868801e561
Nathan Roberts noticed the nand_write_ecc index into oobbuf goes out of bounds when crossing an erase block boundary, causing incorrect OOB data to be written and corrupting memory. Reset the index to zero after re-preparing oobbuf for a new erase block. Signed-off-by: Todd Poynor <tpoynor@mvista.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2731 lines
79 KiB
C
2731 lines
79 KiB
C
/*
|
|
* drivers/mtd/nand.c
|
|
*
|
|
* Overview:
|
|
* This is the generic MTD driver for NAND flash devices. It should be
|
|
* capable of working with almost all NAND chips currently available.
|
|
* Basic support for AG-AND chips is provided.
|
|
*
|
|
* Additional technical information is available on
|
|
* http://www.linux-mtd.infradead.org/tech/nand.html
|
|
*
|
|
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
|
|
* 2002 Thomas Gleixner (tglx@linutronix.de)
|
|
*
|
|
* 02-08-2004 tglx: support for strange chips, which cannot auto increment
|
|
* pages on read / read_oob
|
|
*
|
|
* 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes
|
|
* pointed this out, as he marked an auto increment capable chip
|
|
* as NOAUTOINCR in the board driver.
|
|
* Make reads over block boundaries work too
|
|
*
|
|
* 04-14-2004 tglx: first working version for 2k page size chips
|
|
*
|
|
* 05-19-2004 tglx: Basic support for Renesas AG-AND chips
|
|
*
|
|
* 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
|
|
* among multiple independend devices. Suggestions and initial patch
|
|
* from Ben Dooks <ben-mtd@fluff.org>
|
|
*
|
|
* 12-05-2004 dmarlin: add workaround for Renesas AG-AND chips "disturb" issue.
|
|
* Basically, any block not rewritten may lose data when surrounding blocks
|
|
* are rewritten many times. JFFS2 ensures this doesn't happen for blocks
|
|
* it uses, but the Bad Block Table(s) may not be rewritten. To ensure they
|
|
* do not lose data, force them to be rewritten when some of the surrounding
|
|
* blocks are erased. Rather than tracking a specific nearby block (which
|
|
* could itself go bad), use a page address 'mask' to select several blocks
|
|
* in the same area, and rewrite the BBT when any of them are erased.
|
|
*
|
|
* 01-03-2005 dmarlin: added support for the device recovery command sequence for Renesas
|
|
* AG-AND chips. If there was a sudden loss of power during an erase operation,
|
|
* a "device recovery" operation must be performed when power is restored
|
|
* to ensure correct operation.
|
|
*
|
|
* 01-20-2005 dmarlin: added support for optional hardware specific callback routine to
|
|
* perform extra error status checks on erase and write failures. This required
|
|
* adding a wrapper function for nand_read_ecc.
|
|
*
|
|
* 08-20-2005 vwool: suspend/resume added
|
|
*
|
|
* Credits:
|
|
* David Woodhouse for adding multichip support
|
|
*
|
|
* Aleph One Ltd. and Toby Churchill Ltd. for supporting the
|
|
* rework for 2K page size chips
|
|
*
|
|
* TODO:
|
|
* Enable cached programming for 2k page size chips
|
|
* Check, if mtd->ecctype should be set to MTD_ECC_HW
|
|
* if we have HW ecc support.
|
|
* The AG-AND chips have nice features for speed improvement,
|
|
* which are not supported yet. Read / program 4 pages in one go.
