6d11320bed
[ Upstream commit 45bc6098a3e279d8e391d22428396687562797e2 ] IA32_MCG_STATUS.RIPV indicates whether the return RIP value pushed onto the stack as part of machine check delivery is valid or not. Various drivers copied a code fragment that uses the RIPV bit to determine the severity of the error as either HW_EVENT_ERR_UNCORRECTED or HW_EVENT_ERR_FATAL, but this check is reversed (marking errors where RIPV is set as "FATAL"). Reverse the tests so that the error is marked fatal when RIPV is not set. Reported-by: Gabriele Paoloni <gabriele.paoloni@intel.com> Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20200707194324.14884-1-tony.luck@intel.com Signed-off-by: Sasha Levin <sashal@kernel.org>
652 lines
16 KiB
C
652 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
*
|
|
* Shared code by both skx_edac and i10nm_edac. Originally split out
|
|
* from the skx_edac driver.
|
|
*
|
|
* This file is linked into both skx_edac and i10nm_edac drivers. In
|
|
* order to avoid link errors, this file must be like a pure library
|
|
* without including symbols and defines which would otherwise conflict,
|
|
* when linked once into a module and into a built-in object, at the
|
|
* same time. For example, __this_module symbol references when that
|
|
* file is being linked into a built-in object.
|
|
*
|
|
* Copyright (c) 2018, Intel Corporation.
|
|
*/
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/adxl.h>
|
|
#include <acpi/nfit.h>
|
|
#include <asm/mce.h>
|
|
#include "edac_module.h"
|
|
#include "skx_common.h"
|
|
|
|
static const char * const component_names[] = {
|
|
[INDEX_SOCKET] = "ProcessorSocketId",
|
|
[INDEX_MEMCTRL] = "MemoryControllerId",
|
|
[INDEX_CHANNEL] = "ChannelId",
|
|
[INDEX_DIMM] = "DimmSlotId",
|
|
};
|
|
|
|
static int component_indices[ARRAY_SIZE(component_names)];
|
|
static int adxl_component_count;
|
|
static const char * const *adxl_component_names;
|
|
static u64 *adxl_values;
|
|
static char *adxl_msg;
|
|
|
|
static char skx_msg[MSG_SIZE];
|
|
static skx_decode_f skx_decode;
|
|
static u64 skx_tolm, skx_tohm;
|
|
static LIST_HEAD(dev_edac_list);
|
|
|
|
int __init skx_adxl_get(void)
|
|
{
|
|
const char * const *names;
|
|
int i, j;
|
|
|
|
names = adxl_get_component_names();
|
|
if (!names) {
|
|
skx_printk(KERN_NOTICE, "No firmware support for address translation.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
for (i = 0; i < INDEX_MAX; i++) {
|
|
for (j = 0; names[j]; j++) {
|
|
if (!strcmp(component_names[i], names[j])) {
|
|
component_indices[i] = j;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!names[j])
|
|
goto err;
|
|
}
|
|
|
|
adxl_component_names = names;
|
|
while (*names++)
|
|
adxl_component_count++;
|
|
|
|
adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values),
|
|
GFP_KERNEL);
|
|
if (!adxl_values) {
|
|
adxl_component_count = 0;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL);
|
|
if (!adxl_msg) {
|
|
adxl_component_count = 0;
|
|
kfree(adxl_values);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
err:
|
|
skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ",
