android_kernel_xiaomi_sm8350/fs/xfs/linux-2.6/xfs_super.c
Alexey Dobriyan 51cc50685a SL*B: drop kmem cache argument from constructor
Kmem cache passed to constructor is only needed for constructors that are
themselves multiplexeres.  Nobody uses this "feature", nor does anybody uses
passed kmem cache in non-trivial way, so pass only pointer to object.

Non-trivial places are:
	arch/powerpc/mm/init_64.c
	arch/powerpc/mm/hugetlbpage.c

This is flag day, yes.

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Matt Mackall <mpm@selenic.com>
[akpm@linux-foundation.org: fix arch/powerpc/mm/hugetlbpage.c]
[akpm@linux-foundation.org: fix mm/slab.c]
[akpm@linux-foundation.org: fix ubifs]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 12:00:07 -07:00

1489 lines
38 KiB
C

/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_clnt.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_alloc.h"
#include "xfs_dmapi.h"
#include "xfs_quota.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_ialloc.h"
#include "xfs_bmap.h"
#include "xfs_rtalloc.h"
#include "xfs_error.h"
#include "xfs_itable.h"
#include "xfs_fsops.h"
#include "xfs_rw.h"
#include "xfs_acl.h"
#include "xfs_attr.h"
#include "xfs_buf_item.h"
#include "xfs_utils.h"
#include "xfs_vnodeops.h"
#include "xfs_vfsops.h"
#include "xfs_version.h"
#include "xfs_log_priv.h"
#include "xfs_trans_priv.h"
#include <linux/namei.h>
#include <linux/init.h>
#include <linux/mount.h>
#include <linux/mempool.h>
#include <linux/writeback.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
static struct quotactl_ops xfs_quotactl_operations;
static struct super_operations xfs_super_operations;
static kmem_zone_t *xfs_vnode_zone;
static kmem_zone_t *xfs_ioend_zone;
mempool_t *xfs_ioend_pool;
STATIC struct xfs_mount_args *
xfs_args_allocate(
struct super_block *sb,
int silent)
{
struct xfs_mount_args *args;
args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
args->logbufs = args->logbufsize = -1;
strncpy(args->fsname, sb->s_id, MAXNAMELEN);
/* Copy the already-parsed mount(2) flags we're interested in */
if (sb->s_flags & MS_DIRSYNC)
args->flags |= XFSMNT_DIRSYNC;
if (sb->s_flags & MS_SYNCHRONOUS)
args->flags |= XFSMNT_WSYNC;
if (silent)
args->flags |= XFSMNT_QUIET;
args->flags |= XFSMNT_32BITINODES;
return args;
}
#define MNTOPT_LOGBUFS "logbufs" /* number of XFS log buffers */
#define MNTOPT_LOGBSIZE "logbsize" /* size of XFS log buffers */
#define MNTOPT_LOGDEV "logdev" /* log device */
#define MNTOPT_RTDEV "rtdev" /* realtime I/O device */
#define MNTOPT_BIOSIZE "biosize" /* log2 of preferred buffered io size */
#define MNTOPT_WSYNC "wsync" /* safe-mode nfs compatible mount */
#define MNTOPT_INO64 "ino64" /* force inodes into 64-bit range */
#define MNTOPT_NOALIGN "noalign" /* turn off stripe alignment */
#define MNTOPT_SWALLOC "swalloc" /* turn on stripe width allocation */
#define MNTOPT_SUNIT "sunit" /* data volume stripe unit */
#define MNTOPT_SWIDTH "swidth" /* data volume stripe width */
#define MNTOPT_NOUUID "nouuid" /* ignore filesystem UUID */
#define MNTOPT_MTPT "mtpt" /* filesystem mount point */
#define MNTOPT_GRPID "grpid" /* group-ID from parent directory */
#define MNTOPT_NOGRPID "nogrpid" /* group-ID from current process */
#define MNTOPT_BSDGROUPS "bsdgroups" /* group-ID from parent directory */
#define MNTOPT_SYSVGROUPS "sysvgroups" /* group-ID from current process */
#define MNTOPT_ALLOCSIZE "allocsize" /* preferred allocation size */
#define MNTOPT_NORECOVERY "norecovery" /* don't run XFS recovery */
#define MNTOPT_BARRIER "barrier" /* use writer barriers for log write and
* unwritten extent conversion */
#define MNTOPT_NOBARRIER "nobarrier" /* .. disable */
#define MNTOPT_OSYNCISOSYNC "osyncisosync" /* o_sync is REALLY o_sync */
#define MNTOPT_64BITINODE "inode64" /* inodes can be allocated anywhere */
#define MNTOPT_IKEEP "ikeep" /* do not free empty inode clusters */
#define MNTOPT_NOIKEEP "noikeep" /* free empty inode clusters */
#define MNTOPT_LARGEIO "largeio" /* report large I/O sizes in stat() */
#define MNTOPT_NOLARGEIO "nolargeio" /* do not report large I/O sizes
* in stat(). */
#define MNTOPT_ATTR2 "attr2" /* do use attr2 attribute format */
