2_group_desc *gd = (struct ocfs2_group_desc *)bh->b_data;
if (!OCFS2_IS_VALID_GROUP_DESC(gd)) {
do_error("Group descriptor #%llu has bad signature %.*s",
(unsigned long long)bh->b_blocknr, 7,
gd->bg_signature);
return -EINVAL;
}
if (le64_to_cpu(gd->bg_blkno) != bh->b_blocknr) {
do_error("Group descriptor #%llu has an invalid bg_blkno "
"of %llu",
(unsigned long long)bh->b_blocknr,
(unsigned long long)le64_to_cpu(gd->bg_blkno));
return -EINVAL;
}
if (le32_to_cpu(gd->bg_generation) != OCFS2_SB(sb)->fs_generation) {
do_error("Group descriptor #%llu has an invalid "
"fs_generation of #%u",
(unsigned long long)bh->b_blocknr,
le32_to_cpu(gd->bg_generation));
return -EINVAL;
}
if (le16_to_cpu(gd->bg_free_bits_count) > le16_to_cpu(gd->bg_bits)) {
do_error("Group descriptor #%llu has bit count %u but "
"claims that %u are free",
(unsigned long long)bh->b_blocknr,
le16_to_cpu(gd->bg_bits),
le16_to_cpu(gd->bg_free_bits_count));
return -EINVAL;
}
if (le16_to_cpu(gd->bg_bits) > (8 * le16_to_cpu(gd->bg_size))) {
do_error("Group descriptor #%llu has bit count %u but "
"max bitmap bits of %u",
(unsigned long long)bh->b_blocknr,
le16_to_cpu(gd->bg_bits),
8 * le16_to_cpu(gd->bg_size));
return -EINVAL;
}
return 0;
}
static int ocfs2_validate_gd_parent(struct super_block *sb,
struct ocfs2_dinode *di,
struct buffer_head *bh,
int clean_error)
{
unsigned int max_bits;
struct ocfs2_group_desc *gd = (struct ocfs2_group_desc *)bh->b_data;
if (di->i_blkno != gd->bg_parent_dinode) {
do_error("Group descriptor #%llu has bad parent "
"pointer (%llu, expected %llu)",
(unsigned long long)bh->b_blocknr,
(unsigned long long)le64_to_cpu(gd->bg_parent_dinode),
(unsigned long long)le64_to_cpu(di->i_blkno));
return -EINVAL;
}
max_bits = le16_to_cpu(di->id2.i_chain.cl_cpg) * le16_to_cpu(di->id2.i_chain.cl_bpc);
if (le16_to_cpu(gd->bg_bits) > max_bits) {
do_error("Group descriptor #%llu has bit count of %u",
(unsigned long long)bh->b_blocknr,
le16_to_cpu(gd->bg_bits));
return -EINVAL;
}
if (le16_to_cpu(gd->bg_chain) >=
le16_to_cpu(di->id2.i_chain.cl_next_free_rec)) {
do_error("Group descriptor #%llu has bad chain %u",
(unsigned long long)bh->b_blocknr,
le16_to_cpu(gd->bg_chain));
return -EINVAL;
}
return 0;
}
#undef do_error
/*
* This version only prints errors. It does not fail the filesystem, and
* exists only for resize.
*/
int ocfs2_check_group_descriptor(struct super_block *sb,
struct ocfs2_dinode *di,
struct buffer_head *bh)
{
int rc;
struct ocfs2_group_desc *gd = (struct ocfs2_group_desc *)bh->b_data;
BUG_ON(!buffer_uptodate(bh));
/*
* If the ecc fails, we return the error but otherwise
* leave the filesystem running. We know any error is
* local to this block.
*/
rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &gd->bg_check);
if (rc) {
mlog(ML_ERROR,
"Checksum failed for group descriptor %llu\n",
(unsigned long long)bh->b_blocknr);
} else
rc = ocfs2_validate_gd_self(sb, bh, 1);
if (!rc)
rc = ocfs2_validate_gd_parent(sb, di, bh, 1);
return rc;
}
static int ocfs2_validate_group_descriptor(struct super_block *sb,
struct buffer_head *bh)
{
int rc;
struct ocfs2_group_desc *gd = (struct ocfs2_group_desc *)bh->b_data;
mlog(0, "Validating group descriptor %llu\n",
(unsigned long long)bh->b_blocknr);
BUG_ON(!buffer_uptodate(bh));
/*
* If the ecc fails, we return the error but otherwise
* leave the filesystem running. We know any error is
* local to this block.
*/
rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &gd->bg_check);
if (rc)
return rc;
/*
* Errors after here are fatal.
*/
return ocfs2_validate_gd_self(sb, bh, 0);
}
int ocfs2_read_group_descriptor(struct inode *inode, struct ocfs2_dinode *di,
u64 gd_blkno, struct buffer_head **bh)
{
int rc;
struct buffer_head *tmp = *bh;
rc = ocfs2_read_block(inode, gd_blkno, &tmp,
ocfs2_validate_group_descriptor);
if (rc)
goto out;
rc = ocfs2_validate_gd_parent(inode->i_sb, di, tmp, 0);
if (rc) {
brelse(tmp);
goto out;
}
/* If ocfs2_read_block() got us a new bh, pass it up. */
if (!*bh)
*bh = tmp;
out:
return rc;
}
static int ocfs2_block_group_fill(handle_t *handle,
struct inode *alloc_inode,
struct buffer_head *bg_bh,
u64 group_blkno,
u16 my_chain,
struct ocfs2_chain_list *cl)
{
int status = 0;
struct ocfs2_group_desc *bg = (struct ocfs2_group_desc *) bg_bh->b_data;
struct super_block * sb = alloc_inode->i_sb;
mlog_entry_void();
if (((unsigned long long) bg_bh->b_blocknr) != group_blkno) {
ocfs2_error(alloc_inode->i_sb, "group block (%llu) != "
"b_blocknr (%llu)",
(unsigned long long)group_blkno,
(unsigned long long) bg_bh->b_blocknr);
status = -EIO;
goto bail;
}
status = ocfs2_journal_access_gd(handle,
alloc_inode,
bg_bh,
OCFS2_JOURNAL_ACCESS_CREATE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
memset(bg, 0, sb->s_blocksize);
strcpy(bg->bg_signature, OCFS2_GROUP_DESC_SIGNATURE);
bg->bg_generation = cpu_to_le32(OCFS2_SB(sb)->fs_generation);
bg->bg_size = cpu_to_le16(ocfs2_group_bitmap_size(sb));
bg->bg_bits = cpu_to_le16(ocfs2_bits_per_group(cl));
bg->bg_chain = cpu_to_le16(my_chain);
bg->bg_next_group = cl->cl_recs[my_chain].c_blkno;
bg->bg_parent_dinode = cpu_to_le64(OCFS2_I(alloc_inode)->ip_blkno);
bg->bg_blkno = cpu_to_le64(group_blkno);
/* set the 1st bit in the bitmap to account for the descriptor block */
ocfs2_set_bit(0, (unsigned long *)bg->bg_bitmap);
bg->bg_free_bits_count = cpu_to_le16(le16_to_cpu(bg->bg_bits) - 1);
status = ocfs2_journal_dirty(handle, bg_bh);
if (status < 0)
mlog_errno(status);
/* There is no need to zero out or otherwise initialize the
* other blocks in a group - All valid FS metadata in a block
* group stores the superblock fs_generation value at
* allocation time. */
bail:
mlog_exit(status);
return status;
}
static inline u16 ocfs2_find_smallest_chain(struct ocfs2_chain_list *cl)
{
u16 curr, best;
best = curr = 0;
while (curr < le16_to_cpu(cl->cl_count)) {
if (le32_to_cpu(cl->cl_recs[best].c_total) >
le32_to_cpu(cl->cl_recs[curr].c_total))
best = curr;
curr++;
}
return best;
}
/*
* We expect the block group allocator to already be locked.
