android_kernel_xiaomi_sm8350/drivers/video/vermilion/vermilion.c
Krzysztof Helt 84902b7af6 fbdev: change asm/uaccess.h to linux/uaccess.h
This patch replaces <asm/uaccess.h> with <linux/uaccess.h> after the
checkpatch.pl hint.  The include of <asm/uaccess.h> is removed if the driver
does not use it.

Signed-off-by: Krzysztof Helt <krzysztof.h1@wp.pl>
Signed-off-by: Antonino Daplas <adaplas@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:17 -07:00

1195 lines
29 KiB
C

/*
* Copyright (c) Intel Corp. 2007.
* All Rights Reserved.
*
* Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
* develop this driver.
*
* This file is part of the Vermilion Range fb driver.
* The Vermilion Range fb driver is free software;
* you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* The Vermilion Range fb driver is distributed
* in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this driver; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Authors:
* Thomas Hellström <thomas-at-tungstengraphics-dot-com>
* Michel Dänzer <michel-at-tungstengraphics-dot-com>
* Alan Hourihane <alanh-at-tungstengraphics-dot-com>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/fb.h>
#include <linux/pci.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <linux/mmzone.h>
/* #define VERMILION_DEBUG */
#include "vermilion.h"
#define MODULE_NAME "vmlfb"
#define VML_TOHW(_val, _width) ((((_val) << (_width)) + 0x7FFF - (_val)) >> 16)
static struct mutex vml_mutex;
static struct list_head global_no_mode;
static struct list_head global_has_mode;
static struct fb_ops vmlfb_ops;
static struct vml_sys *subsys = NULL;
static char *vml_default_mode = "1024x768@60";
static struct fb_videomode defaultmode = {
NULL, 60, 1024, 768, 12896, 144, 24, 29, 3, 136, 6,
0, FB_VMODE_NONINTERLACED
};
static u32 vml_mem_requested = (10 * 1024 * 1024);
static u32 vml_mem_contig = (4 * 1024 * 1024);
static u32 vml_mem_min = (4 * 1024 * 1024);
static u32 vml_clocks[] = {
6750,
13500,
27000,
29700,
37125,
54000,
59400,
74250,
120000,
148500
};
static u32 vml_num_clocks = ARRAY_SIZE(vml_clocks);
/*
* Allocate a contiguous vram area and make its linear kernel map
* uncached.
*/
static int vmlfb_alloc_vram_area(struct vram_area *va, unsigned max_order,
unsigned min_order)
{
gfp_t flags;
unsigned long i;
pgprot_t wc_pageprot;
wc_pageprot = PAGE_KERNEL_NOCACHE;
max_order++;
do {
/*
* Really try hard to get the needed memory.
* We need memory below the first 32MB, so we
* add the __GFP_DMA flag that guarantees that we are
* below the first 16MB.
*/
flags = __GFP_DMA | __GFP_HIGH;
va->logical =
__get_free_pages(flags, --max_order);
} while (va->logical == 0 && max_order > min_order);
if (!va->logical)
return -ENOMEM;
va->phys = virt_to_phys((void *)va->logical);
va->size = PAGE_SIZE << max_order;
va->order = max_order;
/*
* It seems like __get_free_pages only ups the usage count
* of the first page. This doesn't work with nopage mapping, so
* up the usage count once more.
*/
memset((void *)va->logical, 0x00, va->size);
for (i = va->logical; i < va->logical + va->size; i += PAGE_SIZE) {
get_page(virt_to_page(i));
}
/*
* Change caching policy of the linear kernel map to avoid
* mapping type conflicts with user-space mappings.
* The first global_flush_tlb() is really only there to do a global
* wbinvd().
*/
global_flush_tlb();
change_page_attr(virt_to_page(va->logical), va->size >> PAGE_SHIFT,
wc_pageprot);
global_flush_tlb();
printk(KERN_DEBUG MODULE_NAME
": Allocated %ld bytes vram area at 0x%08lx\n",
va->size, va->phys);
return 0;
}
/*
* Free a contiguous vram area and reset its linear kernel map
* mapping type.
*/
static void vmlfb_free_vram_area(struct vram_area *va)
{
unsigned long j;
if (va->logical) {
/*
* Reset the linear kernel map caching policy.
*/
change_page_attr(virt_to_page(va->logical),
va->size >> PAGE_SHIFT, PAGE_KERNEL);
global_flush_tlb();
/*
* Decrease the usage count on the pages we've used
* to compensate for upping when allocating.