|
|
*
|
|
* $Id: nand_base.c,v 1.150 2005/09/15 13:58:48 vwool Exp $
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
#include <linux/mtd/compatmac.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/bitops.h>
|
|
#include <asm/io.h>
|
|
|
|
#ifdef CONFIG_MTD_PARTITIONS
|
|
#include <linux/mtd/partitions.h>
|
|
#endif
|
|
|
|
/* Define default oob placement schemes for large and small page devices */
|
|
static struct nand_oobinfo nand_oob_8 = {
|
|
.useecc = MTD_NANDECC_AUTOPLACE,
|
|
.eccbytes = 3,
|
|
.eccpos = {0, 1, 2},
|
|
.oobfree = { {3, 2}, {6, 2} }
|
|
};
|
|
|
|
static struct nand_oobinfo nand_oob_16 = {
|
|
.useecc = MTD_NANDECC_AUTOPLACE,
|
|
.eccbytes = 6,
|
|
.eccpos = {0, 1, 2, 3, 6, 7},
|
|
.oobfree = { {8, 8} }
|
|
};
|
|
|
|
static struct nand_oobinfo nand_oob_64 = {
|
|
.useecc = MTD_NANDECC_AUTOPLACE,
|
|
.eccbytes = 24,
|
|
.eccpos = {
|
|
40, 41, 42, 43, 44, 45, 46, 47,
|
|
48, 49, 50, 51, 52, 53, 54, 55,
|
|
56, 57, 58, 59, 60, 61, 62, 63},
|
|
.oobfree = { {2, 38} }
|
|
};
|
|
|
|
/* This is used for padding purposes in nand_write_oob */
|
|
static u_char ffchars[] = {
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
};
|
|
|
|
/*
|
|
* NAND low-level MTD interface functions
|
|
*/
|
|
static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
|
|
static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
|
|
static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
|
|
|
|
static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
|
|
static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
|
|
static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
|
|
static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
|
|
static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
|
|
static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
|
|
static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
|
|
unsigned long count, loff_t to, size_t * retlen);
|
|
static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
|
|
unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
|
|
static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
|
|
static void nand_sync (struct mtd_info *mtd);
|
|
|
|
/* Some internal functions */
|
|
static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,
|
|
struct nand_oobinfo *oobsel, int mode);
|
|
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
|
|
static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
|
|
u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
|
|
#else
|
|
#define nand_verify_pages(...) (0)
|
|
#endif
|
|
|
|
static int nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state);
|
|
|
|
/**
|
|
* nand_release_device - [GENERIC] release chip
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Deselect, release chip lock and wake up anyone waiting on the device
|
|
*/
|
|
static void nand_release_device (struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
/* De-select the NAND device */
|
|
this->select_chip(mtd, -1);
|
|
|
|
if (this->controller) {
|
|
/* Release the controller and the chip */
|
|
spin_lock(&this->controller->lock);
|
|
this->controller->active = NULL;
|
|
this->state = FL_READY;
|
|
wake_up(&this->controller->wq);
|
|
spin_unlock(&this->controller->lock);
|
|
} else {
|
|
/* Release the chip */
|
|
spin_lock(&this->chip_lock);
|
|
this->state = FL_READY;
|
|
wake_up(&this->wq);
|
|
spin_unlock(&this->chip_lock);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* nand_read_byte - [DEFAULT] read one byte from the chip
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Default read function for 8bit buswith
|
|
*/
|
|
static u_char nand_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
return readb(this->IO_ADDR_R);
|
|
}
|
|
|
|
/**
|
|
* nand_write_byte - [DEFAULT] write one byte to the chip
|
|
* @mtd: MTD device structure
|
|
* @byte: pointer to data byte to write
|
|
*
|
|
* Default write function for 8it buswith
|
|
*/
|
|
static void nand_write_byte(struct mtd_info *mtd, u_char byte)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
writeb(byte, this->IO_ADDR_W);
|
|
}
|
|
|
|
/**
|
|
* nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Default read function for 16bit buswith with
|
|
* endianess conversion
|
|
*/
|
|
static u_char nand_read_byte16(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
|
|
}
|
|
|
|
/**
|
|
* nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
|
|
* @mtd: MTD device structure
|
|
* @byte: pointer to data byte to write
|
|
*
|
|
* Default write function for 16bit buswith with
|
|
* endianess conversion
|
|
*/
|
|
static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
|
|
}
|
|
|
|
/**
|
|
* nand_read_word - [DEFAULT] read one word from the chip
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Default read function for 16bit buswith without
|
|
* endianess conversion
|
|
*/
|
|
static u16 nand_read_word(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
return readw(this->IO_ADDR_R);
|
|
}
|
|
|
|
/**
|
|
* nand_write_word - [DEFAULT] write one word to the chip
|
|
* @mtd: MTD device structure
|
|
* @word: data word to write
|
|
*
|
|
* Default write function for 16bit buswith without
|
|
* endianess conversion
|
|
*/
|
|
static void nand_write_word(struct mtd_info *mtd, u16 word)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
writew(word, this->IO_ADDR_W);
|
|
}
|
|
|
|
/**
|
|
* nand_select_chip - [DEFAULT] control CE line
|
|
* @mtd: MTD device structure
|
|
* @chip: chipnumber to select, -1 for deselect
|
|
*
|
|
* Default select function for 1 chip devices.