*/
static int ocfs2_block_group_alloc(struct ocfs2_super *osb,
struct inode *alloc_inode,
struct buffer_head *bh,
u64 max_block,
u64 *last_alloc_group,
int flags)
{
int status, credits;
struct ocfs2_dinode *fe = (struct ocfs2_dinode *) bh->b_data;
struct ocfs2_chain_list *cl;
struct ocfs2_alloc_context *ac = NULL;
handle_t *handle = NULL;
u32 bit_off, num_bits;
u16 alloc_rec;
u64 bg_blkno;
struct buffer_head *bg_bh = NULL;
struct ocfs2_group_desc *bg;
BUG_ON(ocfs2_is_cluster_bitmap(alloc_inode));
mlog_entry_void();
cl = &fe->id2.i_chain;
status = ocfs2_reserve_clusters_with_limit(osb,
le16_to_cpu(cl->cl_cpg),
max_block, flags, &ac);
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
credits = ocfs2_calc_group_alloc_credits(osb->sb,
le16_to_cpu(cl->cl_cpg));
handle = ocfs2_start_trans(osb, credits);
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
handle = NULL;
mlog_errno(status);
goto bail;
}
if (last_alloc_group && *last_alloc_group != 0) {
mlog(0, "use old allocation group %llu for block group alloc\n",
(unsigned long long)*last_alloc_group);
ac->ac_last_group = *last_alloc_group;
}
status = ocfs2_claim_clusters(osb,
handle,
ac,
le16_to_cpu(cl->cl_cpg),
&bit_off,
&num_bits);
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
alloc_rec = ocfs2_find_smallest_chain(cl);
/* setup the group */
bg_blkno = ocfs2_clusters_to_blocks(osb->sb, bit_off);
mlog(0, "new descriptor, record %u, at block %llu\n",
alloc_rec, (unsigned long long)bg_blkno);
bg_bh = sb_getblk(osb->sb, bg_blkno);
if (!bg_bh) {
status = -EIO;
mlog_errno(status);
goto bail;
}
ocfs2_set_new_buffer_uptodate(alloc_inode, bg_bh);
status = ocfs2_block_group_fill(handle,
alloc_inode,
bg_bh,
bg_blkno,
alloc_rec,
cl);
if (status < 0) {
mlog_errno(status);
goto bail;
}
bg = (struct ocfs2_group_desc *) bg_bh->b_data;
status = ocfs2_journal_access_di(handle, alloc_inode,
bh, OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
le32_add_cpu(&cl->cl_recs[alloc_rec].c_free,
le16_to_cpu(bg->bg_free_bits_count));
le32_add_cpu(&cl->cl_recs[alloc_rec].c_total, le16_to_cpu(bg->bg_bits));
cl->cl_recs[alloc_rec].c_blkno = cpu_to_le64(bg_blkno);
if (le16_to_cpu(cl->cl_next_free_rec) < le16_to_cpu(cl->cl_count))
le16_add_cpu(&cl->cl_next_free_rec, 1);
le32_add_cpu(&fe->id1.bitmap1.i_used, le16_to_cpu(bg->bg_bits) -
le16_to_cpu(bg->bg_free_bits_count));
le32_add_cpu(&fe->id1.bitmap1.i_total, le16_to_cpu(bg->bg_bits));
le32_add_cpu(&fe->i_clusters, le16_to_cpu(cl->cl_cpg));
status = ocfs2_journal_dirty(handle, bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
spin_lock(&OCFS2_I(alloc_inode)->ip_lock);
OCFS2_I(alloc_inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
fe->i_size = cpu_to_le64(ocfs2_clusters_to_bytes(alloc_inode->i_sb,
le32_to_cpu(fe->i_clusters)));
spin_unlock(&OCFS2_I(alloc_inode)->ip_lock);
i_size_write(alloc_inode, le64_to_cpu(fe->i_size));
alloc_inode->i_blocks = ocfs2_inode_sector_count(alloc_inode);
status = 0;
/* save the new last alloc group so that the caller can cache it. */
if (last_alloc_group)
*last_alloc_group = ac->ac_last_group;
bail:
if (handle)
ocfs2_commit_trans(osb, handle);
if (ac)
ocfs2_free_alloc_context(ac);
brelse(bg_bh);
mlog_exit(status);
return status;
}
static int ocfs2_reserve_suballoc_bits(struct ocfs2_super *osb,
struct ocfs2_alloc_context *ac,
int type,
u32 slot,
u64 *last_alloc_group,
int flags)
{
int status;
u32 bits_wanted = ac->ac_bits_wanted;
struct inode *alloc_inode;
struct buffer_head *bh = NULL;
struct ocfs2_dinode *fe;
u32 free_bits;
mlog_entry_void();
alloc_inode = ocfs2_get_system_file_inode(osb, type, slot);
if (!alloc_inode) {
mlog_errno(-EINVAL);
return -EINVAL;
}
mutex_lock(&alloc_inode->i_mutex);
status = ocfs2_inode_lock(alloc_inode, &bh, 1);
if (status < 0) {
mutex_unlock(&alloc_inode->i_mutex);
iput(alloc_inode);
mlog_errno(status);
return status;
}
ac->ac_inode = alloc_inode;
ac->ac_alloc_slot = slot;
fe = (struct ocfs2_dinode *) bh->b_data;
/* The bh was validated by the inode read inside
* ocfs2_inode_lock(). Any corruption is a code bug. */
BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
if (!(fe->i_flags & cpu_to_le32(OCFS2_CHAIN_FL))) {
ocfs2_error(alloc_inode->i_sb, "Invalid chain allocator %llu",
(unsigned long long)le64_to_cpu(fe->i_blkno));
status = -EIO;
goto bail;
}
free_bits = le32_to_cpu(fe->id1.bitmap1.i_total) -
le32_to_cpu(fe->id1.bitmap1.i_used);
if (bits_wanted > free_bits) {
/* cluster bitmap never grows */
if (ocfs2_is_cluster_bitmap(alloc_inode)) {
mlog(0, "Disk Full: wanted=%u, free_bits=%u\n",
bits_wanted, free_bits);
status = -ENOSPC;
goto bail;
}
if (!(flags & ALLOC_NEW_GROUP)) {
mlog(0, "Alloc File %u Full: wanted=%u, free_bits=%u, "
"and we don't alloc a new group for it.\n",
slot, bits_wanted, free_bits);
status = -ENOSPC;
goto bail;
}
status = ocfs2_block_group_alloc(osb, alloc_inode, bh,
ac->ac_max_block,
last_alloc_group, flags);
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
atomic_inc(&osb->alloc_stats.bg_extends);
/* You should never ask for this much metadata */
BUG_ON(bits_wanted >
(le32_to_cpu(fe->id1.bitmap1.i_total)
- le32_to_cpu(fe->id1.bitmap1.i_used)));
}
get_bh(bh);
ac->ac_bh = bh;
bail:
brelse(bh);
mlog_exit(status);
return status;
}
int ocfs2_reserve_new_metadata_blocks(struct ocfs2_super *osb,
int blocks,
struct ocfs2_alloc_context **ac)
{
int status;
u32 slot;
*ac = kzalloc(sizeof(struct ocfs2_alloc_context), GFP_KERNEL);
if (!(*ac)) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
(*ac)->ac_bits_wanted = blocks;
(*ac)->ac_which = OCFS2_AC_USE_META;
slot = osb->slot_num;
(*ac)->ac_group_search = ocfs2_block_group_search;
status = ocfs2_reserve_suballoc_bits(osb, (*ac),
EXTENT_ALLOC_SYSTEM_INODE,
slot, NULL, ALLOC_NEW_GROUP);
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
status = 0;
bail:
if ((status < 0) && *ac) {
ocfs2_free_alloc_context(*ac);
*ac = NULL;
}
mlog_exit(status);
return status;
}
int ocfs2_reserve_new_metadata(struct ocfs2_super *osb,
struct ocfs2_extent_list *root_el,
struct ocfs2_alloc_context **ac)
{
return ocfs2_reserve_new_metadata_blocks(osb,
ocfs2_extend_meta_needed(root_el),
ac);
}
static int ocfs2_steal_inode_from_other_nodes(struct ocfs2_super *osb,
struct ocfs2_alloc_context *ac)
{
int i, status = -ENOSPC;
s16 slot = ocfs2_get_inode_steal_slot(osb);
/* Start to steal inodes from the first slot after ours. */
if (slot == OCFS2_INVALID_SLOT)
slot = osb->slot_num + 1;
for (i = 0; i < osb->max_slots; i++, slot++) {
if (slot == osb->max_slots)
slot = 0;
if (slot == osb->slot_num)
continue;
status = ocfs2_reserve_suballoc_bits(osb, ac,
INODE_ALLOC_SYSTEM_INODE,
slot, NULL,
NOT_ALLOC_NEW_GROUP);
if (status >= 0) {
ocfs2_set_inode_steal_slot(osb, slot);
break;
}
ocfs2_free_ac_resource(ac);
}
return status;
}
int ocfs2_reserve_new_inode(struct ocfs2_super *osb,
struct ocfs2_alloc_context **ac)
{
int status;
s16 slot = ocfs2_get_inode_steal_slot(osb);
u64 alloc_group;
*ac = kzalloc(sizeof(struct ocfs2_alloc_context), GFP_KERNEL);
if (!(*ac)) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
(*ac)->ac_bits_wanted = 1;
(*ac)->ac_which = OCFS2_AC_USE_INODE;
(*ac)->ac_group_search = ocfs2_block_group_search;
/*
* stat(2) can't handle i_ino > 32bits, so we tell the
* lower levels not to allocate us a block group past that
* limit. The 'inode64' mount option avoids this behavior.
