android_kernel_xiaomi_sm8350/include/asm-i386/paravirt.h
Jeremy Fitzhardinge 4cdd9c8931 [PATCH] i386: PARAVIRT: drop unused ptep_get_and_clear
In shadow mode hypervisors, ptep_get_and_clear achieves the desired
purpose of keeping the shadows in sync by issuing a native_get_and_clear,
followed by a call to pte_update, which indicates the PTE has been
modified.

Direct mode hypervisors (Xen) have no need for this anyway, and will trap
the update using writable pagetables.

This means no hypervisor makes use of ptep_get_and_clear; there is no
reason to have it in the paravirt-ops structure.  Change confusing
terminology about raw vs. native functions into consistent use of
native_pte_xxx for operations which do not invoke paravirt-ops.

Signed-off-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: Andi Kleen <ak@suse.de>
2007-05-02 19:27:15 +02:00

1080 lines
29 KiB
C

#ifndef __ASM_PARAVIRT_H
#define __ASM_PARAVIRT_H
/* Various instructions on x86 need to be replaced for
* para-virtualization: those hooks are defined here. */
#ifdef CONFIG_PARAVIRT
#include <asm/page.h>
/* Bitmask of what can be clobbered: usually at least eax. */
#define CLBR_NONE 0x0
#define CLBR_EAX 0x1
#define CLBR_ECX 0x2
#define CLBR_EDX 0x4
#define CLBR_ANY 0x7
#ifndef __ASSEMBLY__
#include <linux/types.h>
#include <linux/cpumask.h>
#include <asm/kmap_types.h>
struct page;
struct thread_struct;
struct Xgt_desc_struct;
struct tss_struct;
struct mm_struct;
struct desc_struct;
/* Lazy mode for batching updates / context switch */
enum paravirt_lazy_mode {
PARAVIRT_LAZY_NONE = 0,
PARAVIRT_LAZY_MMU = 1,
PARAVIRT_LAZY_CPU = 2,
PARAVIRT_LAZY_FLUSH = 3,
};
struct paravirt_ops
{
unsigned int kernel_rpl;
int shared_kernel_pmd;
int paravirt_enabled;
const char *name;
/*
* Patch may replace one of the defined code sequences with arbitrary
* code, subject to the same register constraints. This generally
* means the code is not free to clobber any registers other than EAX.
* The patch function should return the number of bytes of code
* generated, as we nop pad the rest in generic code.
*/
unsigned (*patch)(u8 type, u16 clobber, void *firstinsn, unsigned len);
/* Basic arch-specific setup */
void (*arch_setup)(void);
char *(*memory_setup)(void);
void (*init_IRQ)(void);
void (*time_init)(void);
/*
* Called before/after init_mm pagetable setup. setup_start
* may reset %cr3, and may pre-install parts of the pagetable;
* pagetable setup is expected to preserve any existing
* mapping.
*/
void (*pagetable_setup_start)(pgd_t *pgd_base);
void (*pagetable_setup_done)(pgd_t *pgd_base);
/* Print a banner to identify the environment */
void (*banner)(void);
/* Set and set time of day */
unsigned long (*get_wallclock)(void);
int (*set_wallclock)(unsigned long);
/* cpuid emulation, mostly so that caps bits can be disabled */
void (*cpuid)(unsigned int *eax, unsigned int *ebx,
unsigned int *ecx, unsigned int *edx);
/* hooks for various privileged instructions */
unsigned long (*get_debugreg)(int regno);
void (*set_debugreg)(int regno, unsigned long value);
void (*clts)(void);
unsigned long (*read_cr0)(void);
void (*write_cr0)(unsigned long);
unsigned long (*read_cr2)(void);
void (*write_cr2)(unsigned long);
unsigned long (*read_cr3)(void);
void (*write_cr3)(unsigned long);
unsigned long (*read_cr4_safe)(void);
unsigned long (*read_cr4)(void);
void (*write_cr4)(unsigned long);
/*
* Get/set interrupt state. save_fl and restore_fl are only
* expected to use X86_EFLAGS_IF; all other bits
* returned from save_fl are undefined, and may be ignored by
* restore_fl.