|
|
component_names[i]);
|
|
for (j = 0; names[j]; j++)
|
|
skx_printk(KERN_CONT, "%s ", names[j]);
|
|
skx_printk(KERN_CONT, "\n");
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
void __exit skx_adxl_put(void)
|
|
{
|
|
kfree(adxl_values);
|
|
kfree(adxl_msg);
|
|
}
|
|
|
|
static bool skx_adxl_decode(struct decoded_addr *res)
|
|
{
|
|
int i, len = 0;
|
|
|
|
if (res->addr >= skx_tohm || (res->addr >= skx_tolm &&
|
|
res->addr < BIT_ULL(32))) {
|
|
edac_dbg(0, "Address 0x%llx out of range\n", res->addr);
|
|
return false;
|
|
}
|
|
|
|
if (adxl_decode(res->addr, adxl_values)) {
|
|
edac_dbg(0, "Failed to decode 0x%llx\n", res->addr);
|
|
return false;
|
|
}
|
|
|
|
res->socket = (int)adxl_values[component_indices[INDEX_SOCKET]];
|
|
res->imc = (int)adxl_values[component_indices[INDEX_MEMCTRL]];
|
|
res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]];
|
|
res->dimm = (int)adxl_values[component_indices[INDEX_DIMM]];
|
|
|
|
for (i = 0; i < adxl_component_count; i++) {
|
|
if (adxl_values[i] == ~0x0ull)
|
|
continue;
|
|
|
|
len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx",
|
|
adxl_component_names[i], adxl_values[i]);
|
|
if (MSG_SIZE - len <= 0)
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void skx_set_decode(skx_decode_f decode)
|
|
{
|
|
skx_decode = decode;
|
|
}
|
|
|
|
int skx_get_src_id(struct skx_dev *d, int off, u8 *id)
|
|
{
|
|
u32 reg;
|
|
|
|
if (pci_read_config_dword(d->util_all, off, ®)) {
|
|
skx_printk(KERN_ERR, "Failed to read src id\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
*id = GET_BITFIELD(reg, 12, 14);
|
|
return 0;
|
|
}
|
|
|
|
int skx_get_node_id(struct skx_dev *d, u8 *id)
|
|
{
|
|
u32 reg;
|
|
|
|
if (pci_read_config_dword(d->util_all, 0xf4, ®)) {
|
|
skx_printk(KERN_ERR, "Failed to read node id\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
*id = GET_BITFIELD(reg, 0, 2);
|
|
return 0;
|
|
}
|
|
|
|
static int get_width(u32 mtr)
|
|
{
|
|
switch (GET_BITFIELD(mtr, 8, 9)) {
|
|
case 0:
|
|
return DEV_X4;
|
|
case 1:
|
|
return DEV_X8;
|
|
case 2:
|
|
return DEV_X16;
|
|
}
|
|
return DEV_UNKNOWN;
|
|
}
|
|
|
|
/*
|
|
* We use the per-socket device @did to count how many sockets are present,
|
|
* and to detemine which PCI buses are associated with each socket. Allocate
|
|
* and build the full list of all the skx_dev structures that we need here.
|
|
*/
|
|
int skx_get_all_bus_mappings(unsigned int did, int off, enum type type,
|
|
struct list_head **list)
|
|
{
|
|
struct pci_dev *pdev, *prev;
|
|
struct skx_dev *d;
|
|
u32 reg;
|
|
int ndev = 0;
|
|
|
|
prev = NULL;
|
|
for (;;) {
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, prev);
|
|
if (!pdev)
|
|
break;
|
|
ndev++;
|
|
d = kzalloc(sizeof(*d), GFP_KERNEL);
|
|
if (!d) {
|
|
pci_dev_put(pdev);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (pci_read_config_dword(pdev, off, ®)) {
|
|
kfree(d);
|
|
pci_dev_put(pdev);
|
|
skx_printk(KERN_ERR, "Failed to read bus idx\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
d->bus[0] = GET_BITFIELD(reg, 0, 7);
|
|