*/
if (!(osb->s_mount_opt & OCFS2_MOUNT_INODE64))
(*ac)->ac_max_block = (u32)~0U;
/*
* slot is set when we successfully steal inode from other nodes.
* It is reset in 3 places:
* 1. when we flush the truncate log
* 2. when we complete local alloc recovery.
* 3. when we successfully allocate from our own slot.
* After it is set, we will go on stealing inodes until we find the
* need to check our slots to see whether there is some space for us.
*/
if (slot != OCFS2_INVALID_SLOT &&
atomic_read(&osb->s_num_inodes_stolen) < OCFS2_MAX_INODES_TO_STEAL)
goto inode_steal;
atomic_set(&osb->s_num_inodes_stolen, 0);
alloc_group = osb->osb_inode_alloc_group;
status = ocfs2_reserve_suballoc_bits(osb, *ac,
INODE_ALLOC_SYSTEM_INODE,
osb->slot_num,
&alloc_group,
ALLOC_NEW_GROUP |
ALLOC_GROUPS_FROM_GLOBAL);
if (status >= 0) {
status = 0;
spin_lock(&osb->osb_lock);
osb->osb_inode_alloc_group = alloc_group;
spin_unlock(&osb->osb_lock);
mlog(0, "after reservation, new allocation group is "
"%llu\n", (unsigned long long)alloc_group);
/*
* Some inodes must be freed by us, so try to allocate
* from our own next time.
*/
if (slot != OCFS2_INVALID_SLOT)
ocfs2_init_inode_steal_slot(osb);
goto bail;
} else if (status < 0 && status != -ENOSPC) {
mlog_errno(status);
goto bail;
}
ocfs2_free_ac_resource(*ac);
inode_steal:
status = ocfs2_steal_inode_from_other_nodes(osb, *ac);
atomic_inc(&osb->s_num_inodes_stolen);
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
status = 0;
bail:
if ((status < 0) && *ac) {
ocfs2_free_alloc_context(*ac);
*ac = NULL;
}
mlog_exit(status);
return status;
}
/* local alloc code has to do the same thing, so rather than do this
* twice.. */
int ocfs2_reserve_cluster_bitmap_bits(struct ocfs2_super *osb,
struct ocfs2_alloc_context *ac)
{
int status;
ac->ac_which = OCFS2_AC_USE_MAIN;
ac->ac_group_search = ocfs2_cluster_group_search;
status = ocfs2_reserve_suballoc_bits(osb, ac,
GLOBAL_BITMAP_SYSTEM_INODE,
OCFS2_INVALID_SLOT, NULL,
ALLOC_NEW_GROUP);
if (status < 0 && status != -ENOSPC) {
mlog_errno(status);
goto bail;
}
bail:
return status;
}
/* Callers don't need to care which bitmap (local alloc or main) to
* use so we figure it out for them, but unfortunately this clutters
* things a bit. */
static int ocfs2_reserve_clusters_with_limit(struct ocfs2_super *osb,
u32 bits_wanted, u64 max_block,
int flags,
struct ocfs2_alloc_context **ac)
{
int status;
mlog_entry_void();
*ac = kzalloc(sizeof(struct ocfs2_alloc_context), GFP_KERNEL);
if (!(*ac)) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
(*ac)->ac_bits_wanted = bits_wanted;
(*ac)->ac_max_block = max_block;
status = -ENOSPC;
if (!(flags & ALLOC_GROUPS_FROM_GLOBAL) &&
ocfs2_alloc_should_use_local(osb, bits_wanted)) {
status = ocfs2_reserve_local_alloc_bits(osb,
bits_wanted,
*ac);
if (status == -EFBIG) {
/* The local alloc window is outside ac_max_block.
* use the main bitmap. */
status = -ENOSPC;
} else if ((status < 0) && (status != -ENOSPC)) {
mlog_errno(status);
goto bail;
}
}
if (status == -ENOSPC) {
status = ocfs2_reserve_cluster_bitmap_bits(osb, *ac);
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
}
status = 0;
bail:
if ((status < 0) && *ac) {
ocfs2_free_alloc_context(*ac);
*ac = NULL;
}
mlog_exit(status);
return status;
}
int ocfs2_reserve_clusters(struct ocfs2_super *osb,
u32 bits_wanted,
struct ocfs2_alloc_context **ac)
{
return ocfs2_reserve_clusters_with_limit(osb, bits_wanted, 0,
ALLOC_NEW_GROUP, ac);
}
/*
* More or less lifted from ext3. I'll leave their description below:
*
* "For ext3 allocations, we must not reuse any blocks which are
* allocated in the bitmap buffer's "last committed data" copy. This
* prevents deletes from freeing up the page for reuse until we have
* committed the delete transaction.
*
* If we didn't do this, then deleting something and reallocating it as
* data would allow the old block to be overwritten before the
* transaction committed (because we force data to disk before commit).
* This would lead to corruption if we crashed between overwriting the
* data and committing the delete.
*
* @@@ We may want to make this allocation behaviour conditional on
* data-writes at some point, and disable it for metadata allocations or
* sync-data inodes."
*
* Note: OCFS2 already does this differently for metadata vs data
* allocations, as those bitmaps are separate and undo access is never
* called on a metadata group descriptor.
*/
static int ocfs2_test_bg_bit_allocatable(struct buffer_head *bg_bh,
int nr)
{
struct ocfs2_group_desc *bg = (struct ocfs2_group_desc *) bg_bh->b_data;
if (ocfs2_test_bit(nr, (unsigned long *)bg->bg_bitmap))
return 0;
if (!buffer_jbd(bg_bh) || !bh2jh(bg_bh)->b_committed_data)
return 1;
bg = (struct ocfs2_group_desc *) bh2jh(bg_bh)->b_committed_data;
return !ocfs2_test_bit(nr, (unsigned long *)bg->bg_bitmap);
}
static int ocfs2_block_group_find_clear_bits(struct ocfs2_super *osb,
struct buffer_head *bg_bh,
unsigned int bits_wanted,
unsigned int total_bits,
u16 *bit_off,
u16 *bits_found)
{
void *bitmap;
u16 best_offset, best_size;
int offset, start, found, status = 0;
struct ocfs2_group_desc *bg = (struct ocfs2_group_desc *) bg_bh->b_data;
/* Callers got this descriptor from
* ocfs2_read_group_descriptor(). Any corruption is a code bug. */
BUG_ON(!OCFS2_IS_VALID_GROUP_DESC(bg));
found = start = best_offset = best_size = 0;
bitmap = bg->bg_bitmap;
while((offset = ocfs2_find_next_zero_bit(bitmap, total_bits, start)) != -1) {
if (offset == total_bits)
break;
if (!ocfs2_test_bg_bit_allocatable(bg_bh, offset)) {
/* We found a zero, but we can't use it as it
* hasn't been put to disk yet! */
found = 0;
start = offset + 1;
} else if (offset == start) {
/* we found a zero */
found++;
/* move start to the next bit to test */
start++;
} else {
/* got a zero after some ones */
found = 1;
start = offset + 1;
}
if (found > best_size) {
best_size = found;
best_offset = start - found;
}
/* we got everything we needed */
if (found == bits_wanted) {
/* mlog(0, "Found it all!\n"); */
break;
}
}
/* XXX: I think the first clause is equivalent to the second
* - jlbec */
if (found == bits_wanted) {