*/
for (j = va->logical; j < va->logical + va->size;
j += PAGE_SIZE) {
(void)put_page_testzero(virt_to_page(j));
}
printk(KERN_DEBUG MODULE_NAME
": Freeing %ld bytes vram area at 0x%08lx\n",
va->size, va->phys);
free_pages(va->logical, va->order);
va->logical = 0;
}
}
/*
* Free allocated vram.
*/
static void vmlfb_free_vram(struct vml_info *vinfo)
{
int i;
for (i = 0; i < vinfo->num_areas; ++i) {
vmlfb_free_vram_area(&vinfo->vram[i]);
}
vinfo->num_areas = 0;
}
/*
* Allocate vram. Currently we try to allocate contiguous areas from the
* __GFP_DMA zone and puzzle them together. A better approach would be to
* allocate one contiguous area for scanout and use one-page allocations for
* offscreen areas. This requires user-space and GPU virtual mappings.
*/
static int vmlfb_alloc_vram(struct vml_info *vinfo,
size_t requested,
size_t min_total, size_t min_contig)
{
int i, j;
int order;
int contiguous;
int err;
struct vram_area *va;
struct vram_area *va2;
vinfo->num_areas = 0;
for (i = 0; i < VML_VRAM_AREAS; ++i) {
va = &vinfo->vram[i];
order = 0;
while (requested > (PAGE_SIZE << order) && order < MAX_ORDER)
order++;
err = vmlfb_alloc_vram_area(va, order, 0);
if (err)
break;
if (i == 0) {
vinfo->vram_start = va->phys;
vinfo->vram_logical = (void __iomem *) va->logical;
vinfo->vram_contig_size = va->size;
vinfo->num_areas = 1;
} else {
contiguous = 0;
for (j = 0; j < i; ++j) {
va2 = &vinfo->vram[j];
if (va->phys + va->size == va2->phys ||
va2->phys + va2->size == va->phys) {
contiguous = 1;
break;
}
}
if (contiguous) {
vinfo->num_areas++;
if (va->phys < vinfo->vram_start) {
vinfo->vram_start = va->phys;
vinfo->vram_logical =
(void __iomem *)va->logical;
}
vinfo->vram_contig_size += va->size;
} else {
vmlfb_free_vram_area(va);
break;
}
}
if (requested < va->size)
break;
else
requested -= va->size;
}
if (vinfo->vram_contig_size > min_total &&
vinfo->vram_contig_size > min_contig) {
printk(KERN_DEBUG MODULE_NAME
": Contiguous vram: %ld bytes at physical 0x%08lx.\n",
(unsigned long)vinfo->vram_contig_size,
(unsigned long)vinfo->vram_start);
return 0;
}
printk(KERN_ERR MODULE_NAME
": Could not allocate requested minimal amount of vram.\n");
vmlfb_free_vram(vinfo);
return -ENOMEM;
}
/*
* Find the GPU to use with our display controller.
*/
static int vmlfb_get_gpu(struct vml_par *par)
{
mutex_lock(&vml_mutex);
par->gpu = pci_get_device(PCI_VENDOR_ID_INTEL, VML_DEVICE_GPU, NULL);
if (!par->gpu) {
mutex_unlock(&vml_mutex);
return -ENODEV;
}
mutex_unlock(&vml_mutex);
if (pci_enable_device(par->gpu) < 0)
return -ENODEV;
return 0;
}
/*
* Find a contiguous vram area that contains a given offset from vram start.
*/
static int vmlfb_vram_offset(struct vml_info *vinfo, unsigned long offset)
{
unsigned long aoffset;
unsigned i;
for (i = 0; i < vinfo->num_areas; ++i) {
aoffset = offset - (vinfo->vram[i].phys - vinfo->vram_start);
if (aoffset < vinfo->vram[i].size) {
return 0;
}
}
return -EINVAL;
}
/*
* Remap the MMIO register spaces of the VDC and the GPU.