#define MNTOPT_NOATTR2 "noattr2" /* do not use attr2 attribute format */
#define MNTOPT_FILESTREAM "filestreams" /* use filestreams allocator */
#define MNTOPT_QUOTA "quota" /* disk quotas (user) */
#define MNTOPT_NOQUOTA "noquota" /* no quotas */
#define MNTOPT_USRQUOTA "usrquota" /* user quota enabled */
#define MNTOPT_GRPQUOTA "grpquota" /* group quota enabled */
#define MNTOPT_PRJQUOTA "prjquota" /* project quota enabled */
#define MNTOPT_UQUOTA "uquota" /* user quota (IRIX variant) */
#define MNTOPT_GQUOTA "gquota" /* group quota (IRIX variant) */
#define MNTOPT_PQUOTA "pquota" /* project quota (IRIX variant) */
#define MNTOPT_UQUOTANOENF "uqnoenforce"/* user quota limit enforcement */
#define MNTOPT_GQUOTANOENF "gqnoenforce"/* group quota limit enforcement */
#define MNTOPT_PQUOTANOENF "pqnoenforce"/* project quota limit enforcement */
#define MNTOPT_QUOTANOENF "qnoenforce" /* same as uqnoenforce */
#define MNTOPT_DMAPI "dmapi" /* DMI enabled (DMAPI / XDSM) */
#define MNTOPT_XDSM "xdsm" /* DMI enabled (DMAPI / XDSM) */
#define MNTOPT_DMI "dmi" /* DMI enabled (DMAPI / XDSM) */
STATIC unsigned long
suffix_strtoul(char *s, char **endp, unsigned int base)
{
int last, shift_left_factor = 0;
char *value = s;
last = strlen(value) - 1;
if (value[last] == 'K' || value[last] == 'k') {
shift_left_factor = 10;
value[last] = '\0';
}
if (value[last] == 'M' || value[last] == 'm') {
shift_left_factor = 20;
value[last] = '\0';
}
if (value[last] == 'G' || value[last] == 'g') {
shift_left_factor = 30;
value[last] = '\0';
}
return simple_strtoul((const char *)s, endp, base) << shift_left_factor;
}
STATIC int
xfs_parseargs(
struct xfs_mount *mp,
char *options,
struct xfs_mount_args *args,
int update)
{
char *this_char, *value, *eov;
int dsunit, dswidth, vol_dsunit, vol_dswidth;
int iosize;
int dmapi_implies_ikeep = 1;
args->flags |= XFSMNT_BARRIER;
args->flags2 |= XFSMNT2_COMPAT_IOSIZE;
if (!options)
goto done;
iosize = dsunit = dswidth = vol_dsunit = vol_dswidth = 0;
while ((this_char = strsep(&options, ",")) != NULL) {
if (!*this_char)
continue;
if ((value = strchr(this_char, '=')) != NULL)
*value++ = 0;
if (!strcmp(this_char, MNTOPT_LOGBUFS)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
args->logbufs = simple_strtoul(value, &eov, 10);
} else if (!strcmp(this_char, MNTOPT_LOGBSIZE)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
args->logbufsize = suffix_strtoul(value, &eov, 10);
} else if (!strcmp(this_char, MNTOPT_LOGDEV)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
strncpy(args->logname, value, MAXNAMELEN);
} else if (!strcmp(this_char, MNTOPT_MTPT)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
strncpy(args->mtpt, value, MAXNAMELEN);
} else if (!strcmp(this_char, MNTOPT_RTDEV)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
strncpy(args->rtname, value, MAXNAMELEN);
} else if (!strcmp(this_char, MNTOPT_BIOSIZE)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
iosize = simple_strtoul(value, &eov, 10);
args->flags |= XFSMNT_IOSIZE;
args->iosizelog = (uint8_t) iosize;
} else if (!strcmp(this_char, MNTOPT_ALLOCSIZE)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
iosize = suffix_strtoul(value, &eov, 10);
args->flags |= XFSMNT_IOSIZE;
args->iosizelog = ffs(iosize) - 1;
} else if (!strcmp(this_char, MNTOPT_GRPID) ||
!strcmp(this_char, MNTOPT_BSDGROUPS)) {
mp->m_flags |= XFS_MOUNT_GRPID;
} else if (!strcmp(this_char, MNTOPT_NOGRPID) ||
!strcmp(this_char, MNTOPT_SYSVGROUPS)) {
mp->m_flags &= ~XFS_MOUNT_GRPID;
} else if (!strcmp(this_char, MNTOPT_WSYNC)) {
args->flags |= XFSMNT_WSYNC;
} else if (!strcmp(this_char, MNTOPT_OSYNCISOSYNC)) {
args->flags |= XFSMNT_OSYNCISOSYNC;
} else if (!strcmp(this_char, MNTOPT_NORECOVERY)) {
args->flags |= XFSMNT_NORECOVERY;
} else if (!strcmp(this_char, MNTOPT_INO64)) {
args->flags |= XFSMNT_INO64;
#if !XFS_BIG_INUMS
cmn_err(CE_WARN,
"XFS: %s option not allowed on this system",
this_char);
return EINVAL;
#endif
} else if (!strcmp(this_char, MNTOPT_NOALIGN)) {
args->flags |= XFSMNT_NOALIGN;
} else if (!strcmp(this_char, MNTOPT_SWALLOC)) {
args->flags |= XFSMNT_SWALLOC;
} else if (!strcmp(this_char, MNTOPT_SUNIT)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
dsunit = simple_strtoul(value, &eov, 10);