*bit_off = start - found;
*bits_found = found;
} else if (best_size) {
*bit_off = best_offset;
*bits_found = best_size;
} else {
status = -ENOSPC;
/* No error log here -- see the comment above
* ocfs2_test_bg_bit_allocatable */
}
return status;
}
static inline int ocfs2_block_group_set_bits(handle_t *handle,
struct inode *alloc_inode,
struct ocfs2_group_desc *bg,
struct buffer_head *group_bh,
unsigned int bit_off,
unsigned int num_bits)
{
int status;
void *bitmap = bg->bg_bitmap;
int journal_type = OCFS2_JOURNAL_ACCESS_WRITE;
mlog_entry_void();
/* All callers get the descriptor via
* ocfs2_read_group_descriptor(). Any corruption is a code bug. */
BUG_ON(!OCFS2_IS_VALID_GROUP_DESC(bg));
BUG_ON(le16_to_cpu(bg->bg_free_bits_count) < num_bits);
mlog(0, "block_group_set_bits: off = %u, num = %u\n", bit_off,
num_bits);
if (ocfs2_is_cluster_bitmap(alloc_inode))
journal_type = OCFS2_JOURNAL_ACCESS_UNDO;
status = ocfs2_journal_access_gd(handle,
alloc_inode,
group_bh,
journal_type);
if (status < 0) {
mlog_errno(status);
goto bail;
}
le16_add_cpu(&bg->bg_free_bits_count, -num_bits);
while(num_bits--)
ocfs2_set_bit(bit_off++, bitmap);
status = ocfs2_journal_dirty(handle,
group_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
bail:
mlog_exit(status);
return status;
}
/* find the one with the most empty bits */
static inline u16 ocfs2_find_victim_chain(struct ocfs2_chain_list *cl)
{
u16 curr, best;
BUG_ON(!cl->cl_next_free_rec);
best = curr = 0;
while (curr < le16_to_cpu(cl->cl_next_free_rec)) {
if (le32_to_cpu(cl->cl_recs[curr].c_free) >
le32_to_cpu(cl->cl_recs[best].c_free))
best = curr;
curr++;
}
BUG_ON(best >= le16_to_cpu(cl->cl_next_free_rec));
return best;
}
static int ocfs2_relink_block_group(handle_t *handle,
struct inode *alloc_inode,
struct buffer_head *fe_bh,
struct buffer_head *bg_bh,
struct buffer_head *prev_bg_bh,
u16 chain)
{
int status;
/* there is a really tiny chance the journal calls could fail,
* but we wouldn't want inconsistent blocks in *any* case. */
u64 fe_ptr, bg_ptr, prev_bg_ptr;
struct ocfs2_dinode *fe = (struct ocfs2_dinode *) fe_bh->b_data;
struct ocfs2_group_desc *bg = (struct ocfs2_group_desc *) bg_bh->b_data;
struct ocfs2_group_desc *prev_bg = (struct ocfs2_group_desc *) prev_bg_bh->b_data;
/* The caller got these descriptors from
* ocfs2_read_group_descriptor(). Any corruption is a code bug. */
BUG_ON(!OCFS2_IS_VALID_GROUP_DESC(bg));
BUG_ON(!OCFS2_IS_VALID_GROUP_DESC(prev_bg));
mlog(0, "Suballoc %llu, chain %u, move group %llu to top, prev = %llu\n",
(unsigned long long)le64_to_cpu(fe->i_blkno), chain,
(unsigned long long)le64_to_cpu(bg->bg_blkno),
(unsigned long long)le64_to_cpu(prev_bg->bg_blkno));
fe_ptr = le64_to_cpu(fe->id2.i_chain.cl_recs[chain].c_blkno);
bg_ptr = le64_to_cpu(bg->bg_next_group);
prev_bg_ptr = le64_to_cpu(prev_bg->bg_next_group);
status = ocfs2_journal_access_gd(handle, alloc_inode, prev_bg_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto out_rollback;
}
prev_bg->bg_next_group = bg->bg_next_group;
status = ocfs2_journal_dirty(handle, prev_bg_bh);
if (status < 0) {
mlog_errno(status);
goto out_rollback;
}
status = ocfs2_journal_access_gd(handle, alloc_inode, bg_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto out_rollback;
}
bg->bg_next_group = fe->id2.i_chain.cl_recs[chain].c_blkno;
status = ocfs2_journal_dirty(handle, bg_bh);
if (status < 0) {
mlog_errno(status);
goto out_rollback;
}
status = ocfs2_journal_access_di(handle, alloc_inode, fe_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto out_rollback;
}
fe->id2.i_chain.cl_recs[chain].c_blkno = bg->bg_blkno;
status = ocfs2_journal_dirty(handle, fe_bh);
if (status < 0) {
mlog_errno(status);
goto out_rollback;
}
status = 0;
out_rollback:
if (status < 0) {
fe->id2.i_chain.cl_recs[chain].c_blkno = cpu_to_le64(fe_ptr);
bg->bg_next_group = cpu_to_le64(bg_ptr);
prev_bg->bg_next_group = cpu_to_le64(prev_bg_ptr);
}
mlog_exit(status);
return status;
}
static inline int ocfs2_block_group_reasonably_empty(struct ocfs2_group_desc *bg,
u32 wanted)
{
return le16_to_cpu(bg->bg_free_bits_count) > wanted;
}
/* return 0 on success, -ENOSPC to keep searching and any other < 0
* value on error. */
static int ocfs2_cluster_group_search(struct inode *inode,
struct buffer_head *group_bh,
u32 bits_wanted, u32 min_bits,
u64 max_block,
u16 *bit_off, u16 *bits_found)
{
int search = -ENOSPC;
int ret;
u64 blkoff;
struct ocfs2_group_desc *gd = (struct ocfs2_group_desc *) group_bh->b_data;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
u16 tmp_off, tmp_found;
unsigned int max_bits, gd_cluster_off;
BUG_ON(!ocfs2_is_cluster_bitmap(inode));
if (gd->bg_free_bits_count) {
max_bits = le16_to_cpu(gd->bg_bits);
/* Tail groups in cluster bitmaps which aren't cpg
* aligned are prone to partial extention by a failed
* fs resize. If the file system resize never got to
* update the dinode cluster count, then we don't want
* to trust any clusters past it, regardless of what
* the group descriptor says. */
gd_cluster_off = ocfs2_blocks_to_clusters(inode->i_sb,
le64_to_cpu(gd->bg_blkno));
if ((gd_cluster_off + max_bits) >
OCFS2_I(inode)->ip_clusters) {
max_bits = OCFS2_I(inode)->ip_clusters - gd_cluster_off;
mlog(0, "Desc %llu, bg_bits %u, clusters %u, use %u\n",
(unsigned long long)le64_to_cpu(gd->bg_blkno),
le16_to_cpu(gd->bg_bits),
OCFS2_I(inode)->ip_clusters, max_bits);
}
ret = ocfs2_block_group_find_clear_bits(OCFS2_SB(inode->i_sb),
group_bh, bits_wanted,
max_bits,
&tmp_off, &tmp_found);
if (ret)
return ret;
if (max_block) {
blkoff = ocfs2_clusters_to_blocks(inode->i_sb,
gd_cluster_off +
tmp_off + tmp_found);
mlog(0, "Checking %llu against %llu\n",
(unsigned long long)blkoff,
(unsigned long long)max_block);
if (blkoff > max_block)
return -ENOSPC;
}
/* ocfs2_block_group_find_clear_bits() might
* return success, but we still want to return
* -ENOSPC unless it found the minimum number
* of bits. */
if (min_bits <= tmp_found) {
*bit_off = tmp_off;
*bits_found = tmp_found;
search = 0; /* success */
} else if (tmp_found) {
/*
* Don't show bits which we'll be returning
* for allocation to the local alloc bitmap.