d->bus[1] = GET_BITFIELD(reg, 8, 15);
|
|
if (type == SKX) {
|
|
d->seg = pci_domain_nr(pdev->bus);
|
|
d->bus[2] = GET_BITFIELD(reg, 16, 23);
|
|
d->bus[3] = GET_BITFIELD(reg, 24, 31);
|
|
} else {
|
|
d->seg = GET_BITFIELD(reg, 16, 23);
|
|
}
|
|
|
|
edac_dbg(2, "busses: 0x%x, 0x%x, 0x%x, 0x%x\n",
|
|
d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
|
|
list_add_tail(&d->list, &dev_edac_list);
|
|
prev = pdev;
|
|
}
|
|
|
|
if (list)
|
|
*list = &dev_edac_list;
|
|
return ndev;
|
|
}
|
|
|
|
int skx_get_hi_lo(unsigned int did, int off[], u64 *tolm, u64 *tohm)
|
|
{
|
|
struct pci_dev *pdev;
|
|
u32 reg;
|
|
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, NULL);
|
|
if (!pdev) {
|
|
edac_dbg(2, "Can't get tolm/tohm\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (pci_read_config_dword(pdev, off[0], ®)) {
|
|
skx_printk(KERN_ERR, "Failed to read tolm\n");
|
|
goto fail;
|
|
}
|
|
skx_tolm = reg;
|
|
|
|
if (pci_read_config_dword(pdev, off[1], ®)) {
|
|
skx_printk(KERN_ERR, "Failed to read lower tohm\n");
|
|
goto fail;
|
|
}
|
|
skx_tohm = reg;
|
|
|
|
if (pci_read_config_dword(pdev, off[2], ®)) {
|
|
skx_printk(KERN_ERR, "Failed to read upper tohm\n");
|
|
goto fail;
|
|
}
|
|
skx_tohm |= (u64)reg << 32;
|
|
|
|
pci_dev_put(pdev);
|
|
*tolm = skx_tolm;
|
|
*tohm = skx_tohm;
|
|
edac_dbg(2, "tolm = 0x%llx tohm = 0x%llx\n", skx_tolm, skx_tohm);
|
|
return 0;
|
|
fail:
|
|
pci_dev_put(pdev);
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int skx_get_dimm_attr(u32 reg, int lobit, int hibit, int add,
|
|
int minval, int maxval, const char *name)
|
|
{
|
|
u32 val = GET_BITFIELD(reg, lobit, hibit);
|
|
|
|
if (val < minval || val > maxval) {
|
|
edac_dbg(2, "bad %s = %d (raw=0x%x)\n", name, val, reg);
|
|
return -EINVAL;
|
|
}
|
|
return val + add;
|
|
}
|
|
|
|
#define numrank(reg) skx_get_dimm_attr(reg, 12, 13, 0, 0, 2, "ranks")
|
|
#define numrow(reg) skx_get_dimm_attr(reg, 2, 4, 12, 1, 6, "rows")
|
|
#define numcol(reg) skx_get_dimm_attr(reg, 0, 1, 10, 0, 2, "cols")
|
|
|
|
int skx_get_dimm_info(u32 mtr, u32 mcmtr, u32 amap, struct dimm_info *dimm,
|
|
struct skx_imc *imc, int chan, int dimmno)
|
|
{
|
|
int banks = 16, ranks, rows, cols, npages;
|
|
u64 size;
|
|
|
|
ranks = numrank(mtr);
|
|
rows = numrow(mtr);
|
|
cols = numcol(mtr);
|
|
|
|
/*
|
|
* Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
|
|
*/
|
|
size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
|
|
npages = MiB_TO_PAGES(size);
|
|
|
|
edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: 0x%x, col: 0x%x\n",
|
|
imc->mc, chan, dimmno, size, npages,
|
|
banks, 1 << ranks, rows, cols);
|
|
|
|
imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mcmtr, 0, 0);
|
|
imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mcmtr, 9, 9);
|
|
imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
|
|
imc->chan[chan].dimms[dimmno].rowbits = rows;
|
|
imc->chan[chan].dimms[dimmno].colbits = cols;
|
|
|
|
dimm->nr_pages = npages;
|
|
dimm->grain = 32;
|
|
dimm->dtype = get_width(mtr);
|
|
dimm->mtype = MEM_DDR4;
|
|
dimm->edac_mode = EDAC_SECDED; /* likely better than this */