} else if (!strcmp(this_char, MNTOPT_SWIDTH)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
dswidth = simple_strtoul(value, &eov, 10);
} else if (!strcmp(this_char, MNTOPT_64BITINODE)) {
args->flags &= ~XFSMNT_32BITINODES;
#if !XFS_BIG_INUMS
cmn_err(CE_WARN,
"XFS: %s option not allowed on this system",
this_char);
return EINVAL;
#endif
} else if (!strcmp(this_char, MNTOPT_NOUUID)) {
args->flags |= XFSMNT_NOUUID;
} else if (!strcmp(this_char, MNTOPT_BARRIER)) {
args->flags |= XFSMNT_BARRIER;
} else if (!strcmp(this_char, MNTOPT_NOBARRIER)) {
args->flags &= ~XFSMNT_BARRIER;
} else if (!strcmp(this_char, MNTOPT_IKEEP)) {
args->flags |= XFSMNT_IKEEP;
} else if (!strcmp(this_char, MNTOPT_NOIKEEP)) {
dmapi_implies_ikeep = 0;
args->flags &= ~XFSMNT_IKEEP;
} else if (!strcmp(this_char, MNTOPT_LARGEIO)) {
args->flags2 &= ~XFSMNT2_COMPAT_IOSIZE;
} else if (!strcmp(this_char, MNTOPT_NOLARGEIO)) {
args->flags2 |= XFSMNT2_COMPAT_IOSIZE;
} else if (!strcmp(this_char, MNTOPT_ATTR2)) {
args->flags |= XFSMNT_ATTR2;
} else if (!strcmp(this_char, MNTOPT_NOATTR2)) {
args->flags &= ~XFSMNT_ATTR2;
} else if (!strcmp(this_char, MNTOPT_FILESTREAM)) {
args->flags2 |= XFSMNT2_FILESTREAMS;
} else if (!strcmp(this_char, MNTOPT_NOQUOTA)) {
args->flags &= ~(XFSMNT_UQUOTAENF|XFSMNT_UQUOTA);
args->flags &= ~(XFSMNT_GQUOTAENF|XFSMNT_GQUOTA);
} else if (!strcmp(this_char, MNTOPT_QUOTA) ||
!strcmp(this_char, MNTOPT_UQUOTA) ||
!strcmp(this_char, MNTOPT_USRQUOTA)) {
args->flags |= XFSMNT_UQUOTA | XFSMNT_UQUOTAENF;
} else if (!strcmp(this_char, MNTOPT_QUOTANOENF) ||
!strcmp(this_char, MNTOPT_UQUOTANOENF)) {
args->flags |= XFSMNT_UQUOTA;
args->flags &= ~XFSMNT_UQUOTAENF;
} else if (!strcmp(this_char, MNTOPT_PQUOTA) ||
!strcmp(this_char, MNTOPT_PRJQUOTA)) {
args->flags |= XFSMNT_PQUOTA | XFSMNT_PQUOTAENF;
} else if (!strcmp(this_char, MNTOPT_PQUOTANOENF)) {
args->flags |= XFSMNT_PQUOTA;
args->flags &= ~XFSMNT_PQUOTAENF;
} else if (!strcmp(this_char, MNTOPT_GQUOTA) ||
!strcmp(this_char, MNTOPT_GRPQUOTA)) {
args->flags |= XFSMNT_GQUOTA | XFSMNT_GQUOTAENF;
} else if (!strcmp(this_char, MNTOPT_GQUOTANOENF)) {
args->flags |= XFSMNT_GQUOTA;
args->flags &= ~XFSMNT_GQUOTAENF;
} else if (!strcmp(this_char, MNTOPT_DMAPI)) {
args->flags |= XFSMNT_DMAPI;
} else if (!strcmp(this_char, MNTOPT_XDSM)) {
args->flags |= XFSMNT_DMAPI;
} else if (!strcmp(this_char, MNTOPT_DMI)) {
args->flags |= XFSMNT_DMAPI;
} else if (!strcmp(this_char, "ihashsize")) {
cmn_err(CE_WARN,
"XFS: ihashsize no longer used, option is deprecated.");
} else if (!strcmp(this_char, "osyncisdsync")) {
/* no-op, this is now the default */
cmn_err(CE_WARN,
"XFS: osyncisdsync is now the default, option is deprecated.");
} else if (!strcmp(this_char, "irixsgid")) {
cmn_err(CE_WARN,
"XFS: irixsgid is now a sysctl(2) variable, option is deprecated.");
} else {
cmn_err(CE_WARN,
"XFS: unknown mount option [%s].", this_char);
return EINVAL;
}
}
if (args->flags & XFSMNT_NORECOVERY) {
if ((mp->m_flags & XFS_MOUNT_RDONLY) == 0) {
cmn_err(CE_WARN,
"XFS: no-recovery mounts must be read-only.");
return EINVAL;
}
}
if ((args->flags & XFSMNT_NOALIGN) && (dsunit || dswidth)) {
cmn_err(CE_WARN,
"XFS: sunit and swidth options incompatible with the noalign option");
return EINVAL;
}
if ((args->flags & XFSMNT_GQUOTA) && (args->flags & XFSMNT_PQUOTA)) {
cmn_err(CE_WARN,
"XFS: cannot mount with both project and group quota");
return EINVAL;
}
if ((args->flags & XFSMNT_DMAPI) && *args->mtpt == '\0') {
printk("XFS: %s option needs the mount point option as well\n",
MNTOPT_DMAPI);
return EINVAL;
}
if ((dsunit && !dswidth) || (!dsunit && dswidth)) {
cmn_err(CE_WARN,
"XFS: sunit and swidth must be specified together");
return EINVAL;
}
if (dsunit && (dswidth % dsunit != 0)) {
cmn_err(CE_WARN,
"XFS: stripe width (%d) must be a multiple of the stripe unit (%d)",
dswidth, dsunit);
return EINVAL;
}
/*
* Applications using DMI filesystems often expect the
* inode generation number to be monotonically increasing.
* If we delete inode chunks we break this assumption, so
* keep unused inode chunks on disk for DMI filesystems
* until we come up with a better solution.
* Note that if "ikeep" or "noikeep" mount options are
* supplied, then they are honored.