*/
unsigned long (*save_fl)(void);
void (*restore_fl)(unsigned long);
void (*irq_disable)(void);
void (*irq_enable)(void);
void (*safe_halt)(void);
void (*halt)(void);
void (*wbinvd)(void);
/* MSR, PMC and TSR operations.
err = 0/-EFAULT. wrmsr returns 0/-EFAULT. */
u64 (*read_msr)(unsigned int msr, int *err);
int (*write_msr)(unsigned int msr, u64 val);
u64 (*read_tsc)(void);
u64 (*read_pmc)(void);
u64 (*get_scheduled_cycles)(void);
unsigned long (*get_cpu_khz)(void);
/* Segment descriptor handling */
void (*load_tr_desc)(void);
void (*load_gdt)(const struct Xgt_desc_struct *);
void (*load_idt)(const struct Xgt_desc_struct *);
void (*store_gdt)(struct Xgt_desc_struct *);
void (*store_idt)(struct Xgt_desc_struct *);
void (*set_ldt)(const void *desc, unsigned entries);
unsigned long (*store_tr)(void);
void (*load_tls)(struct thread_struct *t, unsigned int cpu);
void (*write_ldt_entry)(struct desc_struct *,
int entrynum, u32 low, u32 high);
void (*write_gdt_entry)(struct desc_struct *,
int entrynum, u32 low, u32 high);
void (*write_idt_entry)(struct desc_struct *,
int entrynum, u32 low, u32 high);
void (*load_esp0)(struct tss_struct *tss, struct thread_struct *t);
void (*set_iopl_mask)(unsigned mask);
void (*io_delay)(void);
/*
* Hooks for intercepting the creation/use/destruction of an
* mm_struct.
*/
void (*activate_mm)(struct mm_struct *prev,
struct mm_struct *next);
void (*dup_mmap)(struct mm_struct *oldmm,
struct mm_struct *mm);
void (*exit_mmap)(struct mm_struct *mm);
#ifdef CONFIG_X86_LOCAL_APIC
/*
* Direct APIC operations, principally for VMI. Ideally
* these shouldn't be in this interface.
*/
void (*apic_write)(unsigned long reg, unsigned long v);
void (*apic_write_atomic)(unsigned long reg, unsigned long v);
unsigned long (*apic_read)(unsigned long reg);
void (*setup_boot_clock)(void);
void (*setup_secondary_clock)(void);
void (*startup_ipi_hook)(int phys_apicid,
unsigned long start_eip,
unsigned long start_esp);
#endif
/* TLB operations */
void (*flush_tlb_user)(void);
void (*flush_tlb_kernel)(void);
void (*flush_tlb_single)(unsigned long addr);
void (*flush_tlb_others)(const cpumask_t *cpus, struct mm_struct *mm,
unsigned long va);
/* Hooks for allocating/releasing pagetable pages */
void (*alloc_pt)(u32 pfn);
void (*alloc_pd)(u32 pfn);
void (*alloc_pd_clone)(u32 pfn, u32 clonepfn, u32 start, u32 count);
void (*release_pt)(u32 pfn);
void (*release_pd)(u32 pfn);
/* Pagetable manipulation functions */
void (*set_pte)(pte_t *ptep, pte_t pteval);
void (*set_pte_at)(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pteval);
void (*set_pmd)(pmd_t *pmdp, pmd_t pmdval);
void (*pte_update)(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
void (*pte_update_defer)(struct mm_struct *mm,
unsigned long addr, pte_t *ptep);
#ifdef CONFIG_HIGHPTE
void *(*kmap_atomic_pte)(struct page *page, enum km_type type);
#endif
#ifdef CONFIG_X86_PAE
void (*set_pte_atomic)(pte_t *ptep, pte_t pteval);
void (*set_pte_present)(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte);
void (*set_pud)(pud_t *pudp, pud_t pudval);
void (*pte_clear)(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
void (*pmd_clear)(pmd_t *pmdp);
unsigned long long (*pte_val)(pte_t);
unsigned long long (*pmd_val)(pmd_t);
unsigned long long (*pgd_val)(pgd_t);
pte_t (*make_pte)(unsigned long long pte);
pmd_t (*make_pmd)(unsigned long long pmd);
pgd_t (*make_pgd)(unsigned long long pgd);
#else
unsigned long (*pte_val)(pte_t);
unsigned long (*pgd_val)(pgd_t);
pte_t (*make_pte)(unsigned long pte);
pgd_t (*make_pgd)(unsigned long pgd);
#endif
/* Set deferred update mode, used for batching operations. */
void (*set_lazy_mode)(enum paravirt_lazy_mode mode);
/* These two are jmp to, not actually called. */
void (*irq_enable_sysexit)(void);
void (*iret)(void);
};
/* Mark a paravirt probe function. */
#define paravirt_probe(fn) \
static asmlinkage void (*__paravirtprobe_##fn)(void) __attribute_used__ \
__attribute__((__section__(".paravirtprobe"))) = fn
extern struct paravirt_ops paravirt_ops;
#define PARAVIRT_PATCH(x) \
(offsetof(struct paravirt_ops, x) / sizeof(void *))
#define paravirt_type(type) \
[paravirt_typenum] "i" (PARAVIRT_PATCH(type))
#define paravirt_clobber(clobber) \
[paravirt_clobber] "i" (clobber)
/*
* Generate some code, and mark it as patchable by the
* apply_paravirt() alternate instruction patcher.