|
|
*/
|
|
static void nand_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
switch(chip) {
|
|
case -1:
|
|
this->hwcontrol(mtd, NAND_CTL_CLRNCE);
|
|
break;
|
|
case 0:
|
|
this->hwcontrol(mtd, NAND_CTL_SETNCE);
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* nand_write_buf - [DEFAULT] write buffer to chip
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*
|
|
* Default write function for 8bit buswith
|
|
*/
|
|
static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
for (i=0; i<len; i++)
|
|
writeb(buf[i], this->IO_ADDR_W);
|
|
}
|
|
|
|
/**
|
|
* nand_read_buf - [DEFAULT] read chip data into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*
|
|
* Default read function for 8bit buswith
|
|
*/
|
|
static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
for (i=0; i<len; i++)
|
|
buf[i] = readb(this->IO_ADDR_R);
|
|
}
|
|
|
|
/**
|
|
* nand_verify_buf - [DEFAULT] Verify chip data against buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer containing the data to compare
|
|
* @len: number of bytes to compare
|
|
*
|
|
* Default verify function for 8bit buswith
|
|
*/
|
|
static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
for (i=0; i<len; i++)
|
|
if (buf[i] != readb(this->IO_ADDR_R))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_write_buf16 - [DEFAULT] write buffer to chip
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*
|
|
* Default write function for 16bit buswith
|
|
*/
|
|
static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *this = mtd->priv;
|
|
u16 *p = (u16 *) buf;
|
|
len >>= 1;
|
|
|
|
for (i=0; i<len; i++)
|
|
writew(p[i], this->IO_ADDR_W);
|
|
|
|
}
|
|
|
|
/**
|
|
* nand_read_buf16 - [DEFAULT] read chip data into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*
|
|
* Default read function for 16bit buswith
|
|
*/
|
|
static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *this = mtd->priv;
|
|
u16 *p = (u16 *) buf;
|
|
len >>= 1;
|
|
|
|
for (i=0; i<len; i++)
|
|
p[i] = readw(this->IO_ADDR_R);
|
|
}
|
|
|
|
/**
|
|
* nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer containing the data to compare
|
|
* @len: number of bytes to compare
|
|
*
|
|
* Default verify function for 16bit buswith
|
|
*/
|
|
static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *this = mtd->priv;
|
|
u16 *p = (u16 *) buf;
|
|
len >>= 1;
|
|
|
|
for (i=0; i<len; i++)
|
|
if (p[i] != readw(this->IO_ADDR_R))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_block_bad - [DEFAULT] Read bad block marker from the chip
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset from device start
|
|
* @getchip: 0, if the chip is already selected
|
|
*
|
|
* Check, if the block is bad.
|
|
*/
|
|
static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
|
|
{
|
|
int page, chipnr, res = 0;
|
|
struct nand_chip *this = mtd->priv;
|
|
u16 bad;
|
|
|
|
if (getchip) {
|
|
page = (int)(ofs >> this->page_shift);
|
|
chipnr = (int)(ofs >> this->chip_shift);
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
nand_get_device (this, mtd, FL_READING);
|
|
|
|
/* Select the NAND device */
|
|
this->select_chip(mtd, chipnr);
|
|
} else
|
|
page = (int) ofs;
|
|
|
|
if (this->options & NAND_BUSWIDTH_16) {
|
|
this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
|
|
bad = cpu_to_le16(this->read_word(mtd));
|
|
if (this->badblockpos & 0x1)
|
|
bad >>= 8;
|
|
if ((bad & 0xFF) != 0xff)
|
|
res = 1;
|
|
} else {
|
|
this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
|
|
if (this->read_byte(mtd) != 0xff)
|
|
res = 1;
|
|
}
|
|
|
|
if (getchip) {
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
nand_release_device(mtd);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* nand_default_block_markbad - [DEFAULT] mark a block bad
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset from device start
|
|
*
|
|
* This is the default implementation, which can be overridden by
|
|
* a hardware specific driver.