|
|
snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
|
|
imc->src_id, imc->lmc, chan, dimmno);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int skx_get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc,
|
|
int chan, int dimmno, const char *mod_str)
|
|
{
|
|
int smbios_handle;
|
|
u32 dev_handle;
|
|
u16 flags;
|
|
u64 size = 0;
|
|
|
|
dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc,
|
|
imc->src_id, 0);
|
|
|
|
smbios_handle = nfit_get_smbios_id(dev_handle, &flags);
|
|
if (smbios_handle == -EOPNOTSUPP) {
|
|
pr_warn_once("%s: Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n", mod_str);
|
|
goto unknown_size;
|
|
}
|
|
|
|
if (smbios_handle < 0) {
|
|
skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=0x%x\n", dev_handle);
|
|
goto unknown_size;
|
|
}
|
|
|
|
if (flags & ACPI_NFIT_MEM_MAP_FAILED) {
|
|
skx_printk(KERN_ERR, "NVDIMM ADR=0x%x is not mapped\n", dev_handle);
|
|
goto unknown_size;
|
|
}
|
|
|
|
size = dmi_memdev_size(smbios_handle);
|
|
if (size == ~0ull)
|
|
skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=0x%x/SMBIOS=0x%x\n",
|
|
dev_handle, smbios_handle);
|
|
|
|
unknown_size:
|
|
dimm->nr_pages = size >> PAGE_SHIFT;
|
|
dimm->grain = 32;
|
|
dimm->dtype = DEV_UNKNOWN;
|
|
dimm->mtype = MEM_NVDIMM;
|
|
dimm->edac_mode = EDAC_SECDED; /* likely better than this */
|
|
|
|
edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n",
|
|
imc->mc, chan, dimmno, size >> 20, dimm->nr_pages);
|
|
|
|
snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
|
|
imc->src_id, imc->lmc, chan, dimmno);
|
|
|
|
return (size == 0 || size == ~0ull) ? 0 : 1;
|
|
}
|
|
|
|
int skx_register_mci(struct skx_imc *imc, struct pci_dev *pdev,
|
|
const char *ctl_name, const char *mod_str,
|
|
get_dimm_config_f get_dimm_config)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct edac_mc_layer layers[2];
|
|
struct skx_pvt *pvt;
|
|
int rc;
|
|
|
|
/* Allocate a new MC control structure */
|
|
layers[0].type = EDAC_MC_LAYER_CHANNEL;
|
|
layers[0].size = NUM_CHANNELS;
|
|
layers[0].is_virt_csrow = false;
|
|
layers[1].type = EDAC_MC_LAYER_SLOT;
|
|
layers[1].size = NUM_DIMMS;
|
|
layers[1].is_virt_csrow = true;
|
|
mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
|
|
sizeof(struct skx_pvt));
|
|
|
|
if (unlikely(!mci))
|
|
return -ENOMEM;
|
|
|
|
edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
|
|
|
|
/* Associate skx_dev and mci for future usage */
|
|
imc->mci = mci;
|
|
pvt = mci->pvt_info;
|
|
pvt->imc = imc;
|
|
|
|
mci->ctl_name = kasprintf(GFP_KERNEL, "%s#%d IMC#%d", ctl_name,
|
|
imc->node_id, imc->lmc);
|
|
if (!mci->ctl_name) {
|
|
rc = -ENOMEM;
|
|
goto fail0;
|
|
}
|
|
|
|
mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM;
|
|
mci->edac_ctl_cap = EDAC_FLAG_NONE;
|
|
mci->edac_cap = EDAC_FLAG_NONE;
|
|
mci->mod_name = mod_str;
|
|
mci->dev_name = pci_name(pdev);
|
|
mci->ctl_page_to_phys = NULL;
|
|
|
|
rc = get_dimm_config(mci);
|
|
if (rc < 0)
|
|
goto fail;
|
|
|
|
/* Record ptr to the generic device */
|
|
mci->pdev = &pdev->dev;
|
|
|
|