*/
#define _paravirt_alt(insn_string, type, clobber) \
"771:\n\t" insn_string "\n" "772:\n" \
".pushsection .parainstructions,\"a\"\n" \
" .long 771b\n" \
" .byte " type "\n" \
" .byte 772b-771b\n" \
" .short " clobber "\n" \
".popsection\n"
/* Generate patchable code, with the default asm parameters. */
#define paravirt_alt(insn_string) \
_paravirt_alt(insn_string, "%c[paravirt_typenum]", "%c[paravirt_clobber]")
unsigned paravirt_patch_nop(void);
unsigned paravirt_patch_ignore(unsigned len);
unsigned paravirt_patch_call(void *target, u16 tgt_clobbers,
void *site, u16 site_clobbers,
unsigned len);
unsigned paravirt_patch_jmp(void *target, void *site, unsigned len);
unsigned paravirt_patch_default(u8 type, u16 clobbers, void *site, unsigned len);
unsigned paravirt_patch_insns(void *site, unsigned len,
const char *start, const char *end);
/*
* This generates an indirect call based on the operation type number.
* The type number, computed in PARAVIRT_PATCH, is derived from the
* offset into the paravirt_ops structure, and can therefore be freely
* converted back into a structure offset.
*/
#define PARAVIRT_CALL "call *(paravirt_ops+%c[paravirt_typenum]*4);"
/*
* These macros are intended to wrap calls into a paravirt_ops
* operation, so that they can be later identified and patched at
* runtime.
*
* Normally, a call to a pv_op function is a simple indirect call:
* (paravirt_ops.operations)(args...).
*
* Unfortunately, this is a relatively slow operation for modern CPUs,
* because it cannot necessarily determine what the destination
* address is. In this case, the address is a runtime constant, so at
* the very least we can patch the call to e a simple direct call, or
* ideally, patch an inline implementation into the callsite. (Direct
* calls are essentially free, because the call and return addresses
* are completely predictable.)
*
* These macros rely on the standard gcc "regparm(3)" calling
* convention, in which the first three arguments are placed in %eax,
* %edx, %ecx (in that order), and the remaining arguments are placed
* on the stack. All caller-save registers (eax,edx,ecx) are expected
* to be modified (either clobbered or used for return values).
*
* The call instruction itself is marked by placing its start address
* and size into the .parainstructions section, so that
* apply_paravirt() in arch/i386/kernel/alternative.c can do the
* appropriate patching under the control of the backend paravirt_ops
* implementation.
*
* Unfortunately there's no way to get gcc to generate the args setup
* for the call, and then allow the call itself to be generated by an
* inline asm. Because of this, we must do the complete arg setup and
* return value handling from within these macros. This is fairly
* cumbersome.
*
* There are 5 sets of PVOP_* macros for dealing with 0-4 arguments.
* It could be extended to more arguments, but there would be little
* to be gained from that. For each number of arguments, there are
* the two VCALL and CALL variants for void and non-void functions.
*
* When there is a return value, the invoker of the macro must specify
* the return type. The macro then uses sizeof() on that type to
* determine whether its a 32 or 64 bit value, and places the return
* in the right register(s) (just %eax for 32-bit, and %edx:%eax for
* 64-bit).
*
* 64-bit arguments are passed as a pair of adjacent 32-bit arguments
* in low,high order.
*
* Small structures are passed and returned in registers. The macro
* calling convention can't directly deal with this, so the wrapper
* functions must do this.
*
* These PVOP_* macros are only defined within this header. This
* means that all uses must be wrapped in inline functions. This also
* makes sure the incoming and outgoing types are always correct.