*/
if ((args->flags & XFSMNT_DMAPI) && dmapi_implies_ikeep)
args->flags |= XFSMNT_IKEEP;
if ((args->flags & XFSMNT_NOALIGN) != XFSMNT_NOALIGN) {
if (dsunit) {
args->sunit = dsunit;
args->flags |= XFSMNT_RETERR;
} else {
args->sunit = vol_dsunit;
}
dswidth ? (args->swidth = dswidth) :
(args->swidth = vol_dswidth);
} else {
args->sunit = args->swidth = 0;
}
done:
if (args->flags & XFSMNT_32BITINODES)
mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
if (args->flags2)
args->flags |= XFSMNT_FLAGS2;
return 0;
}
struct proc_xfs_info {
int flag;
char *str;
};
STATIC int
xfs_showargs(
struct xfs_mount *mp,
struct seq_file *m)
{
static struct proc_xfs_info xfs_info_set[] = {
/* the few simple ones we can get from the mount struct */
{ XFS_MOUNT_IKEEP, "," MNTOPT_IKEEP },
{ XFS_MOUNT_WSYNC, "," MNTOPT_WSYNC },
{ XFS_MOUNT_INO64, "," MNTOPT_INO64 },
{ XFS_MOUNT_NOALIGN, "," MNTOPT_NOALIGN },
{ XFS_MOUNT_SWALLOC, "," MNTOPT_SWALLOC },
{ XFS_MOUNT_NOUUID, "," MNTOPT_NOUUID },
{ XFS_MOUNT_NORECOVERY, "," MNTOPT_NORECOVERY },
{ XFS_MOUNT_OSYNCISOSYNC, "," MNTOPT_OSYNCISOSYNC },
{ XFS_MOUNT_ATTR2, "," MNTOPT_ATTR2 },
{ XFS_MOUNT_FILESTREAMS, "," MNTOPT_FILESTREAM },
{ XFS_MOUNT_DMAPI, "," MNTOPT_DMAPI },
{ XFS_MOUNT_GRPID, "," MNTOPT_GRPID },
{ 0, NULL }
};
static struct proc_xfs_info xfs_info_unset[] = {
/* the few simple ones we can get from the mount struct */
{ XFS_MOUNT_COMPAT_IOSIZE, "," MNTOPT_LARGEIO },
{ XFS_MOUNT_BARRIER, "," MNTOPT_NOBARRIER },
{ XFS_MOUNT_SMALL_INUMS, "," MNTOPT_64BITINODE },
{ 0, NULL }
};
struct proc_xfs_info *xfs_infop;
for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
if (mp->m_flags & xfs_infop->flag)
seq_puts(m, xfs_infop->str);
}
for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) {
if (!(mp->m_flags & xfs_infop->flag))
seq_puts(m, xfs_infop->str);
}
if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)
seq_printf(m, "," MNTOPT_ALLOCSIZE "=%dk",
(int)(1 << mp->m_writeio_log) >> 10);
if (mp->m_logbufs > 0)
seq_printf(m, "," MNTOPT_LOGBUFS "=%d", mp->m_logbufs);
if (mp->m_logbsize > 0)
seq_printf(m, "," MNTOPT_LOGBSIZE "=%dk", mp->m_logbsize >> 10);
if (mp->m_logname)
seq_printf(m, "," MNTOPT_LOGDEV "=%s", mp->m_logname);
if (mp->m_rtname)
seq_printf(m, "," MNTOPT_RTDEV "=%s", mp->m_rtname);
if (mp->m_dalign > 0)
seq_printf(m, "," MNTOPT_SUNIT "=%d",
(int)XFS_FSB_TO_BB(mp, mp->m_dalign));
if (mp->m_swidth > 0)
seq_printf(m, "," MNTOPT_SWIDTH "=%d",
(int)XFS_FSB_TO_BB(mp, mp->m_swidth));
if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD))
seq_puts(m, "," MNTOPT_USRQUOTA);
else if (mp->m_qflags & XFS_UQUOTA_ACCT)
seq_puts(m, "," MNTOPT_UQUOTANOENF);
if (mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))
seq_puts(m, "," MNTOPT_PRJQUOTA);
else if (mp->m_qflags & XFS_PQUOTA_ACCT)
seq_puts(m, "," MNTOPT_PQUOTANOENF);
if (mp->m_qflags & (XFS_GQUOTA_ACCT|XFS_OQUOTA_ENFD))
seq_puts(m, "," MNTOPT_GRPQUOTA);
else if (mp->m_qflags & XFS_GQUOTA_ACCT)
seq_puts(m, "," MNTOPT_GQUOTANOENF);
if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
seq_puts(m, "," MNTOPT_NOQUOTA);
return 0;
}
__uint64_t
xfs_max_file_offset(
unsigned int blockshift)
{
unsigned int pagefactor = 1;
unsigned int bitshift = BITS_PER_LONG - 1;
/* Figure out maximum filesize, on Linux this can depend on
* the filesystem blocksize (on 32 bit platforms).
* __block_prepare_write does this in an [unsigned] long...
* page->index << (PAGE_CACHE_SHIFT - bbits)
* So, for page sized blocks (4K on 32 bit platforms),
* this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
* (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
* but for smaller blocksizes it is less (bbits = log2 bsize).
* Note1: get_block_t takes a long (implicit cast from above)
* Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
* can optionally convert the [unsigned] long from above into
* an [unsigned] long long.