*/
static int vmlfb_enable_mmio(struct vml_par *par)
{
int err;
par->vdc_mem_base = pci_resource_start(par->vdc, 0);
par->vdc_mem_size = pci_resource_len(par->vdc, 0);
if (!request_mem_region(par->vdc_mem_base, par->vdc_mem_size, "vmlfb")) {
printk(KERN_ERR MODULE_NAME
": Could not claim display controller MMIO.\n");
return -EBUSY;
}
par->vdc_mem = ioremap_nocache(par->vdc_mem_base, par->vdc_mem_size);
if (par->vdc_mem == NULL) {
printk(KERN_ERR MODULE_NAME
": Could not map display controller MMIO.\n");
err = -ENOMEM;
goto out_err_0;
}
par->gpu_mem_base = pci_resource_start(par->gpu, 0);
par->gpu_mem_size = pci_resource_len(par->gpu, 0);
if (!request_mem_region(par->gpu_mem_base, par->gpu_mem_size, "vmlfb")) {
printk(KERN_ERR MODULE_NAME ": Could not claim GPU MMIO.\n");
err = -EBUSY;
goto out_err_1;
}
par->gpu_mem = ioremap_nocache(par->gpu_mem_base, par->gpu_mem_size);
if (par->gpu_mem == NULL) {
printk(KERN_ERR MODULE_NAME ": Could not map GPU MMIO.\n");
err = -ENOMEM;
goto out_err_2;
}
return 0;
out_err_2:
release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
out_err_1:
iounmap(par->vdc_mem);
out_err_0:
release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
return err;
}
/*
* Unmap the VDC and GPU register spaces.
*/
static void vmlfb_disable_mmio(struct vml_par *par)
{
iounmap(par->gpu_mem);
release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
iounmap(par->vdc_mem);
release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
}
/*
* Release and uninit the VDC and GPU.
*/
static void vmlfb_release_devices(struct vml_par *par)
{
if (atomic_dec_and_test(&par->refcount)) {
pci_set_drvdata(par->vdc, NULL);
pci_disable_device(par->gpu);
pci_disable_device(par->vdc);
}
}
/*
* Free up allocated resources for a device.
*/
static void __devexit vml_pci_remove(struct pci_dev *dev)
{
struct fb_info *info;
struct vml_info *vinfo;
struct vml_par *par;
info = pci_get_drvdata(dev);
if (info) {
vinfo = container_of(info, struct vml_info, info);
par = vinfo->par;
mutex_lock(&vml_mutex);
unregister_framebuffer(info);
fb_dealloc_cmap(&info->cmap);
vmlfb_free_vram(vinfo);
vmlfb_disable_mmio(par);
vmlfb_release_devices(par);
kfree(vinfo);
kfree(par);
mutex_unlock(&vml_mutex);
}
}
static void vmlfb_set_pref_pixel_format(struct fb_var_screeninfo *var)
{
switch (var->bits_per_pixel) {
case 16:
var->blue.offset = 0;
var->blue.length = 5;
var->green.offset = 5;
var->green.length = 5;
var->red.offset = 10;
var->red.length = 5;
var->transp.offset = 15;
var->transp.length = 1;
break;
case 32:
var->blue.offset = 0;
var->blue.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->red.offset = 16;
var->red.length = 8;
var->transp.offset = 24;
var->transp.length = 0;
break;
default:
break;
}
var->blue.msb_right = var->green.msb_right =
var->red.msb_right = var->transp.msb_right = 0;
}
/*
* Device initialization.
* We initialize one vml_par struct per device and one vml_info
* struct per pipe. Currently we have only one pipe.
*/
static int __devinit vml_pci_probe(struct pci_dev *dev,
const struct pci_device_id *id)
{
struct vml_info *vinfo;
struct fb_info *info;
struct vml_par *par;
int err = 0;
par = kzalloc(sizeof(*par), GFP_KERNEL);
if (par == NULL)
return -ENOMEM;
vinfo = kzalloc(sizeof(*vinfo), GFP_KERNEL);
if (vinfo == NULL) {
err = -ENOMEM;
goto out_err_0;
}
vinfo->par = par;
par->vdc = dev;
atomic_set(&par->refcount, 1);
switch (id->device) {