*/
#define __PVOP_CALL(rettype, op, pre, post, ...) \
({ \
rettype __ret; \
unsigned long __eax, __edx, __ecx; \
if (sizeof(rettype) > sizeof(unsigned long)) { \
asm volatile(pre \
paravirt_alt(PARAVIRT_CALL) \
post \
: "=a" (__eax), "=d" (__edx), \
"=c" (__ecx) \
: paravirt_type(op), \
paravirt_clobber(CLBR_ANY), \
##__VA_ARGS__ \
: "memory", "cc"); \
__ret = (rettype)((((u64)__edx) << 32) | __eax); \
} else { \
asm volatile(pre \
paravirt_alt(PARAVIRT_CALL) \
post \
: "=a" (__eax), "=d" (__edx), \
"=c" (__ecx) \
: paravirt_type(op), \
paravirt_clobber(CLBR_ANY), \
##__VA_ARGS__ \
: "memory", "cc"); \
__ret = (rettype)__eax; \
} \
__ret; \
})
#define __PVOP_VCALL(op, pre, post, ...) \
({ \
unsigned long __eax, __edx, __ecx; \
asm volatile(pre \
paravirt_alt(PARAVIRT_CALL) \
post \
: "=a" (__eax), "=d" (__edx), "=c" (__ecx) \
: paravirt_type(op), \
paravirt_clobber(CLBR_ANY), \
##__VA_ARGS__ \
: "memory", "cc"); \
})
#define PVOP_CALL0(rettype, op) \
__PVOP_CALL(rettype, op, "", "")
#define PVOP_VCALL0(op) \
__PVOP_VCALL(op, "", "")
#define PVOP_CALL1(rettype, op, arg1) \
__PVOP_CALL(rettype, op, "", "", "0" ((u32)(arg1)))
#define PVOP_VCALL1(op, arg1) \
__PVOP_VCALL(op, "", "", "0" ((u32)(arg1)))
#define PVOP_CALL2(rettype, op, arg1, arg2) \
__PVOP_CALL(rettype, op, "", "", "0" ((u32)(arg1)), "1" ((u32)(arg2)))
#define PVOP_VCALL2(op, arg1, arg2) \
__PVOP_VCALL(op, "", "", "0" ((u32)(arg1)), "1" ((u32)(arg2)))
#define PVOP_CALL3(rettype, op, arg1, arg2, arg3) \
__PVOP_CALL(rettype, op, "", "", "0" ((u32)(arg1)), \
"1"((u32)(arg2)), "2"((u32)(arg3)))
#define PVOP_VCALL3(op, arg1, arg2, arg3) \
__PVOP_VCALL(op, "", "", "0" ((u32)(arg1)), "1"((u32)(arg2)), \
"2"((u32)(arg3)))
#define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \
__PVOP_CALL(rettype, op, \
"push %[_arg4];", "lea 4(%%esp),%%esp;", \
"0" ((u32)(arg1)), "1" ((u32)(arg2)), \
"2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4)))
#define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \
__PVOP_VCALL(op, \
"push %[_arg4];", "lea 4(%%esp),%%esp;", \
"0" ((u32)(arg1)), "1" ((u32)(arg2)), \
"2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4)))
static inline int paravirt_enabled(void)
{
return paravirt_ops.paravirt_enabled;
}
static inline void load_esp0(struct tss_struct *tss,
struct thread_struct *thread)
{
PVOP_VCALL2(load_esp0, tss, thread);
}
#define ARCH_SETUP paravirt_ops.arch_setup();
static inline unsigned long get_wallclock(void)
{
return PVOP_CALL0(unsigned long, get_wallclock);
}
static inline int set_wallclock(unsigned long nowtime)
{
return PVOP_CALL1(int, set_wallclock, nowtime);
}
static inline void (*choose_time_init(void))(void)
{
return paravirt_ops.time_init;
}
/* The paravirtualized CPUID instruction. */
static inline void __cpuid(unsigned int *eax, unsigned int *ebx,
unsigned int *ecx, unsigned int *edx)
{
PVOP_VCALL4(cpuid, eax, ebx, ecx, edx);
}
/*
* These special macros can be used to get or set a debugging register
*/
static inline unsigned long paravirt_get_debugreg(int reg)
{
return PVOP_CALL1(unsigned long, get_debugreg, reg);
}
#define get_debugreg(var, reg) var = paravirt_get_debugreg(reg)
static inline void set_debugreg(unsigned long val, int reg)
{
PVOP_VCALL2(set_debugreg, reg, val);
}
static inline void clts(void)
{
PVOP_VCALL0(clts);
}
static inline unsigned long read_cr0(void)
{
return PVOP_CALL0(unsigned long, read_cr0);
}
static inline void write_cr0(unsigned long x)
{
PVOP_VCALL1(write_cr0, x);
}
static inline unsigned long read_cr2(void)
{
return PVOP_CALL0(unsigned long, read_cr2);
}
static inline void write_cr2(unsigned long x)
{
PVOP_VCALL1(write_cr2, x);
}
static inline unsigned long read_cr3(void)
{
return PVOP_CALL0(unsigned long, read_cr3);
}
static inline void write_cr3(unsigned long x)