*/
#if BITS_PER_LONG == 32
# if defined(CONFIG_LBD)
ASSERT(sizeof(sector_t) == 8);
pagefactor = PAGE_CACHE_SIZE;
bitshift = BITS_PER_LONG;
# else
pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
# endif
#endif
return (((__uint64_t)pagefactor) << bitshift) - 1;
}
STATIC_INLINE void
xfs_set_inodeops(
struct inode *inode)
{
switch (inode->i_mode & S_IFMT) {
case S_IFREG:
inode->i_op = &xfs_inode_operations;
inode->i_fop = &xfs_file_operations;
inode->i_mapping->a_ops = &xfs_address_space_operations;
break;
case S_IFDIR:
inode->i_op = &xfs_dir_inode_operations;
inode->i_fop = &xfs_dir_file_operations;
break;
case S_IFLNK:
inode->i_op = &xfs_symlink_inode_operations;
if (!(XFS_I(inode)->i_df.if_flags & XFS_IFINLINE))
inode->i_mapping->a_ops = &xfs_address_space_operations;
break;
default:
inode->i_op = &xfs_inode_operations;
init_special_inode(inode, inode->i_mode, inode->i_rdev);
break;
}
}
STATIC_INLINE void
xfs_revalidate_inode(
xfs_mount_t *mp,
bhv_vnode_t *vp,
xfs_inode_t *ip)
{
struct inode *inode = vn_to_inode(vp);
inode->i_mode = ip->i_d.di_mode;
inode->i_nlink = ip->i_d.di_nlink;
inode->i_uid = ip->i_d.di_uid;
inode->i_gid = ip->i_d.di_gid;
switch (inode->i_mode & S_IFMT) {
case S_IFBLK:
case S_IFCHR:
inode->i_rdev =
MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
sysv_minor(ip->i_df.if_u2.if_rdev));
break;
default:
inode->i_rdev = 0;
break;
}
inode->i_generation = ip->i_d.di_gen;
i_size_write(inode, ip->i_d.di_size);
inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec;
inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec;
inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec;
inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec;
inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec;
inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec;
if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
inode->i_flags |= S_IMMUTABLE;
else
inode->i_flags &= ~S_IMMUTABLE;
if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
inode->i_flags |= S_APPEND;
else
inode->i_flags &= ~S_APPEND;
if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
inode->i_flags |= S_SYNC;
else
inode->i_flags &= ~S_SYNC;
if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
inode->i_flags |= S_NOATIME;
else
inode->i_flags &= ~S_NOATIME;
xfs_iflags_clear(ip, XFS_IMODIFIED);
}
void
xfs_initialize_vnode(
struct xfs_mount *mp,
bhv_vnode_t *vp,
struct xfs_inode *ip)
{
struct inode *inode = vn_to_inode(vp);
if (!ip->i_vnode) {
ip->i_vnode = vp;
inode->i_private = ip;
}
/*
* We need to set the ops vectors, and unlock the inode, but if
* we have been called during the new inode create process, it is
* too early to fill in the Linux inode. We will get called a
* second time once the inode is properly set up, and then we can
* finish our work.
*/
if (ip->i_d.di_mode != 0 && (inode->i_state & I_NEW)) {
xfs_revalidate_inode(mp, vp, ip);
xfs_set_inodeops(inode);
xfs_iflags_clear(ip, XFS_INEW);
barrier();
unlock_new_inode(inode);
}
}
int
xfs_blkdev_get(
xfs_mount_t *mp,
const char *name,
struct block_device **bdevp)
{
int error = 0;
*bdevp = open_bdev_excl(name, 0, mp);
if (IS_ERR(*bdevp)) {
error = PTR_ERR(*bdevp);
printk("XFS: Invalid device [%s], error=%d\n", name, error);
}
return -error;
}
void
xfs_blkdev_put(
struct block_device *bdev)
{
if (bdev)
close_bdev_excl(bdev);
}
/*
* Try to write out the superblock using barriers.
*/
STATIC int
xfs_barrier_test(
xfs_mount_t *mp)
{
xfs_buf_t *sbp = xfs_getsb(mp, 0);
int error;
XFS_BUF_UNDONE(sbp);
XFS_BUF_UNREAD(sbp);
XFS_BUF_UNDELAYWRITE(sbp);
XFS_BUF_WRITE(sbp);
XFS_BUF_UNASYNC(sbp);
XFS_BUF_ORDERED(sbp);
xfsbdstrat(mp, sbp);
error = xfs_iowait(sbp);
/*
* Clear all the flags we set and possible error state in the
* buffer. We only did the write to try out whether barriers
* worked and shouldn't leave any traces in the superblock
* buffer.
*/
XFS_BUF_DONE(sbp);
XFS_BUF_ERROR(sbp, 0);
XFS_BUF_UNORDERED(sbp);
xfs_buf_relse(sbp);
return error;
}
void
xfs_mountfs_check_barriers(xfs_mount_t *mp)
{
int error;
if (mp->m_logdev_targp != mp->m_ddev_targp) {
xfs_fs_cmn_err(CE_NOTE, mp,
"Disabling barriers, not supported with external log device");
mp->m_flags &= ~XFS_MOUNT_BARRIER;
return;
}
if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
QUEUE_ORDERED_NONE) {
xfs_fs_cmn_err(CE_NOTE, mp,
"Disabling barriers, not supported by the underlying device");
mp->m_flags &= ~XFS_MOUNT_BARRIER;
return;
}
if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
xfs_fs_cmn_err(CE_NOTE, mp,
"Disabling barriers, underlying device is readonly");
mp->m_flags &= ~XFS_MOUNT_BARRIER;
return;
}
error = xfs_barrier_test(mp);
if (error) {
xfs_fs_cmn_err(CE_NOTE, mp,
"Disabling barriers, trial barrier write failed");
mp->m_flags &= ~XFS_MOUNT_BARRIER;
return;
}
}
void
xfs_blkdev_issue_flush(
xfs_buftarg_t *buftarg)
{
blkdev_issue_flush(buftarg->bt_bdev, NULL);
}
/*
* XFS AIL push thread support
*/
void
xfsaild_wakeup(
xfs_mount_t *mp,
xfs_lsn_t threshold_lsn)
{
mp->m_ail.xa_target = threshold_lsn;
wake_up_process(mp->m_ail.xa_task);
}
int
xfsaild(
void *data)
{
xfs_mount_t *mp = (xfs_mount_t *)data;
xfs_lsn_t last_pushed_lsn = 0;
long tout = 0;
while (!kthread_should_stop()) {
if (tout)
schedule_timeout_interruptible(msecs_to_jiffies(tout));
tout = 1000;
/* swsusp */
try_to_freeze();
ASSERT(mp->m_log);
if (XFS_FORCED_SHUTDOWN(mp))
continue;
tout = xfsaild_push(mp, &last_pushed_lsn);
}
return 0;
} /* xfsaild */
int
xfsaild_start(
xfs_mount_t *mp)
{
mp->m_ail.xa_target = 0;
mp->m_ail.xa_task = kthread_run(xfsaild, mp, "xfsaild");
if (IS_ERR(mp->m_ail.xa_task))
return -PTR_ERR(mp->m_ail.xa_task);
return 0;
}
void
xfsaild_stop(
xfs_mount_t *mp)
{
kthread_stop(mp->m_ail.xa_task);
}
STATIC struct inode *
xfs_fs_alloc_inode(
struct super_block *sb)
{
bhv_vnode_t *vp;
vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
if (unlikely(!vp))
return NULL;
return vn_to_inode(vp);
}
STATIC void
xfs_fs_destroy_inode(
struct inode *inode)
{
kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
}
STATIC void
xfs_fs_inode_init_once(
void *vnode)
{
inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
}
STATIC int __init
xfs_init_zones(void)
{
xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
KM_ZONE_SPREAD,
xfs_fs_inode_init_once);
if (!xfs_vnode_zone)
goto out;
xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
if (!xfs_ioend_zone)
goto out_destroy_vnode_zone;
xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
xfs_ioend_zone);
if (!xfs_ioend_pool)
goto out_free_ioend_zone;
return 0;
out_free_ioend_zone:
kmem_zone_destroy(xfs_ioend_zone);
out_destroy_vnode_zone:
kmem_zone_destroy(xfs_vnode_zone);
out:
return -ENOMEM;
}
STATIC void
xfs_destroy_zones(void)
{
mempool_destroy(xfs_ioend_pool);
kmem_zone_destroy(xfs_vnode_zone);
kmem_zone_destroy(xfs_ioend_zone);
}
/*
* Attempt to flush the inode, this will actually fail
* if the inode is pinned, but we dirty the inode again
* at the point when it is unpinned after a log write,
* since this is when the inode itself becomes flushable.