*/
ocfs2_local_alloc_seen_free_bits(osb, tmp_found);
}
}
return search;
}
static int ocfs2_block_group_search(struct inode *inode,
struct buffer_head *group_bh,
u32 bits_wanted, u32 min_bits,
u64 max_block,
u16 *bit_off, u16 *bits_found)
{
int ret = -ENOSPC;
u64 blkoff;
struct ocfs2_group_desc *bg = (struct ocfs2_group_desc *) group_bh->b_data;
BUG_ON(min_bits != 1);
BUG_ON(ocfs2_is_cluster_bitmap(inode));
if (bg->bg_free_bits_count) {
ret = ocfs2_block_group_find_clear_bits(OCFS2_SB(inode->i_sb),
group_bh, bits_wanted,
le16_to_cpu(bg->bg_bits),
bit_off, bits_found);
if (!ret && max_block) {
blkoff = le64_to_cpu(bg->bg_blkno) + *bit_off +
*bits_found;
mlog(0, "Checking %llu against %llu\n",
(unsigned long long)blkoff,
(unsigned long long)max_block);
if (blkoff > max_block)
ret = -ENOSPC;
}
}
return ret;
}
static int ocfs2_alloc_dinode_update_counts(struct inode *inode,
handle_t *handle,
struct buffer_head *di_bh,
u32 num_bits,
u16 chain)
{
int ret;
u32 tmp_used;
struct ocfs2_dinode *di = (struct ocfs2_dinode *) di_bh->b_data;
struct ocfs2_chain_list *cl = (struct ocfs2_chain_list *) &di->id2.i_chain;
ret = ocfs2_journal_access_di(handle, inode, di_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
tmp_used = le32_to_cpu(di->id1.bitmap1.i_used);
di->id1.bitmap1.i_used = cpu_to_le32(num_bits + tmp_used);
le32_add_cpu(&cl->cl_recs[chain].c_free, -num_bits);
ret = ocfs2_journal_dirty(handle, di_bh);
if (ret < 0)
mlog_errno(ret);
out:
return ret;
}
static int ocfs2_search_one_group(struct ocfs2_alloc_context *ac,
handle_t *handle,
u32 bits_wanted,
u32 min_bits,
u16 *bit_off,
unsigned int *num_bits,
u64 gd_blkno,
u16 *bits_left)
{
int ret;
u16 found;
struct buffer_head *group_bh = NULL;
struct ocfs2_group_desc *gd;
struct ocfs2_dinode *di = (struct ocfs2_dinode *)ac->ac_bh->b_data;
struct inode *alloc_inode = ac->ac_inode;
ret = ocfs2_read_group_descriptor(alloc_inode, di, gd_blkno,
&group_bh);
if (ret < 0) {
mlog_errno(ret);
return ret;
}
gd = (struct ocfs2_group_desc *) group_bh->b_data;
ret = ac->ac_group_search(alloc_inode, group_bh, bits_wanted, min_bits,
ac->ac_max_block, bit_off, &found);
if (ret < 0) {
if (ret != -ENOSPC)
mlog_errno(ret);
goto out;
}
*num_bits = found;
ret = ocfs2_alloc_dinode_update_counts(alloc_inode, handle, ac->ac_bh,
*num_bits,
le16_to_cpu(gd->bg_chain));
if (ret < 0) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_block_group_set_bits(handle, alloc_inode, gd, group_bh,
*bit_off, *num_bits);
if (ret < 0)
mlog_errno(ret);
*bits_left = le16_to_cpu(gd->bg_free_bits_count);
out:
brelse(group_bh);
return ret;
}
static int ocfs2_search_chain(struct ocfs2_alloc_context *ac,
handle_t *handle,
u32 bits_wanted,
u32 min_bits,
u16 *bit_off,
unsigned int *num_bits,
u64 *bg_blkno,
u16 *bits_left)
{
int status;
u16 chain, tmp_bits;
u32 tmp_used;
u64 next_group;
struct inode *alloc_inode = ac->ac_inode;
struct buffer_head *group_bh = NULL;
struct buffer_head *prev_group_bh = NULL;
struct ocfs2_dinode *fe = (struct ocfs2_dinode *) ac->ac_bh->b_data;
struct ocfs2_chain_list *cl = (struct ocfs2_chain_list *) &fe->id2.i_chain;
struct ocfs2_group_desc *bg;
chain = ac->ac_chain;
mlog(0, "trying to alloc %u bits from chain %u, inode %llu\n",
bits_wanted, chain,
(unsigned long long)OCFS2_I(alloc_inode)->ip_blkno);
status = ocfs2_read_group_descriptor(alloc_inode, fe,
le64_to_cpu(cl->cl_recs[chain].c_blkno),
&group_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
bg = (struct ocfs2_group_desc *) group_bh->b_data;
status = -ENOSPC;
/* for now, the chain search is a bit simplistic. We just use
* the 1st group with any empty bits. */
while ((status = ac->ac_group_search(alloc_inode, group_bh,
bits_wanted, min_bits,
ac->ac_max_block, bit_off,
&tmp_bits)) == -ENOSPC) {
if (!bg->bg_next_group)
break;
brelse(prev_group_bh);
prev_group_bh = NULL;
next_group = le64_to_cpu(bg->bg_next_group);
prev_group_bh = group_bh;
group_bh = NULL;
status = ocfs2_read_group_descriptor(alloc_inode, fe,
next_group, &group_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
bg = (struct ocfs2_group_desc *) group_bh->b_data;
}
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
mlog(0, "alloc succeeds: we give %u bits from block group %llu\n",
tmp_bits, (unsigned long long)le64_to_cpu(bg->bg_blkno));
*num_bits = tmp_bits;
BUG_ON(*num_bits == 0);
/*
* Keep track of previous block descriptor read. When
* we find a target, if we have read more than X
* number of descriptors, and the target is reasonably
* empty, relink him to top of his chain.
*
* We've read 0 extra blocks and only send one more to
* the transaction, yet the next guy to search has a
* much easier time.
*
* Do this *after* figuring out how many bits we're taking out
* of our target group.
*/
if (ac->ac_allow_chain_relink &&
(prev_group_bh) &&
(ocfs2_block_group_reasonably_empty(bg, *num_bits))) {
status = ocfs2_relink_block_group(handle, alloc_inode,
ac->ac_bh, group_bh,
prev_group_bh, chain);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
/* Ok, claim our bits now: set the info on dinode, chainlist
* and then the group */
status = ocfs2_journal_access_di(handle,
alloc_inode,
ac->ac_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
tmp_used = le32_to_cpu(fe->id1.bitmap1.i_used);
fe->id1.bitmap1.i_used = cpu_to_le32(*num_bits + tmp_used);
le32_add_cpu(&cl->cl_recs[chain].c_free, -(*num_bits));
status = ocfs2_journal_dirty(handle,
ac->ac_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
status = ocfs2_block_group_set_bits(handle,
alloc_inode,
bg,
group_bh,
*bit_off,
*num_bits);
if (status < 0) {
mlog_errno(status);
goto bail;
}
mlog(0, "Allocated %u bits from suballocator %llu\n", *num_bits,
(unsigned long long)le64_to_cpu(fe->i_blkno));
*bg_blkno = le64_to_cpu(bg->bg_blkno);
*bits_left = le16_to_cpu(bg->bg_free_bits_count);
bail:
brelse(group_bh);
brelse(prev_group_bh);
mlog_exit(status);
return status;
}
/* will give out up to bits_wanted contiguous bits. */
static int ocfs2_claim_suballoc_bits(struct ocfs2_super *osb,
struct ocfs2_alloc_context *ac,
handle_t *handle,
u32 bits_wanted,
u32 min_bits,
u16 *bit_off,
unsigned int *num_bits,
u64 *bg_blkno)
{
int status;
u16 victim, i;
u16 bits_left = 0;
u64 hint_blkno = ac->ac_last_group;
struct ocfs2_chain_list *cl;
struct ocfs2_dinode *fe;
mlog_entry_void();
BUG_ON(ac->ac_bits_given >= ac->ac_bits_wanted);
BUG_ON(bits_wanted > (ac->ac_bits_wanted - ac->ac_bits_given));
BUG_ON(!ac->ac_bh);
fe = (struct ocfs2_dinode *) ac->ac_bh->b_data;
/* The bh was validated by the inode read during
* ocfs2_reserve_suballoc_bits(). Any corruption is a code bug. */
BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