{
PVOP_VCALL1(write_cr3, x);
}
static inline unsigned long read_cr4(void)
{
return PVOP_CALL0(unsigned long, read_cr4);
}
static inline unsigned long read_cr4_safe(void)
{
return PVOP_CALL0(unsigned long, read_cr4_safe);
}
static inline void write_cr4(unsigned long x)
{
PVOP_VCALL1(write_cr4, x);
}
static inline void raw_safe_halt(void)
{
PVOP_VCALL0(safe_halt);
}
static inline void halt(void)
{
PVOP_VCALL0(safe_halt);
}
static inline void wbinvd(void)
{
PVOP_VCALL0(wbinvd);
}
#define get_kernel_rpl() (paravirt_ops.kernel_rpl)
static inline u64 paravirt_read_msr(unsigned msr, int *err)
{
return PVOP_CALL2(u64, read_msr, msr, err);
}
static inline int paravirt_write_msr(unsigned msr, unsigned low, unsigned high)
{
return PVOP_CALL3(int, write_msr, msr, low, high);
}
/* These should all do BUG_ON(_err), but our headers are too tangled. */
#define rdmsr(msr,val1,val2) do { \
int _err; \
u64 _l = paravirt_read_msr(msr, &_err); \
val1 = (u32)_l; \
val2 = _l >> 32; \
} while(0)
#define wrmsr(msr,val1,val2) do { \
paravirt_write_msr(msr, val1, val2); \
} while(0)
#define rdmsrl(msr,val) do { \
int _err; \
val = paravirt_read_msr(msr, &_err); \
} while(0)
#define wrmsrl(msr,val) ((void)paravirt_write_msr(msr, val, 0))
#define wrmsr_safe(msr,a,b) paravirt_write_msr(msr, a, b)
/* rdmsr with exception handling */
#define rdmsr_safe(msr,a,b) ({ \
int _err; \
u64 _l = paravirt_read_msr(msr, &_err); \
(*a) = (u32)_l; \
(*b) = _l >> 32; \
_err; })
static inline u64 paravirt_read_tsc(void)
{
return PVOP_CALL0(u64, read_tsc);
}
#define rdtsc(low,high) do { \
u64 _l = paravirt_read_tsc(); \
low = (u32)_l; \
high = _l >> 32; \
} while(0)
#define rdtscl(low) do { \
u64 _l = paravirt_read_tsc(); \
low = (int)_l; \
} while(0)
#define rdtscll(val) (val = paravirt_read_tsc())
#define get_scheduled_cycles(val) (val = paravirt_ops.get_scheduled_cycles())
#define calculate_cpu_khz() (paravirt_ops.get_cpu_khz())
#define write_tsc(val1,val2) wrmsr(0x10, val1, val2)
static inline unsigned long long paravirt_read_pmc(int counter)
{
return PVOP_CALL1(u64, read_pmc, counter);
}
#define rdpmc(counter,low,high) do { \
u64 _l = paravirt_read_pmc(counter); \
low = (u32)_l; \
high = _l >> 32; \
} while(0)
static inline void load_TR_desc(void)
{
PVOP_VCALL0(load_tr_desc);
}
static inline void load_gdt(const struct Xgt_desc_struct *dtr)
{
PVOP_VCALL1(load_gdt, dtr);
}
static inline void load_idt(const struct Xgt_desc_struct *dtr)
{
PVOP_VCALL1(load_idt, dtr);
}
static inline void set_ldt(const void *addr, unsigned entries)
{
PVOP_VCALL2(set_ldt, addr, entries);
}
static inline void store_gdt(struct Xgt_desc_struct *dtr)
{
PVOP_VCALL1(store_gdt, dtr);
}
static inline void store_idt(struct Xgt_desc_struct *dtr)
{
PVOP_VCALL1(store_idt, dtr);
}
static inline unsigned long paravirt_store_tr(void)
{
return PVOP_CALL0(unsigned long, store_tr);
}
#define store_tr(tr) ((tr) = paravirt_store_tr())
static inline void load_TLS(struct thread_struct *t, unsigned cpu)
{
PVOP_VCALL2(load_tls, t, cpu);
}
static inline void write_ldt_entry(void *dt, int entry, u32 low, u32 high)
{
PVOP_VCALL4(write_ldt_entry, dt, entry, low, high);
}
static inline void write_gdt_entry(void *dt, int entry, u32 low, u32 high)
{
PVOP_VCALL4(write_gdt_entry, dt, entry, low, high);
}
static inline void write_idt_entry(void *dt, int entry, u32 low, u32 high)
{
PVOP_VCALL4(write_idt_entry, dt, entry, low, high);
}
static inline void set_iopl_mask(unsigned mask)
{
PVOP_VCALL1(set_iopl_mask, mask);
}
/* The paravirtualized I/O functions */
static inline void slow_down_io(void) {
paravirt_ops.io_delay();
#ifdef REALLY_SLOW_IO
paravirt_ops.io_delay();
paravirt_ops.io_delay();
paravirt_ops.io_delay();
#endif
}
#ifdef CONFIG_X86_LOCAL_APIC
/*
* Basic functions accessing APICs.