/* Add this new MC control structure to EDAC's list of MCs */
|
|
if (unlikely(edac_mc_add_mc(mci))) {
|
|
edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
|
|
rc = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
kfree(mci->ctl_name);
|
|
fail0:
|
|
edac_mc_free(mci);
|
|
imc->mci = NULL;
|
|
return rc;
|
|
}
|
|
|
|
static void skx_unregister_mci(struct skx_imc *imc)
|
|
{
|
|
struct mem_ctl_info *mci = imc->mci;
|
|
|
|
if (!mci)
|
|
return;
|
|
|
|
edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
|
|
|
|
/* Remove MC sysfs nodes */
|
|
edac_mc_del_mc(mci->pdev);
|
|
|
|
edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
|
|
kfree(mci->ctl_name);
|
|
edac_mc_free(mci);
|
|
}
|
|
|
|
static struct mem_ctl_info *get_mci(int src_id, int lmc)
|
|
{
|
|
struct skx_dev *d;
|
|
|
|
if (lmc > NUM_IMC - 1) {
|
|
skx_printk(KERN_ERR, "Bad lmc %d\n", lmc);
|
|
return NULL;
|
|
}
|
|
|
|
list_for_each_entry(d, &dev_edac_list, list) {
|
|
if (d->imc[0].src_id == src_id)
|
|
return d->imc[lmc].mci;
|
|
}
|
|
|
|
skx_printk(KERN_ERR, "No mci for src_id %d lmc %d\n", src_id, lmc);
|
|
return NULL;
|
|
}
|
|
|
|
static void skx_mce_output_error(struct mem_ctl_info *mci,
|
|
const struct mce *m,
|
|
struct decoded_addr *res)
|
|
{
|
|
enum hw_event_mc_err_type tp_event;
|
|
char *optype;
|
|
bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
|
|
bool overflow = GET_BITFIELD(m->status, 62, 62);
|
|
bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
|
|
bool recoverable;
|
|
u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
|
|
u32 mscod = GET_BITFIELD(m->status, 16, 31);
|
|
u32 errcode = GET_BITFIELD(m->status, 0, 15);
|
|
u32 optypenum = GET_BITFIELD(m->status, 4, 6);
|
|
|
|
recoverable = GET_BITFIELD(m->status, 56, 56);
|
|
|
|
if (uncorrected_error) {
|
|
core_err_cnt = 1;
|
|
if (ripv) {
|
|
tp_event = HW_EVENT_ERR_UNCORRECTED;
|
|
} else {
|
|
tp_event = HW_EVENT_ERR_FATAL;
|
|
}
|
|
} else {
|
|
tp_event = HW_EVENT_ERR_CORRECTED;
|
|
}
|
|
|
|
/*
|
|
* According to Intel Architecture spec vol 3B,
|
|
* Table 15-10 "IA32_MCi_Status [15:0] Compound Error Code Encoding"
|
|
* memory errors should fit one of these masks:
|
|
* 000f 0000 1mmm cccc (binary)
|
|
* 000f 0010 1mmm cccc (binary) [RAM used as cache]
|
|
* where:
|
|
* f = Correction Report Filtering Bit. If 1, subsequent errors
|
|
* won't be shown
|
|
* mmm = error type
|
|
* cccc = channel
|
|
* If the mask doesn't match, report an error to the parsing logic
|
|
*/
|
|
if (!((errcode & 0xef80) == 0x80 || (errcode & 0xef80) == 0x280)) {
|
|
optype = "Can't parse: it is not a mem";
|
|
} else {
|
|
switch (optypenum) {
|
|
case 0:
|
|
optype = "generic undef request error";
|
|
break;
|
|
case 1:
|
|
optype = "memory read error";
|
|
break;
|
|
case 2:
|
|
optype = "memory write error";
|
|
break;
|
|
case 3:
|
|
optype = "addr/cmd error";
|
|
break;
|
|
case 4:
|
|
optype = "memory scrubbing error";
|
|
break;
|
|
default:
|
|
optype = "reserved";
|
|
break;
|
|
}
|
|
}
|
|
if (adxl_component_count) {
|
|
snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x %s",