*/
STATIC int
xfs_fs_write_inode(
struct inode *inode,
int sync)
{
int error = 0;
int flags = 0;
xfs_itrace_entry(XFS_I(inode));
if (sync) {
filemap_fdatawait(inode->i_mapping);
flags |= FLUSH_SYNC;
}
error = xfs_inode_flush(XFS_I(inode), flags);
/*
* if we failed to write out the inode then mark
* it dirty again so we'll try again later.
*/
if (error)
mark_inode_dirty_sync(inode);
return -error;
}
STATIC void
xfs_fs_clear_inode(
struct inode *inode)
{
xfs_inode_t *ip = XFS_I(inode);
/*
* ip can be null when xfs_iget_core calls xfs_idestroy if we
* find an inode with di_mode == 0 but without IGET_CREATE set.
*/
if (ip) {
xfs_itrace_entry(ip);
XFS_STATS_INC(vn_rele);
XFS_STATS_INC(vn_remove);
XFS_STATS_INC(vn_reclaim);
XFS_STATS_DEC(vn_active);
xfs_inactive(ip);
xfs_iflags_clear(ip, XFS_IMODIFIED);
if (xfs_reclaim(ip))
panic("%s: cannot reclaim 0x%p\n", __func__, inode);
}
ASSERT(XFS_I(inode) == NULL);
}
/*
* Enqueue a work item to be picked up by the vfs xfssyncd thread.
* Doing this has two advantages:
* - It saves on stack space, which is tight in certain situations
* - It can be used (with care) as a mechanism to avoid deadlocks.
* Flushing while allocating in a full filesystem requires both.
*/
STATIC void
xfs_syncd_queue_work(
struct xfs_mount *mp,
void *data,
void (*syncer)(struct xfs_mount *, void *))
{
struct bhv_vfs_sync_work *work;
work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
INIT_LIST_HEAD(&work->w_list);
work->w_syncer = syncer;
work->w_data = data;
work->w_mount = mp;
spin_lock(&mp->m_sync_lock);
list_add_tail(&work->w_list, &mp->m_sync_list);
spin_unlock(&mp->m_sync_lock);
wake_up_process(mp->m_sync_task);
}
/*
* Flush delayed allocate data, attempting to free up reserved space
* from existing allocations. At this point a new allocation attempt
* has failed with ENOSPC and we are in the process of scratching our
* heads, looking about for more room...
*/
STATIC void
xfs_flush_inode_work(
struct xfs_mount *mp,
void *arg)
{
struct inode *inode = arg;
filemap_flush(inode->i_mapping);
iput(inode);
}
void
xfs_flush_inode(
xfs_inode_t *ip)
{
struct inode *inode = ip->i_vnode;
igrab(inode);
xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work);
delay(msecs_to_jiffies(500));
}
/*
* This is the "bigger hammer" version of xfs_flush_inode_work...
* (IOW, "If at first you don't succeed, use a Bigger Hammer").
*/
STATIC void
xfs_flush_device_work(
struct xfs_mount *mp,
void *arg)
{
struct inode *inode = arg;
sync_blockdev(mp->m_super->s_bdev);
iput(inode);
}
void
xfs_flush_device(
xfs_inode_t *ip)
{
struct inode *inode = vn_to_inode(XFS_ITOV(ip));
igrab(inode);
xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work);
delay(msecs_to_jiffies(500));
xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
}
STATIC void
xfs_sync_worker(
struct xfs_mount *mp,
void *unused)
{
int error;
if (!(mp->m_flags & XFS_MOUNT_RDONLY))
error = xfs_sync(mp, SYNC_FSDATA | SYNC_BDFLUSH | SYNC_ATTR);
mp->m_sync_seq++;
wake_up(&mp->m_wait_single_sync_task);
}
STATIC int
xfssyncd(
void *arg)
{
struct xfs_mount *mp = arg;
long timeleft;
bhv_vfs_sync_work_t *work, *n;
LIST_HEAD (tmp);
set_freezable();
timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
for (;;) {
timeleft = schedule_timeout_interruptible(timeleft);
/* swsusp */
try_to_freeze();
if (kthread_should_stop() && list_empty(&mp->m_sync_list))
break;
spin_lock(&mp->m_sync_lock);
/*
* We can get woken by laptop mode, to do a sync -
* that's the (only!) case where the list would be
* empty with time remaining.