case VML_DEVICE_VDC:
if ((err = vmlfb_get_gpu(par)))
goto out_err_1;
pci_set_drvdata(dev, &vinfo->info);
break;
default:
err = -ENODEV;
goto out_err_1;
break;
}
info = &vinfo->info;
info->flags = FBINFO_DEFAULT | FBINFO_PARTIAL_PAN_OK;
err = vmlfb_enable_mmio(par);
if (err)
goto out_err_2;
err = vmlfb_alloc_vram(vinfo, vml_mem_requested,
vml_mem_contig, vml_mem_min);
if (err)
goto out_err_3;
strcpy(info->fix.id, "Vermilion Range");
info->fix.mmio_start = 0;
info->fix.mmio_len = 0;
info->fix.smem_start = vinfo->vram_start;
info->fix.smem_len = vinfo->vram_contig_size;
info->fix.type = FB_TYPE_PACKED_PIXELS;
info->fix.visual = FB_VISUAL_TRUECOLOR;
info->fix.ypanstep = 1;
info->fix.xpanstep = 1;
info->fix.ywrapstep = 0;
info->fix.accel = FB_ACCEL_NONE;
info->screen_base = vinfo->vram_logical;
info->pseudo_palette = vinfo->pseudo_palette;
info->par = par;
info->fbops = &vmlfb_ops;
info->device = &dev->dev;
INIT_LIST_HEAD(&vinfo->head);
vinfo->pipe_disabled = 1;
vinfo->cur_blank_mode = FB_BLANK_UNBLANK;
info->var.grayscale = 0;
info->var.bits_per_pixel = 16;
vmlfb_set_pref_pixel_format(&info->var);
if (!fb_find_mode
(&info->var, info, vml_default_mode, NULL, 0, &defaultmode, 16)) {
printk(KERN_ERR MODULE_NAME ": Could not find initial mode\n");
}
if (fb_alloc_cmap(&info->cmap, 256, 1) < 0) {
err = -ENOMEM;
goto out_err_4;
}
err = register_framebuffer(info);
if (err) {
printk(KERN_ERR MODULE_NAME ": Register framebuffer error.\n");
goto out_err_5;
}
printk("Initialized vmlfb\n");
return 0;
out_err_5:
fb_dealloc_cmap(&info->cmap);
out_err_4:
vmlfb_free_vram(vinfo);
out_err_3:
vmlfb_disable_mmio(par);
out_err_2:
vmlfb_release_devices(par);
out_err_1:
kfree(vinfo);
out_err_0:
kfree(par);
return err;
}
static int vmlfb_open(struct fb_info *info, int user)
{
/*
* Save registers here?
*/
return 0;
}
static int vmlfb_release(struct fb_info *info, int user)
{
/*
* Restore registers here.
*/
return 0;
}
static int vml_nearest_clock(int clock)
{
int i;
int cur_index;
int cur_diff;
int diff;
cur_index = 0;
cur_diff = clock - vml_clocks[0];
cur_diff = (cur_diff < 0) ? -cur_diff : cur_diff;
for (i = 1; i < vml_num_clocks; ++i) {
diff = clock - vml_clocks[i];
diff = (diff < 0) ? -diff : diff;
if (diff < cur_diff) {
cur_index = i;
cur_diff = diff;
}
}
return vml_clocks[cur_index];
}
static int vmlfb_check_var_locked(struct fb_var_screeninfo *var,
struct vml_info *vinfo)
{
u32 pitch;
u64 mem;
int nearest_clock;
int clock;
int clock_diff;
struct fb_var_screeninfo v;
v = *var;
clock = PICOS2KHZ(var->pixclock);
if (subsys && subsys->nearest_clock) {
nearest_clock = subsys->nearest_clock(subsys, clock);
} else {
nearest_clock = vml_nearest_clock(clock);
}
/*
* Accept a 20% diff.
*/
clock_diff = nearest_clock - clock;
clock_diff = (clock_diff < 0) ? -clock_diff : clock_diff;
if (clock_diff > clock / 5) {
#if 0
printk(KERN_DEBUG MODULE_NAME ": Diff failure. %d %d\n",clock_diff,clock);
#endif
return -EINVAL;
}
v.pixclock = KHZ2PICOS(nearest_clock);
if (var->xres > VML_MAX_XRES || var->yres > VML_MAX_YRES) {
printk(KERN_DEBUG MODULE_NAME ": Resolution failure.\n");
return -EINVAL;
}
if (var->xres_virtual > VML_MAX_XRES_VIRTUAL) {
printk(KERN_DEBUG MODULE_NAME
": Virtual resolution failure.\n");
return -EINVAL;
}
switch (v.bits_per_pixel) {
case 0 ... 16:
v.bits_per_pixel = 16;
break;
case 17 ... 32:
v.bits_per_pixel = 32;
break;
default:
printk(KERN_DEBUG MODULE_NAME ": Invalid bpp: %d.\n",
var->bits_per_pixel);
return -EINVAL;
}
pitch = __ALIGN_MASK((var->xres * var->bits_per_pixel) >> 3, 0x3F);
mem = pitch * var->yres_virtual;
if (mem > vinfo->vram_contig_size) {
return -ENOMEM;
}
switch (v.bits_per_pixel) {
case 16:
if (var->blue.offset != 0 ||
var->blue.length != 5 ||
var->green.offset != 5 ||
var->green.length != 5 ||
var->red.offset != 10 ||
var->red.length != 5 ||
var->transp.offset != 15 || var->transp.length != 1) {
vmlfb_set_pref_pixel_format(&v);
}
break;
case 32:
if (var->blue.offset != 0 ||
var->blue.length != 8 ||
var->green.offset != 8 ||
var->green.length != 8 ||
var->red.offset != 16 ||
var->red.length != 8 ||
(var->transp.length != 0 && var->transp.length != 8) ||
(var->transp.length == 8 && var->transp.offset != 24)) {
vmlfb_set_pref_pixel_format(&v);
}
break;
default:
return -EINVAL;
}
*var = v;
return 0;
}
static int vmlfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
struct vml_info *vinfo = container_of(info, struct vml_info, info);
int ret;
mutex_lock(&vml_mutex);
ret = vmlfb_check_var_locked(var, vinfo);
mutex_unlock(&vml_mutex);
return ret;
}
static void vml_wait_vblank(struct vml_info *vinfo)
{
/* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
mdelay(20);
}
static void vmlfb_disable_pipe(struct vml_info *vinfo)
{
struct vml_par *par = vinfo->par;
/* Disable the MDVO pad */
VML_WRITE32(par, VML_RCOMPSTAT, 0);
while (!(VML_READ32(par, VML_RCOMPSTAT) & VML_MDVO_VDC_I_RCOMP)) ;
/* Disable display planes */
VML_WRITE32(par, VML_DSPCCNTR,
VML_READ32(par, VML_DSPCCNTR) & ~VML_GFX_ENABLE);
(void)VML_READ32(par, VML_DSPCCNTR);
/* Wait for vblank for the disable to take effect */
vml_wait_vblank(vinfo);
/* Next, disable display pipes */
VML_WRITE32(par, VML_PIPEACONF, 0);
(void)VML_READ32(par, VML_PIPEACONF);
vinfo->pipe_disabled = 1;
}
#ifdef VERMILION_DEBUG
static void vml_dump_regs(struct vml_info *vinfo)
{
struct vml_par *par = vinfo->par;
printk(KERN_DEBUG MODULE_NAME ": Modesetting register dump:\n");
printk(KERN_DEBUG MODULE_NAME ": \tHTOTAL_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_HTOTAL_A));
printk(KERN_DEBUG MODULE_NAME ": \tHBLANK_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_HBLANK_A));
printk(KERN_DEBUG MODULE_NAME ": \tHSYNC_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_HSYNC_A));
printk(KERN_DEBUG MODULE_NAME ": \tVTOTAL_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_VTOTAL_A));
printk(KERN_DEBUG MODULE_NAME ": \tVBLANK_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_VBLANK_A));
printk(KERN_DEBUG MODULE_NAME ": \tVSYNC_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_VSYNC_A));
printk(KERN_DEBUG MODULE_NAME ": \tDSPCSTRIDE : 0x%08x\n",
(unsigned)VML_READ32(par, VML_DSPCSTRIDE));
printk(KERN_DEBUG MODULE_NAME ": \tDSPCSIZE : 0x%08x\n",
(unsigned)VML_READ32(par, VML_DSPCSIZE));
printk(KERN_DEBUG MODULE_NAME ": \tDSPCPOS : 0x%08x\n",
(unsigned)VML_READ32(par, VML_DSPCPOS));
printk(KERN_DEBUG MODULE_NAME ": \tDSPARB : 0x%08x\n",
(unsigned)VML_READ32(par, VML_DSPARB));
printk(KERN_DEBUG MODULE_NAME ": \tDSPCADDR : 0x%08x\n",
(unsigned)VML_READ32(par, VML_DSPCADDR));
printk(KERN_DEBUG MODULE_NAME ": \tBCLRPAT_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_BCLRPAT_A));
printk(KERN_DEBUG MODULE_NAME ": \tCANVSCLR_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_CANVSCLR_A));