*/
static inline void apic_write(unsigned long reg, unsigned long v)
{
PVOP_VCALL2(apic_write, reg, v);
}
static inline void apic_write_atomic(unsigned long reg, unsigned long v)
{
PVOP_VCALL2(apic_write_atomic, reg, v);
}
static inline unsigned long apic_read(unsigned long reg)
{
return PVOP_CALL1(unsigned long, apic_read, reg);
}
static inline void setup_boot_clock(void)
{
PVOP_VCALL0(setup_boot_clock);
}
static inline void setup_secondary_clock(void)
{
PVOP_VCALL0(setup_secondary_clock);
}
#endif
static inline void paravirt_pagetable_setup_start(pgd_t *base)
{
if (paravirt_ops.pagetable_setup_start)
(*paravirt_ops.pagetable_setup_start)(base);
}
static inline void paravirt_pagetable_setup_done(pgd_t *base)
{
if (paravirt_ops.pagetable_setup_done)
(*paravirt_ops.pagetable_setup_done)(base);
}
#ifdef CONFIG_SMP
static inline void startup_ipi_hook(int phys_apicid, unsigned long start_eip,
unsigned long start_esp)
{
PVOP_VCALL3(startup_ipi_hook, phys_apicid, start_eip, start_esp);
}
#endif
static inline void paravirt_activate_mm(struct mm_struct *prev,
struct mm_struct *next)
{
PVOP_VCALL2(activate_mm, prev, next);
}
static inline void arch_dup_mmap(struct mm_struct *oldmm,
struct mm_struct *mm)
{
PVOP_VCALL2(dup_mmap, oldmm, mm);
}
static inline void arch_exit_mmap(struct mm_struct *mm)
{
PVOP_VCALL1(exit_mmap, mm);
}
static inline void __flush_tlb(void)
{
PVOP_VCALL0(flush_tlb_user);
}
static inline void __flush_tlb_global(void)
{
PVOP_VCALL0(flush_tlb_kernel);
}
static inline void __flush_tlb_single(unsigned long addr)
{
PVOP_VCALL1(flush_tlb_single, addr);
}
static inline void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
unsigned long va)
{
PVOP_VCALL3(flush_tlb_others, &cpumask, mm, va);
}
static inline void paravirt_alloc_pt(unsigned pfn)
{
PVOP_VCALL1(alloc_pt, pfn);
}
static inline void paravirt_release_pt(unsigned pfn)
{
PVOP_VCALL1(release_pt, pfn);
}
static inline void paravirt_alloc_pd(unsigned pfn)
{
PVOP_VCALL1(alloc_pd, pfn);
}
static inline void paravirt_alloc_pd_clone(unsigned pfn, unsigned clonepfn,
unsigned start, unsigned count)
{
PVOP_VCALL4(alloc_pd_clone, pfn, clonepfn, start, count);
}
static inline void paravirt_release_pd(unsigned pfn)
{
PVOP_VCALL1(release_pd, pfn);
}
#ifdef CONFIG_HIGHPTE
static inline void *kmap_atomic_pte(struct page *page, enum km_type type)
{
unsigned long ret;
ret = PVOP_CALL2(unsigned long, kmap_atomic_pte, page, type);
return (void *)ret;
}
#endif
static inline void pte_update(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
PVOP_VCALL3(pte_update, mm, addr, ptep);
}
static inline void pte_update_defer(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
PVOP_VCALL3(pte_update_defer, mm, addr, ptep);
}
#ifdef CONFIG_X86_PAE
static inline pte_t __pte(unsigned long long val)
{
unsigned long long ret = PVOP_CALL2(unsigned long long, make_pte,
val, val >> 32);
return (pte_t) { ret, ret >> 32 };
}
static inline pmd_t __pmd(unsigned long long val)
{
return (pmd_t) { PVOP_CALL2(unsigned long long, make_pmd, val, val >> 32) };
}
static inline pgd_t __pgd(unsigned long long val)
{
return (pgd_t) { PVOP_CALL2(unsigned long long, make_pgd, val, val >> 32) };
}
static inline unsigned long long pte_val(pte_t x)