if (le32_to_cpu(fe->id1.bitmap1.i_used) >=
le32_to_cpu(fe->id1.bitmap1.i_total)) {
ocfs2_error(osb->sb, "Chain allocator dinode %llu has %u used "
"bits but only %u total.",
(unsigned long long)le64_to_cpu(fe->i_blkno),
le32_to_cpu(fe->id1.bitmap1.i_used),
le32_to_cpu(fe->id1.bitmap1.i_total));
status = -EIO;
goto bail;
}
if (hint_blkno) {
/* Attempt to short-circuit the usual search mechanism
* by jumping straight to the most recently used
* allocation group. This helps us mantain some
* contiguousness across allocations. */
status = ocfs2_search_one_group(ac, handle, bits_wanted,
min_bits, bit_off, num_bits,
hint_blkno, &bits_left);
if (!status) {
/* Be careful to update *bg_blkno here as the
* caller is expecting it to be filled in, and
* ocfs2_search_one_group() won't do that for
* us. */
*bg_blkno = hint_blkno;
goto set_hint;
}
if (status < 0 && status != -ENOSPC) {
mlog_errno(status);
goto bail;
}
}
cl = (struct ocfs2_chain_list *) &fe->id2.i_chain;
victim = ocfs2_find_victim_chain(cl);
ac->ac_chain = victim;
ac->ac_allow_chain_relink = 1;
status = ocfs2_search_chain(ac, handle, bits_wanted, min_bits, bit_off,
num_bits, bg_blkno, &bits_left);
if (!status)
goto set_hint;
if (status < 0 && status != -ENOSPC) {
mlog_errno(status);
goto bail;
}
mlog(0, "Search of victim chain %u came up with nothing, "
"trying all chains now.\n", victim);
/* If we didn't pick a good victim, then just default to
* searching each chain in order. Don't allow chain relinking
* because we only calculate enough journal credits for one
* relink per alloc. */
ac->ac_allow_chain_relink = 0;
for (i = 0; i < le16_to_cpu(cl->cl_next_free_rec); i ++) {
if (i == victim)
continue;
if (!cl->cl_recs[i].c_free)
continue;
ac->ac_chain = i;
status = ocfs2_search_chain(ac, handle, bits_wanted, min_bits,
bit_off, num_bits, bg_blkno,
&bits_left);
if (!status)
break;
if (status < 0 && status != -ENOSPC) {
mlog_errno(status);
goto bail;
}
}
set_hint:
if (status != -ENOSPC) {
/* If the next search of this group is not likely to
* yield a suitable extent, then we reset the last
* group hint so as to not waste a disk read */
if (bits_left < min_bits)
ac->ac_last_group = 0;
else
ac->ac_last_group = *bg_blkno;
}
bail:
mlog_exit(status);
return status;
}
int ocfs2_claim_metadata(struct ocfs2_super *osb,
handle_t *handle,
struct ocfs2_alloc_context *ac,
u32 bits_wanted,
u16 *suballoc_bit_start,
unsigned int *num_bits,
u64 *blkno_start)
{
int status;
u64 bg_blkno;
BUG_ON(!ac);
BUG_ON(ac->ac_bits_wanted < (ac->ac_bits_given + bits_wanted));
BUG_ON(ac->ac_which != OCFS2_AC_USE_META);
status = ocfs2_claim_suballoc_bits(osb,
ac,
handle,
bits_wanted,
1,
suballoc_bit_start,
num_bits,
&bg_blkno);
if (status < 0) {
mlog_errno(status);
goto bail;
}
atomic_inc(&osb->alloc_stats.bg_allocs);
*blkno_start = bg_blkno + (u64) *suballoc_bit_start;
ac->ac_bits_given += (*num_bits);
status = 0;
bail:
mlog_exit(status);
return status;
}
static void ocfs2_init_inode_ac_group(struct inode *dir,
struct buffer_head *parent_fe_bh,
struct ocfs2_alloc_context *ac)
{
struct ocfs2_dinode *fe = (struct ocfs2_dinode *)parent_fe_bh->b_data;
/*
* Try to allocate inodes from some specific group.
*
* If the parent dir has recorded the last group used in allocation,
* cool, use it. Otherwise if we try to allocate new inode from the
* same slot the parent dir belongs to, use the same chunk.
*
* We are very careful here to avoid the mistake of setting
* ac_last_group to a group descriptor from a different (unlocked) slot.
*/
if (OCFS2_I(dir)->ip_last_used_group &&
OCFS2_I(dir)->ip_last_used_slot == ac->ac_alloc_slot)
ac->ac_last_group = OCFS2_I(dir)->ip_last_used_group;
else if (le16_to_cpu(fe->i_suballoc_slot) == ac->ac_alloc_slot)
ac->ac_last_group = ocfs2_which_suballoc_group(
le64_to_cpu(fe->i_blkno),
le16_to_cpu(fe->i_suballoc_bit));
}
static inline void ocfs2_save_inode_ac_group(struct inode *dir,
struct ocfs2_alloc_context *ac)
{
OCFS2_I(dir)->ip_last_used_group = ac->ac_last_group;
OCFS2_I(dir)->ip_last_used_slot = ac->ac_alloc_slot;
}
int ocfs2_claim_new_inode(struct ocfs2_super *osb,
handle_t *handle,
struct inode *dir,
struct buffer_head *parent_fe_bh,
struct ocfs2_alloc_context *ac,
u16 *suballoc_bit,
u64 *fe_blkno)
{
int status;
unsigned int num_bits;
u64 bg_blkno;
mlog_entry_void();
BUG_ON(!ac);
BUG_ON(ac->ac_bits_given != 0);
BUG_ON(ac->ac_bits_wanted != 1);
BUG_ON(ac->ac_which != OCFS2_AC_USE_INODE);
ocfs2_init_inode_ac_group(dir, parent_fe_bh, ac);
status = ocfs2_claim_suballoc_bits(osb,
ac,
handle,
1,
1,
suballoc_bit,
&num_bits,
&bg_blkno);
if (status < 0) {
mlog_errno(status);
goto bail;
}
atomic_inc(&osb->alloc_stats.bg_allocs);
BUG_ON(num_bits != 1);
*fe_blkno = bg_blkno + (u64) (*suballoc_bit);
ac->ac_bits_given++;
ocfs2_save_inode_ac_group(dir, ac);
status = 0;
bail:
mlog_exit(status);
return status;
}
/* translate a group desc. blkno and it's bitmap offset into
* disk cluster offset. */
static inline u32 ocfs2_desc_bitmap_to_cluster_off(struct inode *inode,
u64 bg_blkno,
u16 bg_bit_off)
{
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
u32 cluster = 0;
BUG_ON(!ocfs2_is_cluster_bitmap(inode));
if (bg_blkno != osb->first_cluster_group_blkno)
cluster = ocfs2_blocks_to_clusters(inode->i_sb, bg_blkno);
cluster += (u32) bg_bit_off;
return cluster;
}
/* given a cluster offset, calculate which block group it belongs to
* and return that block offset. */
u64 ocfs2_which_cluster_group(struct inode *inode, u32 cluster)
{
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
u32 group_no;
BUG_ON(!ocfs2_is_cluster_bitmap(inode));
group_no = cluster / osb->bitmap_cpg;
if (!group_no)
return osb->first_cluster_group_blkno;
return ocfs2_clusters_to_blocks(inode->i_sb,
group_no * osb->bitmap_cpg);
}
/* given the block number of a cluster start, calculate which cluster
* group and descriptor bitmap offset that corresponds to. */
static inline void ocfs2_block_to_cluster_group(struct inode *inode,
u64 data_blkno,
u64 *bg_blkno,
u16 *bg_bit_off)
{
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
u32 data_cluster = ocfs2_blocks_to_clusters(osb->sb, data_blkno);
BUG_ON(!ocfs2_is_cluster_bitmap(inode));
*bg_blkno = ocfs2_which_cluster_group(inode,
data_cluster);
if (*bg_blkno == osb->first_cluster_group_blkno)
*bg_bit_off = (u16) data_cluster;
else
*bg_bit_off = (u16) ocfs2_blocks_to_clusters(osb->sb,
data_blkno - *bg_blkno);
}
/*
* min_bits - minimum contiguous chunk from this total allocation we
* can handle. set to what we asked for originally for a full
* contig. allocation, set to '1' to indicate we can deal with extents
* of any size.