printk(KERN_DEBUG MODULE_NAME ": \tPIPEASRC : 0x%08x\n",
(unsigned)VML_READ32(par, VML_PIPEASRC));
printk(KERN_DEBUG MODULE_NAME ": \tPIPEACONF : 0x%08x\n",
(unsigned)VML_READ32(par, VML_PIPEACONF));
printk(KERN_DEBUG MODULE_NAME ": \tDSPCCNTR : 0x%08x\n",
(unsigned)VML_READ32(par, VML_DSPCCNTR));
printk(KERN_DEBUG MODULE_NAME ": \tRCOMPSTAT : 0x%08x\n",
(unsigned)VML_READ32(par, VML_RCOMPSTAT));
printk(KERN_DEBUG MODULE_NAME ": End of modesetting register dump.\n");
}
#endif
static int vmlfb_set_par_locked(struct vml_info *vinfo)
{
struct vml_par *par = vinfo->par;
struct fb_info *info = &vinfo->info;
struct fb_var_screeninfo *var = &info->var;
u32 htotal, hactive, hblank_start, hblank_end, hsync_start, hsync_end;
u32 vtotal, vactive, vblank_start, vblank_end, vsync_start, vsync_end;
u32 dspcntr;
int clock;
vinfo->bytes_per_pixel = var->bits_per_pixel >> 3;
vinfo->stride =
__ALIGN_MASK(var->xres_virtual * vinfo->bytes_per_pixel, 0x3F);
info->fix.line_length = vinfo->stride;
if (!subsys)
return 0;
htotal =
var->xres + var->right_margin + var->hsync_len + var->left_margin;
hactive = var->xres;
hblank_start = var->xres;
hblank_end = htotal;
hsync_start = hactive + var->right_margin;
hsync_end = hsync_start + var->hsync_len;
vtotal =
var->yres + var->lower_margin + var->vsync_len + var->upper_margin;
vactive = var->yres;
vblank_start = var->yres;
vblank_end = vtotal;
vsync_start = vactive + var->lower_margin;
vsync_end = vsync_start + var->vsync_len;
dspcntr = VML_GFX_ENABLE | VML_GFX_GAMMABYPASS;
clock = PICOS2KHZ(var->pixclock);
if (subsys->nearest_clock) {
clock = subsys->nearest_clock(subsys, clock);
} else {
clock = vml_nearest_clock(clock);
}
printk(KERN_DEBUG MODULE_NAME
": Set mode Hfreq : %d kHz, Vfreq : %d Hz.\n", clock / htotal,
((clock / htotal) * 1000) / vtotal);
switch (var->bits_per_pixel) {
case 16:
dspcntr |= VML_GFX_ARGB1555;
break;
case 32:
if (var->transp.length == 8)
dspcntr |= VML_GFX_ARGB8888 | VML_GFX_ALPHAMULT;
else
dspcntr |= VML_GFX_RGB0888;
break;
default:
return -EINVAL;
}
vmlfb_disable_pipe(vinfo);
mb();
if (subsys->set_clock)
subsys->set_clock(subsys, clock);
else
return -EINVAL;
VML_WRITE32(par, VML_HTOTAL_A, ((htotal - 1) << 16) | (hactive - 1));
VML_WRITE32(par, VML_HBLANK_A,
((hblank_end - 1) << 16) | (hblank_start - 1));
VML_WRITE32(par, VML_HSYNC_A,
((hsync_end - 1) << 16) | (hsync_start - 1));
VML_WRITE32(par, VML_VTOTAL_A, ((vtotal - 1) << 16) | (vactive - 1));
VML_WRITE32(par, VML_VBLANK_A,
((vblank_end - 1) << 16) | (vblank_start - 1));
VML_WRITE32(par, VML_VSYNC_A,
((vsync_end - 1) << 16) | (vsync_start - 1));
VML_WRITE32(par, VML_DSPCSTRIDE, vinfo->stride);
VML_WRITE32(par, VML_DSPCSIZE,
((var->yres - 1) << 16) | (var->xres - 1));
VML_WRITE32(par, VML_DSPCPOS, 0x00000000);
VML_WRITE32(par, VML_DSPARB, VML_FIFO_DEFAULT);
VML_WRITE32(par, VML_BCLRPAT_A, 0x00000000);
VML_WRITE32(par, VML_CANVSCLR_A, 0x00000000);
VML_WRITE32(par, VML_PIPEASRC,
((var->xres - 1) << 16) | (var->yres - 1));
wmb();
VML_WRITE32(par, VML_PIPEACONF, VML_PIPE_ENABLE);
wmb();
VML_WRITE32(par, VML_DSPCCNTR, dspcntr);
wmb();
VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
var->yoffset * vinfo->stride +
var->xoffset * vinfo->bytes_per_pixel);
VML_WRITE32(par, VML_RCOMPSTAT, VML_MDVO_PAD_ENABLE);
while (!(VML_READ32(par, VML_RCOMPSTAT) &
(VML_MDVO_VDC_I_RCOMP | VML_MDVO_PAD_ENABLE))) ;
vinfo->pipe_disabled = 0;
#ifdef VERMILION_DEBUG
vml_dump_regs(vinfo);