{
return PVOP_CALL2(unsigned long long, pte_val, x.pte_low, x.pte_high);
}
static inline unsigned long long pmd_val(pmd_t x)
{
return PVOP_CALL2(unsigned long long, pmd_val, x.pmd, x.pmd >> 32);
}
static inline unsigned long long pgd_val(pgd_t x)
{
return PVOP_CALL2(unsigned long long, pgd_val, x.pgd, x.pgd >> 32);
}
static inline void set_pte(pte_t *ptep, pte_t pteval)
{
PVOP_VCALL3(set_pte, ptep, pteval.pte_low, pteval.pte_high);
}
static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pteval)
{
/* 5 arg words */
paravirt_ops.set_pte_at(mm, addr, ptep, pteval);
}
static inline void set_pte_atomic(pte_t *ptep, pte_t pteval)
{
PVOP_VCALL3(set_pte_atomic, ptep, pteval.pte_low, pteval.pte_high);
}
static inline void set_pte_present(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte)
{
/* 5 arg words */
paravirt_ops.set_pte_present(mm, addr, ptep, pte);
}
static inline void set_pmd(pmd_t *pmdp, pmd_t pmdval)
{
PVOP_VCALL3(set_pmd, pmdp, pmdval.pmd, pmdval.pmd >> 32);
}
static inline void set_pud(pud_t *pudp, pud_t pudval)
{
PVOP_VCALL3(set_pud, pudp, pudval.pgd.pgd, pudval.pgd.pgd >> 32);
}
static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
PVOP_VCALL3(pte_clear, mm, addr, ptep);
}
static inline void pmd_clear(pmd_t *pmdp)
{
PVOP_VCALL1(pmd_clear, pmdp);
}
#else /* !CONFIG_X86_PAE */
static inline pte_t __pte(unsigned long val)
{
return (pte_t) { PVOP_CALL1(unsigned long, make_pte, val) };
}
static inline pgd_t __pgd(unsigned long val)
{
return (pgd_t) { PVOP_CALL1(unsigned long, make_pgd, val) };
}
static inline unsigned long pte_val(pte_t x)
{
return PVOP_CALL1(unsigned long, pte_val, x.pte_low);
}
static inline unsigned long pgd_val(pgd_t x)
{
return PVOP_CALL1(unsigned long, pgd_val, x.pgd);
}
static inline void set_pte(pte_t *ptep, pte_t pteval)
{
PVOP_VCALL2(set_pte, ptep, pteval.pte_low);
}
static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pteval)
{
PVOP_VCALL4(set_pte_at, mm, addr, ptep, pteval.pte_low);
}
static inline void set_pmd(pmd_t *pmdp, pmd_t pmdval)
{
PVOP_VCALL2(set_pmd, pmdp, pmdval.pud.pgd.pgd);
}
#endif /* CONFIG_X86_PAE */
#define __HAVE_ARCH_ENTER_LAZY_CPU_MODE
static inline void arch_enter_lazy_cpu_mode(void)
{
PVOP_VCALL1(set_lazy_mode, PARAVIRT_LAZY_CPU);
}
static inline void arch_leave_lazy_cpu_mode(void)
{
PVOP_VCALL1(set_lazy_mode, PARAVIRT_LAZY_NONE);
}
static inline void arch_flush_lazy_cpu_mode(void)
{
PVOP_VCALL1(set_lazy_mode, PARAVIRT_LAZY_FLUSH);
}
#define __HAVE_ARCH_ENTER_LAZY_MMU_MODE
static inline void arch_enter_lazy_mmu_mode(void)
{
PVOP_VCALL1(set_lazy_mode, PARAVIRT_LAZY_MMU);
}
static inline void arch_leave_lazy_mmu_mode(void)
{
PVOP_VCALL1(set_lazy_mode, PARAVIRT_LAZY_NONE);
}
static inline void arch_flush_lazy_mmu_mode(void)
{
PVOP_VCALL1(set_lazy_mode, PARAVIRT_LAZY_FLUSH);
}
void _paravirt_nop(void);
#define paravirt_nop ((void *)_paravirt_nop)
/* These all sit in the .parainstructions section to tell us what to patch. */
struct paravirt_patch_site {
u8 *instr; /* original instructions */
u8 instrtype; /* type of this instruction */
u8 len; /* length of original instruction */
u16 clobbers; /* what registers you may clobber */
};