*/
if (!timeleft || list_empty(&mp->m_sync_list)) {
if (!timeleft)
timeleft = xfs_syncd_centisecs *
msecs_to_jiffies(10);
INIT_LIST_HEAD(&mp->m_sync_work.w_list);
list_add_tail(&mp->m_sync_work.w_list,
&mp->m_sync_list);
}
list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
list_move(&work->w_list, &tmp);
spin_unlock(&mp->m_sync_lock);
list_for_each_entry_safe(work, n, &tmp, w_list) {
(*work->w_syncer)(mp, work->w_data);
list_del(&work->w_list);
if (work == &mp->m_sync_work)
continue;
kmem_free(work, sizeof(struct bhv_vfs_sync_work));
}
}
return 0;
}
STATIC void
xfs_fs_put_super(
struct super_block *sb)
{
struct xfs_mount *mp = XFS_M(sb);
int error;
kthread_stop(mp->m_sync_task);
xfs_sync(mp, SYNC_ATTR | SYNC_DELWRI);
error = xfs_unmount(mp, 0, NULL);
if (error)
printk("XFS: unmount got error=%d\n", error);
}
STATIC void
xfs_fs_write_super(
struct super_block *sb)
{
if (!(sb->s_flags & MS_RDONLY))
xfs_sync(XFS_M(sb), SYNC_FSDATA);
sb->s_dirt = 0;
}
STATIC int
xfs_fs_sync_super(
struct super_block *sb,
int wait)
{
struct xfs_mount *mp = XFS_M(sb);
int error;
int flags;
/*
* Treat a sync operation like a freeze. This is to work
* around a race in sync_inodes() which works in two phases
* - an asynchronous flush, which can write out an inode
* without waiting for file size updates to complete, and a
* synchronous flush, which wont do anything because the
* async flush removed the inode's dirty flag. Also
* sync_inodes() will not see any files that just have
* outstanding transactions to be flushed because we don't
* dirty the Linux inode until after the transaction I/O
* completes.
*/
if (wait || unlikely(sb->s_frozen == SB_FREEZE_WRITE)) {
/*
* First stage of freeze - no more writers will make progress
* now we are here, so we flush delwri and delalloc buffers
* here, then wait for all I/O to complete. Data is frozen at
* that point. Metadata is not frozen, transactions can still
* occur here so don't bother flushing the buftarg (i.e
* SYNC_QUIESCE) because it'll just get dirty again.
*/
flags = SYNC_DATA_QUIESCE;
} else
flags = SYNC_FSDATA;
error = xfs_sync(mp, flags);
sb->s_dirt = 0;
if (unlikely(laptop_mode)) {
int prev_sync_seq = mp->m_sync_seq;
/*
* The disk must be active because we're syncing.
* We schedule xfssyncd now (now that the disk is
* active) instead of later (when it might not be).
*/
wake_up_process(mp->m_sync_task);
/*
* We have to wait for the sync iteration to complete.
* If we don't, the disk activity caused by the sync
* will come after the sync is completed, and that
* triggers another sync from laptop mode.
*/
wait_event(mp->m_wait_single_sync_task,
mp->m_sync_seq != prev_sync_seq);
}
return -error;
}
STATIC int
xfs_fs_statfs(
struct dentry *dentry,
struct kstatfs *statp)
{
struct xfs_mount *mp = XFS_M(dentry->d_sb);
xfs_sb_t *sbp = &mp->m_sb;
__uint64_t fakeinos, id;
xfs_extlen_t lsize;
statp->f_type = XFS_SB_MAGIC;
statp->f_namelen = MAXNAMELEN - 1;
id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
statp->f_fsid.val[0] = (u32)id;
statp->f_fsid.val[1] = (u32)(id >> 32);
xfs_icsb_sync_counters(mp, XFS_ICSB_LAZY_COUNT);
spin_lock(&mp->m_sb_lock);
statp->f_bsize = sbp->sb_blocksize;
lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
statp->f_blocks = sbp->sb_dblocks - lsize;
statp->f_bfree = statp->f_bavail =
sbp->sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
fakeinos = statp->f_bfree << sbp->sb_inopblog;
#if XFS_BIG_INUMS
fakeinos += mp->m_inoadd;
#endif
statp->f_files =
MIN(sbp->sb_icount + fakeinos, (__uint64_t)XFS_MAXINUMBER);
if (mp->m_maxicount)
#if XFS_BIG_INUMS
if (!mp->m_inoadd)
#endif
statp->f_files = min_t(typeof(statp->f_files),
statp->f_files,
mp->m_maxicount);
statp->f_ffree = statp->f_files - (sbp->sb_icount - sbp->sb_ifree);
spin_unlock(&mp->m_sb_lock);
XFS_QM_DQSTATVFS(XFS_I(dentry->d_inode), statp);
return 0;
}
STATIC int
xfs_fs_remount(
struct super_block *sb,
int *flags,
char *options)
{
struct xfs_mount *mp = XFS_M(sb);
struct xfs_mount_args *args = xfs_args_allocate(sb, 0);
int error;
error = xfs_parseargs(mp, options, args, 1);
if (!error)
error = xfs_mntupdate(mp, flags, args);
kmem_free(args, sizeof(*args));
return -error;
}
/*
* Second stage of a freeze. The data is already frozen so we only
* need to take care of themetadata. Once that's done write a dummy
* record to dirty the log in case of a crash while frozen.