*/
int __ocfs2_claim_clusters(struct ocfs2_super *osb,
handle_t *handle,
struct ocfs2_alloc_context *ac,
u32 min_clusters,
u32 max_clusters,
u32 *cluster_start,
u32 *num_clusters)
{
int status;
unsigned int bits_wanted = max_clusters;
u64 bg_blkno = 0;
u16 bg_bit_off;
mlog_entry_void();
BUG_ON(ac->ac_bits_given >= ac->ac_bits_wanted);
BUG_ON(ac->ac_which != OCFS2_AC_USE_LOCAL
&& ac->ac_which != OCFS2_AC_USE_MAIN);
if (ac->ac_which == OCFS2_AC_USE_LOCAL) {
status = ocfs2_claim_local_alloc_bits(osb,
handle,
ac,
bits_wanted,
cluster_start,
num_clusters);
if (!status)
atomic_inc(&osb->alloc_stats.local_data);
} else {
if (min_clusters > (osb->bitmap_cpg - 1)) {
/* The only paths asking for contiguousness
* should know about this already. */
mlog(ML_ERROR, "minimum allocation requested %u exceeds "
"group bitmap size %u!\n", min_clusters,
osb->bitmap_cpg);
status = -ENOSPC;
goto bail;
}
/* clamp the current request down to a realistic size. */
if (bits_wanted > (osb->bitmap_cpg - 1))
bits_wanted = osb->bitmap_cpg - 1;
status = ocfs2_claim_suballoc_bits(osb,
ac,
handle,
bits_wanted,
min_clusters,
&bg_bit_off,
num_clusters,
&bg_blkno);
if (!status) {
*cluster_start =
ocfs2_desc_bitmap_to_cluster_off(ac->ac_inode,
bg_blkno,
bg_bit_off);
atomic_inc(&osb->alloc_stats.bitmap_data);
}
}
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
ac->ac_bits_given += *num_clusters;
bail:
mlog_exit(status);
return status;
}
int ocfs2_claim_clusters(struct ocfs2_super *osb,
handle_t *handle,
struct ocfs2_alloc_context *ac,
u32 min_clusters,
u32 *cluster_start,
u32 *num_clusters)
{
unsigned int bits_wanted = ac->ac_bits_wanted - ac->ac_bits_given;
return __ocfs2_claim_clusters(osb, handle, ac, min_clusters,
bits_wanted, cluster_start, num_clusters);
}
static inline int ocfs2_block_group_clear_bits(handle_t *handle,
struct inode *alloc_inode,
struct ocfs2_group_desc *bg,
struct buffer_head *group_bh,
unsigned int bit_off,
unsigned int num_bits)
{
int status;
unsigned int tmp;
int journal_type = OCFS2_JOURNAL_ACCESS_WRITE;
struct ocfs2_group_desc *undo_bg = NULL;
mlog_entry_void();
/* The caller got this descriptor from
* ocfs2_read_group_descriptor(). Any corruption is a code bug. */
BUG_ON(!OCFS2_IS_VALID_GROUP_DESC(bg));
mlog(0, "off = %u, num = %u\n", bit_off, num_bits);
if (ocfs2_is_cluster_bitmap(alloc_inode))
journal_type = OCFS2_JOURNAL_ACCESS_UNDO;
status = ocfs2_journal_access_gd(handle, alloc_inode, group_bh,
journal_type);
if (status < 0) {
mlog_errno(status);
goto bail;
}
if (ocfs2_is_cluster_bitmap(alloc_inode))
undo_bg = (struct ocfs2_group_desc *) bh2jh(group_bh)->b_committed_data;
tmp = num_bits;
while(tmp--) {
ocfs2_clear_bit((bit_off + tmp),
(unsigned long *) bg->bg_bitmap);
if (ocfs2_is_cluster_bitmap(alloc_inode))
ocfs2_set_bit(bit_off + tmp,
(unsigned long *) undo_bg->bg_bitmap);
}
le16_add_cpu(&bg->bg_free_bits_count, num_bits);
status = ocfs2_journal_dirty(handle, group_bh);
if (status < 0)
mlog_errno(status);
bail:
return status;
}
/*
* expects the suballoc inode to already be locked.
*/
int ocfs2_free_suballoc_bits(handle_t *handle,
struct inode *alloc_inode,
struct buffer_head *alloc_bh,
unsigned int start_bit,
u64 bg_blkno,
unsigned int count)
{
int status = 0;
u32 tmp_used;
struct ocfs2_dinode *fe = (struct ocfs2_dinode *) alloc_bh->b_data;
struct ocfs2_chain_list *cl = &fe->id2.i_chain;
struct buffer_head *group_bh = NULL;
struct ocfs2_group_desc *group;
mlog_entry_void();
/* The alloc_bh comes from ocfs2_free_dinode() or
* ocfs2_free_clusters(). The callers have all locked the
* allocator and gotten alloc_bh from the lock call. This
* validates the dinode buffer. Any corruption that has happended
* is a code bug. */
BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
BUG_ON((count + start_bit) > ocfs2_bits_per_group(cl));
mlog(0, "%llu: freeing %u bits from group %llu, starting at %u\n",
(unsigned long long)OCFS2_I(alloc_inode)->ip_blkno, count,
(unsigned long long)bg_blkno, start_bit);
status = ocfs2_read_group_descriptor(alloc_inode, fe, bg_blkno,
&group_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
group = (struct ocfs2_group_desc *) group_bh->b_data;
BUG_ON((count + start_bit) > le16_to_cpu(group->bg_bits));
status = ocfs2_block_group_clear_bits(handle, alloc_inode,
group, group_bh,
start_bit, count);
if (status < 0) {
mlog_errno(status);
goto bail;
}
status = ocfs2_journal_access_di(handle, alloc_inode, alloc_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
le32_add_cpu(&cl->cl_recs[le16_to_cpu(group->bg_chain)].c_free,
count);
tmp_used = le32_to_cpu(fe->id1.bitmap1.i_used);
fe->id1.bitmap1.i_used = cpu_to_le32(tmp_used - count);
status = ocfs2_journal_dirty(handle, alloc_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
bail:
brelse(group_bh);
mlog_exit(status);
return status;
}
int ocfs2_free_dinode(handle_t *handle,
struct inode *inode_alloc_inode,
struct buffer_head *inode_alloc_bh,
struct ocfs2_dinode *di)
{
u64 blk = le64_to_cpu(di->i_blkno);
u16 bit = le16_to_cpu(di->i_suballoc_bit);
u64 bg_blkno = ocfs2_which_suballoc_group(blk, bit);
return ocfs2_free_suballoc_bits(handle, inode_alloc_inode,
inode_alloc_bh, bit, bg_blkno, 1);
}
int ocfs2_free_clusters(handle_t *handle,
struct inode *bitmap_inode,
struct buffer_head *bitmap_bh,
u64 start_blk,
unsigned int num_clusters)
{
int status;
u16 bg_start_bit;
u64 bg_blkno;
struct ocfs2_dinode *fe;
/* You can't ever have a contiguous set of clusters
* bigger than a block group bitmap so we never have to worry
* about looping on them. */
mlog_entry_void();
/* This is expensive. We can safely remove once this stuff has
* gotten tested really well. */
BUG_ON(start_blk != ocfs2_clusters_to_blocks(bitmap_inode->i_sb, ocfs2_blocks_to_clusters(bitmap_inode->i_sb, start_blk)));
fe = (struct ocfs2_dinode *) bitmap_bh->b_data;
ocfs2_block_to_cluster_group(bitmap_inode, start_blk, &bg_blkno,
&bg_start_bit);
mlog(0, "want to free %u clusters starting at block %llu\n",
num_clusters, (unsigned long long)start_blk);
mlog(0, "bg_blkno = %llu, bg_start_bit = %u\n",
(unsigned long long)bg_blkno, bg_start_bit);
status = ocfs2_free_suballoc_bits(handle, bitmap_inode, bitmap_bh,
bg_start_bit, bg_blkno,
num_clusters);
if (status < 0) {
mlog_errno(status);
goto out;
}
ocfs2_local_alloc_seen_free_bits(OCFS2_SB(bitmap_inode->i_sb),
num_clusters);
out:
mlog_exit(status);
return status;
}
static inline void ocfs2_debug_bg(struct ocfs2_group_desc *bg)
{
printk("Block Group:\n");
printk("bg_signature: %s\n", bg->bg_signature);
printk("bg_size: %u\n", bg->bg_size);
printk("bg_bits: %u\n", bg->bg_bits);
printk("bg_free_bits_count: %u\n", bg->bg_free_bits_count);
printk("bg_chain: %u\n", bg->bg_chain);
printk("bg_generation: %u\n", le32_to_cpu(bg->bg_generation));
printk("bg_next_group: %llu\n",
(unsigned long long)bg->bg_next_group);
printk("bg_parent_dinode: %llu\n",
(unsigned long long)bg->bg_parent_dinode);
printk("bg_blkno: %llu\n",
(unsigned long long)bg->bg_blkno);
}
static inline void ocfs2_debug_suballoc_inode(struct ocfs2_dinode *fe)
{
int i;
printk("Suballoc Inode %llu:\n", (unsigned long long)fe->i_blkno);
printk("i_signature: %s\n", fe->i_signature);
printk("i_size: %llu\n",
(unsigned long long)fe->i_size);
printk("i_clusters: %u\n", fe->i_clusters);
printk("i_generation: %u\n",
le32_to_cpu(fe->i_generation));
printk("id1.bitmap1.i_used: %u\n",
le32_to_cpu(fe->id1.bitmap1.i_used));
printk("id1.bitmap1.i_total: %u\n",
le32_to_cpu(fe->id1.bitmap1.i_total));
printk("id2.i_chain.cl_cpg: %u\n", fe->id2.i_chain.cl_cpg);
printk("id2.i_chain.cl_bpc: %u\n", fe->id2.i_chain.cl_bpc);
printk("id2.i_chain.cl_count: %u\n", fe->id2.i_chain.cl_count);
printk("id2.i_chain.cl_next_free_rec: %u\n",
fe->id2.i_chain.cl_next_free_rec);
for(i = 0; i < fe->id2.i_chain.cl_next_free_rec; i++) {
printk("fe->id2.i_chain.cl_recs[%d].c_free: %u\n", i,
fe->id2.i_chain.cl_recs[i].c_free);
printk("fe->id2.i_chain.cl_recs[%d].c_total: %u\n", i,
fe->id2.i_chain.cl_recs[i].c_total);
printk("fe->id2.i_chain.cl_recs[%d].c_blkno: %llu\n", i,
(unsigned long long)fe->id2.i_chain.cl_recs[i].c_blkno);
}
}
/*
* For a given allocation, determine which allocators will need to be
* accessed, and lock them, reserving the appropriate number of bits.