extern struct paravirt_patch_site __parainstructions[],
__parainstructions_end[];
static inline unsigned long __raw_local_save_flags(void)
{
unsigned long f;
asm volatile(paravirt_alt("pushl %%ecx; pushl %%edx;"
PARAVIRT_CALL
"popl %%edx; popl %%ecx")
: "=a"(f)
: paravirt_type(save_fl),
paravirt_clobber(CLBR_EAX)
: "memory", "cc");
return f;
}
static inline void raw_local_irq_restore(unsigned long f)
{
asm volatile(paravirt_alt("pushl %%ecx; pushl %%edx;"
PARAVIRT_CALL
"popl %%edx; popl %%ecx")
: "=a"(f)
: "0"(f),
paravirt_type(restore_fl),
paravirt_clobber(CLBR_EAX)
: "memory", "cc");
}
static inline void raw_local_irq_disable(void)
{
asm volatile(paravirt_alt("pushl %%ecx; pushl %%edx;"
PARAVIRT_CALL
"popl %%edx; popl %%ecx")
:
: paravirt_type(irq_disable),
paravirt_clobber(CLBR_EAX)
: "memory", "eax", "cc");
}
static inline void raw_local_irq_enable(void)
{
asm volatile(paravirt_alt("pushl %%ecx; pushl %%edx;"
PARAVIRT_CALL
"popl %%edx; popl %%ecx")
:
: paravirt_type(irq_enable),
paravirt_clobber(CLBR_EAX)
: "memory", "eax", "cc");
}
static inline unsigned long __raw_local_irq_save(void)
{
unsigned long f;
f = __raw_local_save_flags();
raw_local_irq_disable();
return f;
}
#define CLI_STRING \
_paravirt_alt("pushl %%ecx; pushl %%edx;" \
"call *paravirt_ops+%c[paravirt_cli_type]*4;" \
"popl %%edx; popl %%ecx", \
"%c[paravirt_cli_type]", "%c[paravirt_clobber]")
#define STI_STRING \
_paravirt_alt("pushl %%ecx; pushl %%edx;" \
"call *paravirt_ops+%c[paravirt_sti_type]*4;" \
"popl %%edx; popl %%ecx", \
"%c[paravirt_sti_type]", "%c[paravirt_clobber]")
#define CLI_STI_CLOBBERS , "%eax"
#define CLI_STI_INPUT_ARGS \
, \
[paravirt_cli_type] "i" (PARAVIRT_PATCH(irq_disable)), \
[paravirt_sti_type] "i" (PARAVIRT_PATCH(irq_enable)), \
paravirt_clobber(CLBR_EAX)
/* Make sure as little as possible of this mess escapes. */
#undef PARAVIRT_CALL
#undef __PVOP_CALL
#undef __PVOP_VCALL
#undef PVOP_VCALL0
#undef PVOP_CALL0
#undef PVOP_VCALL1
#undef PVOP_CALL1
#undef PVOP_VCALL2
#undef PVOP_CALL2
#undef PVOP_VCALL3
#undef PVOP_CALL3
#undef PVOP_VCALL4
#undef PVOP_CALL4
#else /* __ASSEMBLY__ */
#define PARA_PATCH(off) ((off) / 4)
#define PARA_SITE(ptype, clobbers, ops) \
771:; \
ops; \
772:; \
.pushsection .parainstructions,"a"; \
.long 771b; \
.byte ptype; \
.byte 772b-771b; \
.short clobbers; \
.popsection
#define INTERRUPT_RETURN \
PARA_SITE(PARA_PATCH(PARAVIRT_iret), CLBR_NONE, \
jmp *%cs:paravirt_ops+PARAVIRT_iret)
#define DISABLE_INTERRUPTS(clobbers) \
PARA_SITE(PARA_PATCH(PARAVIRT_irq_disable), clobbers, \
pushl %eax; pushl %ecx; pushl %edx; \
call *%cs:paravirt_ops+PARAVIRT_irq_disable; \
popl %edx; popl %ecx; popl %eax) \
#define ENABLE_INTERRUPTS(clobbers) \
PARA_SITE(PARA_PATCH(PARAVIRT_irq_enable), clobbers, \
pushl %eax; pushl %ecx; pushl %edx; \
call *%cs:paravirt_ops+PARAVIRT_irq_enable; \
popl %edx; popl %ecx; popl %eax)
#define ENABLE_INTERRUPTS_SYSEXIT \
PARA_SITE(PARA_PATCH(PARAVIRT_irq_enable_sysexit), CLBR_NONE, \
jmp *%cs:paravirt_ops+PARAVIRT_irq_enable_sysexit)
#define GET_CR0_INTO_EAX \
push %ecx; push %edx; \
call *paravirt_ops+PARAVIRT_read_cr0; \
pop %edx; pop %ecx
#endif /* __ASSEMBLY__ */
#endif /* CONFIG_PARAVIRT */
#endif /* __ASM_PARAVIRT_H */