*/
STATIC void
xfs_fs_lockfs(
struct super_block *sb)
{
struct xfs_mount *mp = XFS_M(sb);
xfs_attr_quiesce(mp);
xfs_fs_log_dummy(mp);
}
STATIC int
xfs_fs_show_options(
struct seq_file *m,
struct vfsmount *mnt)
{
return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
}
STATIC int
xfs_fs_quotasync(
struct super_block *sb,
int type)
{
return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XQUOTASYNC, 0, NULL);
}
STATIC int
xfs_fs_getxstate(
struct super_block *sb,
struct fs_quota_stat *fqs)
{
return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
}
STATIC int
xfs_fs_setxstate(
struct super_block *sb,
unsigned int flags,
int op)
{
return -XFS_QM_QUOTACTL(XFS_M(sb), op, 0, (caddr_t)&flags);
}
STATIC int
xfs_fs_getxquota(
struct super_block *sb,
int type,
qid_t id,
struct fs_disk_quota *fdq)
{
return -XFS_QM_QUOTACTL(XFS_M(sb),
(type == USRQUOTA) ? Q_XGETQUOTA :
((type == GRPQUOTA) ? Q_XGETGQUOTA :
Q_XGETPQUOTA), id, (caddr_t)fdq);
}
STATIC int
xfs_fs_setxquota(
struct super_block *sb,
int type,
qid_t id,
struct fs_disk_quota *fdq)
{
return -XFS_QM_QUOTACTL(XFS_M(sb),
(type == USRQUOTA) ? Q_XSETQLIM :
((type == GRPQUOTA) ? Q_XSETGQLIM :
Q_XSETPQLIM), id, (caddr_t)fdq);
}
STATIC int
xfs_fs_fill_super(
struct super_block *sb,
void *data,
int silent)
{
struct inode *root;
struct xfs_mount *mp = NULL;
struct xfs_mount_args *args = xfs_args_allocate(sb, silent);
int error;
mp = xfs_mount_init();
INIT_LIST_HEAD(&mp->m_sync_list);
spin_lock_init(&mp->m_sync_lock);
init_waitqueue_head(&mp->m_wait_single_sync_task);
mp->m_super = sb;
sb->s_fs_info = mp;
if (sb->s_flags & MS_RDONLY)
mp->m_flags |= XFS_MOUNT_RDONLY;
error = xfs_parseargs(mp, (char *)data, args, 0);
if (error)
goto fail_vfsop;
sb_min_blocksize(sb, BBSIZE);
sb->s_export_op = &xfs_export_operations;
sb->s_qcop = &xfs_quotactl_operations;
sb->s_op = &xfs_super_operations;
error = xfs_mount(mp, args, NULL);
if (error)
goto fail_vfsop;
sb->s_dirt = 1;
sb->s_magic = XFS_SB_MAGIC;
sb->s_blocksize = mp->m_sb.sb_blocksize;
sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
sb->s_time_gran = 1;
set_posix_acl_flag(sb);
root = igrab(mp->m_rootip->i_vnode);
if (!root) {
error = ENOENT;
goto fail_unmount;
}
if (is_bad_inode(root)) {
error = EINVAL;
goto fail_vnrele;
}
sb->s_root = d_alloc_root(root);
if (!sb->s_root) {
error = ENOMEM;
goto fail_vnrele;
}
mp->m_sync_work.w_syncer = xfs_sync_worker;
mp->m_sync_work.w_mount = mp;
mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
if (IS_ERR(mp->m_sync_task)) {
error = -PTR_ERR(mp->m_sync_task);
goto fail_vnrele;
}
xfs_itrace_exit(XFS_I(sb->s_root->d_inode));
kmem_free(args, sizeof(*args));
return 0;
fail_vnrele:
if (sb->s_root) {
dput(sb->s_root);
sb->s_root = NULL;
} else {
iput(root);
}
fail_unmount:
xfs_unmount(mp, 0, NULL);
fail_vfsop:
kmem_free(args, sizeof(*args));
return -error;
}
STATIC int
xfs_fs_get_sb(
struct file_system_type *fs_type,
int flags,
const char *dev_name,
void *data,
struct vfsmount *mnt)
{
return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
mnt);
}
static struct super_operations xfs_super_operations = {
.alloc_inode = xfs_fs_alloc_inode,
.destroy_inode = xfs_fs_destroy_inode,
.write_inode = xfs_fs_write_inode,
.clear_inode = xfs_fs_clear_inode,
.put_super = xfs_fs_put_super,
.write_super = xfs_fs_write_super,
.sync_fs = xfs_fs_sync_super,
.write_super_lockfs = xfs_fs_lockfs,
.statfs = xfs_fs_statfs,
.remount_fs = xfs_fs_remount,
.show_options = xfs_fs_show_options,
};
static struct quotactl_ops xfs_quotactl_operations = {
.quota_sync = xfs_fs_quotasync,
.get_xstate = xfs_fs_getxstate,
.set_xstate = xfs_fs_setxstate,
.get_xquota = xfs_fs_getxquota,
.set_xquota = xfs_fs_setxquota,
};
static struct file_system_type xfs_fs_type = {
.owner = THIS_MODULE,
.name = "xfs",
.get_sb = xfs_fs_get_sb,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
STATIC int __init
init_xfs_fs( void )
{
int error;
static char message[] __initdata = KERN_INFO \
XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
printk(message);
ktrace_init(64);
error = xfs_init_zones();
if (error < 0)
goto undo_zones;
error = xfs_buf_init();
if (error < 0)
goto undo_buffers;
vn_init();
xfs_init();
uuid_init();
vfs_initquota();
error = register_filesystem(&xfs_fs_type);
if (error)
goto undo_register;
return 0;
undo_register:
xfs_buf_terminate();
undo_buffers:
xfs_destroy_zones();
undo_zones:
return error;
}
STATIC void __exit
exit_xfs_fs( void )
{
vfs_exitquota();
unregister_filesystem(&xfs_fs_type);
xfs_cleanup();
xfs_buf_terminate();
xfs_destroy_zones();
ktrace_uninit();
}
module_init(init_xfs_fs);
module_exit(exit_xfs_fs);
MODULE_AUTHOR("Silicon Graphics, Inc.");
MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
MODULE_LICENSE("GPL");