|
|
*/
|
|
static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
u_char buf[2] = {0, 0};
|
|
size_t retlen;
|
|
int block;
|
|
|
|
/* Get block number */
|
|
block = ((int) ofs) >> this->bbt_erase_shift;
|
|
if (this->bbt)
|
|
this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
|
|
|
|
/* Do we have a flash based bad block table ? */
|
|
if (this->options & NAND_USE_FLASH_BBT)
|
|
return nand_update_bbt (mtd, ofs);
|
|
|
|
/* We write two bytes, so we dont have to mess with 16 bit access */
|
|
ofs += mtd->oobsize + (this->badblockpos & ~0x01);
|
|
return nand_write_oob (mtd, ofs , 2, &retlen, buf);
|
|
}
|
|
|
|
/**
|
|
* nand_check_wp - [GENERIC] check if the chip is write protected
|
|
* @mtd: MTD device structure
|
|
* Check, if the device is write protected
|
|
*
|
|
* The function expects, that the device is already selected
|
|
*/
|
|
static int nand_check_wp (struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
/* Check the WP bit */
|
|
this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
|
|
return (this->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
|
|
}
|
|
|
|
/**
|
|
* nand_block_checkbad - [GENERIC] Check if a block is marked bad
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset from device start
|
|
* @getchip: 0, if the chip is already selected
|
|
* @allowbbt: 1, if its allowed to access the bbt area
|
|
*
|
|
* Check, if the block is bad. Either by reading the bad block table or
|
|
* calling of the scan function.
|
|
*/
|
|
static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
if (!this->bbt)
|
|
return this->block_bad(mtd, ofs, getchip);
|
|
|
|
/* Return info from the table */
|
|
return nand_isbad_bbt (mtd, ofs, allowbbt);
|
|
}
|
|
|
|
/*
|
|
* Wait for the ready pin, after a command
|
|
* The timeout is catched later.
|
|
*/
|
|
static void nand_wait_ready(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
unsigned long timeo = jiffies + 2;
|
|
|
|
/* wait until command is processed or timeout occures */
|
|
do {
|
|
if (this->dev_ready(mtd))
|
|
return;
|
|
touch_softlockup_watchdog();
|
|
} while (time_before(jiffies, timeo));
|
|
}
|
|
|
|
/**
|
|
* nand_command - [DEFAULT] Send command to NAND device
|
|
* @mtd: MTD device structure
|
|
* @command: the command to be sent
|
|
* @column: the column address for this command, -1 if none
|
|
* @page_addr: the page address for this command, -1 if none
|
|
*
|
|
* Send command to NAND device. This function is used for small page
|
|
* devices (256/512 Bytes per page)
|
|
*/
|
|
static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
|
|
{
|
|
register struct nand_chip *this = mtd->priv;
|
|
|
|
/* Begin command latch cycle */
|
|
this->hwcontrol(mtd, NAND_CTL_SETCLE);
|
|
/*
|
|
* Write out the command to the device.