|
|
overflow ? " OVERFLOW" : "",
|
|
(uncorrected_error && recoverable) ? " recoverable" : "",
|
|
mscod, errcode, adxl_msg);
|
|
} else {
|
|
snprintf(skx_msg, MSG_SIZE,
|
|
"%s%s err_code:0x%04x:0x%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:0x%x col:0x%x",
|
|
overflow ? " OVERFLOW" : "",
|
|
(uncorrected_error && recoverable) ? " recoverable" : "",
|
|
mscod, errcode,
|
|
res->socket, res->imc, res->rank,
|
|
res->bank_group, res->bank_address, res->row, res->column);
|
|
}
|
|
|
|
edac_dbg(0, "%s\n", skx_msg);
|
|
|
|
/* Call the helper to output message */
|
|
edac_mc_handle_error(tp_event, mci, core_err_cnt,
|
|
m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
|
|
res->channel, res->dimm, -1,
|
|
optype, skx_msg);
|
|
}
|
|
|
|
int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
|
|
void *data)
|
|
{
|
|
struct mce *mce = (struct mce *)data;
|
|
struct decoded_addr res;
|
|
struct mem_ctl_info *mci;
|
|
char *type;
|
|
|
|
if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
|
|
return NOTIFY_DONE;
|
|
|
|
/* ignore unless this is memory related with an address */
|
|
if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
|
|
return NOTIFY_DONE;
|
|
|
|
memset(&res, 0, sizeof(res));
|
|
res.addr = mce->addr;
|
|
|
|
if (adxl_component_count) {
|
|
if (!skx_adxl_decode(&res))
|
|
return NOTIFY_DONE;
|
|
|
|
mci = get_mci(res.socket, res.imc);
|
|
} else {
|
|
if (!skx_decode || !skx_decode(&res))
|
|
return NOTIFY_DONE;
|
|
|
|
mci = res.dev->imc[res.imc].mci;
|
|
}
|
|
|
|
if (!mci)
|
|
return NOTIFY_DONE;
|
|
|
|
if (mce->mcgstatus & MCG_STATUS_MCIP)
|
|
type = "Exception";
|
|
else
|
|
type = "Event";
|
|
|
|
skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
|
|
|
|
skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: 0x%llx "
|
|
"Bank %d: 0x%llx\n", mce->extcpu, type,
|
|
mce->mcgstatus, mce->bank, mce->status);
|
|
skx_mc_printk(mci, KERN_DEBUG, "TSC 0x%llx ", mce->tsc);
|
|
skx_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", mce->addr);
|
|
skx_mc_printk(mci, KERN_DEBUG, "MISC 0x%llx ", mce->misc);
|
|
|
|
skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:0x%x TIME %llu SOCKET "
|
|
"%u APIC 0x%x\n", mce->cpuvendor, mce->cpuid,
|
|
mce->time, mce->socketid, mce->apicid);
|
|
|
|
skx_mce_output_error(mci, mce, &res);
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
void skx_remove(void)
|
|
{
|
|
int i, j;
|
|
struct skx_dev *d, *tmp;
|
|
|
|
edac_dbg(0, "\n");
|
|
|
|
list_for_each_entry_safe(d, tmp, &dev_edac_list, list) {
|
|
list_del(&d->list);
|
|
for (i = 0; i < NUM_IMC; i++) {
|
|
if (d->imc[i].mci)
|
|
skx_unregister_mci(&d->imc[i]);
|
|
|
|
if (d->imc[i].mdev)
|
|
pci_dev_put(d->imc[i].mdev);
|
|
|
|
if (d->imc[i].mbase)
|
|
iounmap(d->imc[i].mbase);
|
|
|
|
for (j = 0; j < NUM_CHANNELS; j++) {
|
|
if (d->imc[i].chan[j].cdev)
|
|
pci_dev_put(d->imc[i].chan[j].cdev);
|
|
}
|
|
}
|
|
if (d->util_all)
|
|
pci_dev_put(d->util_all);
|
|
if (d->sad_all)
|
|
pci_dev_put(d->sad_all);
|
|
if (d->uracu)
|
|
pci_dev_put(d->uracu);
|
|
|
|
kfree(d);
|
|
}
|
|
}
|