*
* Sparse file systems call this from ocfs2_write_begin_nolock()
* and ocfs2_allocate_unwritten_extents().
*
* File systems which don't support holes call this from
* ocfs2_extend_allocation().
*/
int ocfs2_lock_allocators(struct inode *inode,
struct ocfs2_extent_tree *et,
u32 clusters_to_add, u32 extents_to_split,
struct ocfs2_alloc_context **data_ac,
struct ocfs2_alloc_context **meta_ac)
{
int ret = 0, num_free_extents;
unsigned int max_recs_needed = clusters_to_add + 2 * extents_to_split;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
*meta_ac = NULL;
if (data_ac)
*data_ac = NULL;
BUG_ON(clusters_to_add != 0 && data_ac == NULL);
num_free_extents = ocfs2_num_free_extents(osb, inode, et);
if (num_free_extents < 0) {
ret = num_free_extents;
mlog_errno(ret);
goto out;
}
/*
* Sparse allocation file systems need to be more conservative
* with reserving room for expansion - the actual allocation
* happens while we've got a journal handle open so re-taking
* a cluster lock (because we ran out of room for another
* extent) will violate ordering rules.
*
* Most of the time we'll only be seeing this 1 cluster at a time
* anyway.
*
* Always lock for any unwritten extents - we might want to
* add blocks during a split.
*/
if (!num_free_extents ||
(ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) {
ret = ocfs2_reserve_new_metadata(osb, et->et_root_el, meta_ac);
if (ret < 0) {
if (ret != -ENOSPC)
mlog_errno(ret);
goto out;
}
}
if (clusters_to_add == 0)
goto out;
ret = ocfs2_reserve_clusters(osb, clusters_to_add, data_ac);
if (ret < 0) {
if (ret != -ENOSPC)
mlog_errno(ret);
goto out;
}
out:
if (ret) {
if (*meta_ac) {
ocfs2_free_alloc_context(*meta_ac);
*meta_ac = NULL;
}
/*
* We cannot have an error and a non null *data_ac.
*/
}
return ret;
}
/*
* Read the inode specified by blkno to get suballoc_slot and
* suballoc_bit.
*/
static int ocfs2_get_suballoc_slot_bit(struct ocfs2_super *osb, u64 blkno,
u16 *suballoc_slot, u16 *suballoc_bit)
{
int status;
struct buffer_head *inode_bh = NULL;
struct ocfs2_dinode *inode_fe;
mlog_entry("blkno: %llu\n", blkno);
/* dirty read disk */
status = ocfs2_read_blocks_sync(osb, blkno, 1, &inode_bh);
if (status < 0) {
mlog(ML_ERROR, "read block %llu failed %d\n", blkno, status);
goto bail;
}
inode_fe = (struct ocfs2_dinode *) inode_bh->b_data;
if (!OCFS2_IS_VALID_DINODE(inode_fe)) {
mlog(ML_ERROR, "invalid inode %llu requested\n", blkno);
status = -EINVAL;
goto bail;
}
if (le16_to_cpu(inode_fe->i_suballoc_slot) != OCFS2_INVALID_SLOT &&
(u32)le16_to_cpu(inode_fe->i_suballoc_slot) > osb->max_slots - 1) {
mlog(ML_ERROR, "inode %llu has invalid suballoc slot %u\n",
blkno, (u32)le16_to_cpu(inode_fe->i_suballoc_slot));
status = -EINVAL;
goto bail;
}
if (suballoc_slot)
*suballoc_slot = le16_to_cpu(inode_fe->i_suballoc_slot);
if (suballoc_bit)
*suballoc_bit = le16_to_cpu(inode_fe->i_suballoc_bit);
bail:
brelse(inode_bh);
mlog_exit(status);
return status;
}
/*
* test whether bit is SET in allocator bitmap or not. on success, 0
* is returned and *res is 1 for SET; 0 otherwise. when fails, errno
* is returned and *res is meaningless. Call this after you have
* cluster locked against suballoc, or you may get a result based on
* non-up2date contents
*/
static int ocfs2_test_suballoc_bit(struct ocfs2_super *osb,
struct inode *suballoc,
struct buffer_head *alloc_bh, u64 blkno,
u16 bit, int *res)
{
struct ocfs2_dinode *alloc_fe;
struct ocfs2_group_desc *group;
struct buffer_head *group_bh = NULL;
u64 bg_blkno;
int status;
mlog_entry("blkno: %llu bit: %u\n", blkno, (unsigned int)bit);
alloc_fe = (struct ocfs2_dinode *)alloc_bh->b_data;
if ((bit + 1) > ocfs2_bits_per_group(&alloc_fe->id2.i_chain)) {
mlog(ML_ERROR, "suballoc bit %u out of range of %u\n",
(unsigned int)bit,
ocfs2_bits_per_group(&alloc_fe->id2.i_chain));
status = -EINVAL;
goto bail;
}
bg_blkno = ocfs2_which_suballoc_group(blkno, bit);
status = ocfs2_read_group_descriptor(suballoc, alloc_fe, bg_blkno,
&group_bh);
if (status < 0) {
mlog(ML_ERROR, "read group %llu failed %d\n", bg_blkno, status);
goto bail;
}
group = (struct ocfs2_group_desc *) group_bh->b_data;
*res = ocfs2_test_bit(bit, (unsigned long *)group->bg_bitmap);
bail:
brelse(group_bh);
mlog_exit(status);
return status;
}
/*
* Test if the bit representing this inode (blkno) is set in the
* suballocator.
*
* On success, 0 is returned and *res is 1 for SET; 0 otherwise.
*
* In the event of failure, a negative value is returned and *res is
* meaningless.
*
* Callers must make sure to hold nfs_sync_lock to prevent
* ocfs2_delete_inode() on another node from accessing the same
* suballocator concurrently.
*/
int ocfs2_test_inode_bit(struct ocfs2_super *osb, u64 blkno, int *res)
{
int status;
u16 suballoc_bit = 0, suballoc_slot = 0;
struct inode *inode_alloc_inode;
struct buffer_head *alloc_bh = NULL;
mlog_entry("blkno: %llu", blkno);
status = ocfs2_get_suballoc_slot_bit(osb, blkno, &suballoc_slot,
&suballoc_bit);
if (status < 0) {
mlog(ML_ERROR, "get alloc slot and bit failed %d\n", status);
goto bail;
}
inode_alloc_inode =
ocfs2_get_system_file_inode(osb, INODE_ALLOC_SYSTEM_INODE,
suballoc_slot);
if (!inode_alloc_inode) {
/* the error code could be inaccurate, but we are not able to
* get the correct one. */
status = -EINVAL;
mlog(ML_ERROR, "unable to get alloc inode in slot %u\n",
(u32)suballoc_slot);
goto bail;
}
mutex_lock(&inode_alloc_inode->i_mutex);
status = ocfs2_inode_lock(inode_alloc_inode, &alloc_bh, 0);
if (status < 0) {
mutex_unlock(&inode_alloc_inode->i_mutex);
mlog(ML_ERROR, "lock on alloc inode on slot %u failed %d\n",
(u32)suballoc_slot, status);
goto bail;
}
status = ocfs2_test_suballoc_bit(osb, inode_alloc_inode, alloc_bh,
blkno, suballoc_bit, res);
if (status < 0)
mlog(ML_ERROR, "test suballoc bit failed %d\n", status);
ocfs2_inode_unlock(inode_alloc_inode, 0);
mutex_unlock(&inode_alloc_inode->i_mutex);
iput(inode_alloc_inode);
brelse(alloc_bh);
bail:
mlog_exit(status);
return status;
}