#endif
return 0;
}
static int vmlfb_set_par(struct fb_info *info)
{
struct vml_info *vinfo = container_of(info, struct vml_info, info);
int ret;
mutex_lock(&vml_mutex);
list_del(&vinfo->head);
list_add(&vinfo->head, (subsys) ? &global_has_mode : &global_no_mode);
ret = vmlfb_set_par_locked(vinfo);
mutex_unlock(&vml_mutex);
return ret;
}
static int vmlfb_blank_locked(struct vml_info *vinfo)
{
struct vml_par *par = vinfo->par;
u32 cur = VML_READ32(par, VML_PIPEACONF);
switch (vinfo->cur_blank_mode) {
case FB_BLANK_UNBLANK:
if (vinfo->pipe_disabled) {
vmlfb_set_par_locked(vinfo);
}
VML_WRITE32(par, VML_PIPEACONF, cur & ~VML_PIPE_FORCE_BORDER);
(void)VML_READ32(par, VML_PIPEACONF);
break;
case FB_BLANK_NORMAL:
if (vinfo->pipe_disabled) {
vmlfb_set_par_locked(vinfo);
}
VML_WRITE32(par, VML_PIPEACONF, cur | VML_PIPE_FORCE_BORDER);
(void)VML_READ32(par, VML_PIPEACONF);
break;
case FB_BLANK_VSYNC_SUSPEND:
case FB_BLANK_HSYNC_SUSPEND:
if (!vinfo->pipe_disabled) {
vmlfb_disable_pipe(vinfo);
}
break;
case FB_BLANK_POWERDOWN:
if (!vinfo->pipe_disabled) {
vmlfb_disable_pipe(vinfo);
}
break;
default:
return -EINVAL;
}
return 0;
}
static int vmlfb_blank(int blank_mode, struct fb_info *info)
{
struct vml_info *vinfo = container_of(info, struct vml_info, info);
int ret;
mutex_lock(&vml_mutex);
vinfo->cur_blank_mode = blank_mode;
ret = vmlfb_blank_locked(vinfo);
mutex_unlock(&vml_mutex);
return ret;
}
static int vmlfb_pan_display(struct fb_var_screeninfo *var,
struct fb_info *info)
{
struct vml_info *vinfo = container_of(info, struct vml_info, info);
struct vml_par *par = vinfo->par;
mutex_lock(&vml_mutex);
VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
var->yoffset * vinfo->stride +
var->xoffset * vinfo->bytes_per_pixel);
(void)VML_READ32(par, VML_DSPCADDR);
mutex_unlock(&vml_mutex);
return 0;
}
static int vmlfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *info)
{
u32 v;
if (regno >= 16)
return -EINVAL;
if (info->var.grayscale) {
red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8;
}
if (info->fix.visual != FB_VISUAL_TRUECOLOR)
return -EINVAL;
red = VML_TOHW(red, info->var.red.length);
blue = VML_TOHW(blue, info->var.blue.length);
green = VML_TOHW(green, info->var.green.length);
transp = VML_TOHW(transp, info->var.transp.length);
v = (red << info->var.red.offset) |
(green << info->var.green.offset) |
(blue << info->var.blue.offset) |
(transp << info->var.transp.offset);
switch (info->var.bits_per_pixel) {
case 16:
((u32 *) info->pseudo_palette)[regno] = v;
break;
case 24:
case 32:
((u32 *) info->pseudo_palette)[regno] = v;
break;
}
return 0;
}
static int vmlfb_mmap(struct fb_info *info, struct vm_area_struct *vma)
{
struct vml_info *vinfo = container_of(info, struct vml_info, info);
unsigned long size = vma->vm_end - vma->vm_start;
unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
int ret;
if (vma->vm_pgoff > (~0UL >> PAGE_SHIFT))
return -EINVAL;
if (offset + size > vinfo->vram_contig_size)
return -EINVAL;
ret = vmlfb_vram_offset(vinfo, offset);
if (ret)
return -EINVAL;
offset += vinfo->vram_start;
pgprot_val(vma->vm_page_prot) |= _PAGE_PCD;
pgprot_val(vma->vm_page_prot) &= ~_PAGE_PWT;
vma->vm_flags |= VM_RESERVED | VM_IO;
if (remap_pfn_range(vma, vma->vm_start, offset >> PAGE_SHIFT,
size, vma->vm_page_prot))
return -EAGAIN;
return 0;
}
static int vmlfb_sync(struct fb_info *info)
{
return 0;
}
static int vmlfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
{
return -EINVAL; /* just to force soft_cursor() call */
}
static struct fb_ops vmlfb_ops = {
.owner = THIS_MODULE,
.fb_open = vmlfb_open,
.fb_release = vmlfb_release,
.fb_check_var = vmlfb_check_var,
.fb_set_par = vmlfb_set_par,
.fb_blank = vmlfb_blank,
.fb_pan_display = vmlfb_pan_display,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_cursor = vmlfb_cursor,
.fb_sync = vmlfb_sync,
.fb_mmap = vmlfb_mmap,
.fb_setcolreg = vmlfb_setcolreg
};
static struct pci_device_id vml_ids[] = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, VML_DEVICE_VDC)},
{0}
};
static struct pci_driver vmlfb_pci_driver = {
.name = "vmlfb",
.id_table = vml_ids,
.probe = vml_pci_probe,
.remove = __devexit_p(vml_pci_remove)
};
static void __exit vmlfb_cleanup(void)
{
pci_unregister_driver(&vmlfb_pci_driver);
}
static int __init vmlfb_init(void)
{
#ifndef MODULE
char *option = NULL;
if (fb_get_options(MODULE_NAME, &option))
return -ENODEV;
#endif
printk(KERN_DEBUG MODULE_NAME ": initializing\n");
mutex_init(&vml_mutex);
INIT_LIST_HEAD(&global_no_mode);
INIT_LIST_HEAD(&global_has_mode);
return pci_register_driver(&vmlfb_pci_driver);
}
int vmlfb_register_subsys(struct vml_sys *sys)
{
struct vml_info *entry;
struct list_head *list;
u32 save_activate;
mutex_lock(&vml_mutex);
if (subsys != NULL) {
subsys->restore(subsys);
}
subsys = sys;
subsys->save(subsys);
/*
* We need to restart list traversal for each item, since we
* release the list mutex in the loop.
*/
list = global_no_mode.next;
while (list != &global_no_mode) {
list_del_init(list);
entry = list_entry(list, struct vml_info, head);
/*
* First, try the current mode which might not be
* completely validated with respect to the pixel clock.
*/
if (!vmlfb_check_var_locked(&entry->info.var, entry)) {
vmlfb_set_par_locked(entry);
list_add_tail(list, &global_has_mode);
} else {
/*
* Didn't work. Try to find another mode,
* that matches this subsys.
*/
mutex_unlock(&vml_mutex);
save_activate = entry->info.var.activate;
entry->info.var.bits_per_pixel = 16;
vmlfb_set_pref_pixel_format(&entry->info.var);
if (fb_find_mode(&entry->info.var,
&entry->info,
vml_default_mode, NULL, 0, NULL, 16)) {
entry->info.var.activate |=
FB_ACTIVATE_FORCE | FB_ACTIVATE_NOW;
fb_set_var(&entry->info, &entry->info.var);
} else {
printk(KERN_ERR MODULE_NAME
": Sorry. no mode found for this subsys.\n");
}
entry->info.var.activate = save_activate;
mutex_lock(&vml_mutex);
}
vmlfb_blank_locked(entry);
list = global_no_mode.next;
}
mutex_unlock(&vml_mutex);
printk(KERN_DEBUG MODULE_NAME ": Registered %s subsystem.\n",
subsys->name ? subsys->name : "unknown");
return 0;
}
EXPORT_SYMBOL_GPL(vmlfb_register_subsys);
void vmlfb_unregister_subsys(struct vml_sys *sys)
{
struct vml_info *entry, *next;
mutex_lock(&vml_mutex);
if (subsys != sys) {
mutex_unlock(&vml_mutex);
return;
}
subsys->restore(subsys);
subsys = NULL;
list_for_each_entry_safe(entry, next, &global_has_mode, head) {
printk(KERN_DEBUG MODULE_NAME ": subsys disable pipe\n");
vmlfb_disable_pipe(entry);
list_del(&entry->head);
list_add_tail(&entry->head, &global_no_mode);
}
mutex_unlock(&vml_mutex);
}
EXPORT_SYMBOL_GPL(vmlfb_unregister_subsys);
module_init(vmlfb_init);
module_exit(vmlfb_cleanup);
MODULE_AUTHOR("Tungsten Graphics");
MODULE_DESCRIPTION("Initialization of the Vermilion display devices");
MODULE_VERSION("1.0.0");
MODULE_LICENSE("GPL");