|
|
*/
|
|
if (command == NAND_CMD_SEQIN) {
|
|
int readcmd;
|
|
|
|
if (column >= mtd->oobblock) {
|
|
/* OOB area */
|
|
column -= mtd->oobblock;
|
|
readcmd = NAND_CMD_READOOB;
|
|
} else if (column < 256) {
|
|
/* First 256 bytes --> READ0 */
|
|
readcmd = NAND_CMD_READ0;
|
|
} else {
|
|
column -= 256;
|
|
readcmd = NAND_CMD_READ1;
|
|
}
|
|
this->write_byte(mtd, readcmd);
|
|
}
|
|
this->write_byte(mtd, command);
|
|
|
|
/* Set ALE and clear CLE to start address cycle */
|
|
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
|
|
|
|
if (column != -1 || page_addr != -1) {
|
|
this->hwcontrol(mtd, NAND_CTL_SETALE);
|
|
|
|
/* Serially input address */
|
|
if (column != -1) {
|
|
/* Adjust columns for 16 bit buswidth */
|
|
if (this->options & NAND_BUSWIDTH_16)
|
|
column >>= 1;
|
|
this->write_byte(mtd, column);
|
|
}
|
|
if (page_addr != -1) {
|
|
this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
|
|
this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
|
|
/* One more address cycle for devices > 32MiB */
|
|
if (this->chipsize > (32 << 20))
|
|
this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
|
|
}
|
|
/* Latch in address */
|
|
this->hwcontrol(mtd, NAND_CTL_CLRALE);
|
|
}
|
|
|
|
/*
|
|
* program and erase have their own busy handlers
|
|
* status and sequential in needs no delay
|
|
*/
|
|
switch (command) {
|
|
|
|
case NAND_CMD_PAGEPROG:
|
|
case NAND_CMD_ERASE1:
|
|
case NAND_CMD_ERASE2:
|
|
case NAND_CMD_SEQIN:
|
|
case NAND_CMD_STATUS:
|
|
return;
|
|
|
|
case NAND_CMD_RESET:
|
|
if (this->dev_ready)
|
|
break;
|
|
udelay(this->chip_delay);
|
|
this->hwcontrol(mtd, NAND_CTL_SETCLE);
|
|
this->write_byte(mtd, NAND_CMD_STATUS);
|
|
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
|
|
while ( !(this->read_byte(mtd) & NAND_STATUS_READY));
|
|
return;
|
|
|
|
/* This applies to read commands */
|
|
default:
|
|
/*
|
|
* If we don't have access to the busy pin, we apply the given
|
|
* command delay
|
|
*/
|
|
if (!this->dev_ready) {
|
|
udelay (this->chip_delay);
|
|
return;
|
|
}
|
|
}
|
|
/* Apply this short delay always to ensure that we do wait tWB in
|
|
* any case on any machine. */
|
|
ndelay (100);
|
|
|
|
nand_wait_ready(mtd);
|
|
}
|
|
|
|
/**
|
|
* nand_command_lp - [DEFAULT] Send command to NAND large page device
|
|
* @mtd: MTD device structure
|
|
* @command: the command to be sent
|
|
* @column: the column address for this command, -1 if none
|
|
* @page_addr: the page address for this command, -1 if none
|
|
*
|
|
* Send command to NAND device. This is the version for the new large page devices
|
|
* We dont have the seperate regions as we have in the small page devices.
|
|
* We must emulate NAND_CMD_READOOB to keep the code compatible.
|
|
*
|
|
*/
|
|
static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr)
|
|
{
|
|
register struct nand_chip *this = mtd->priv;
|
|
|
|
/* Emulate NAND_CMD_READOOB */
|
|
if (command == NAND_CMD_READOOB) {
|
|
column += mtd->oobblock;
|
|
command = NAND_CMD_READ0;
|
|
}
|
|
|
|
|
|
/* Begin command latch cycle */
|
|
this->hwcontrol(mtd, NAND_CTL_SETCLE);
|
|
/* Write out the command to the device. */
|
|
this->write_byte(mtd, (command & 0xff));
|
|
/* End command latch cycle */
|
|
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
|
|
|
|
if (column != -1 || page_addr != -1) {
|
|
this->hwcontrol(mtd, NAND_CTL_SETALE);
|
|
|
|
/* Serially input address */
|
|
if (column != -1) {
|
|
/* Adjust columns for 16 bit buswidth */
|
|
if (this->options & NAND_BUSWIDTH_16)
|
|
column >>= 1;
|
|
this->write_byte(mtd, column & 0xff);
|
|
this->write_byte(mtd, column >> 8);
|
|
}
|
|
if (page_addr != -1) {
|
|
this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
|
|
this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
|
|
/* One more address cycle for devices > 128MiB */
|
|
if (this->chipsize > (128 << 20))
|
|
this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff));
|
|
}
|
|
/* Latch in address */
|
|
this->hwcontrol(mtd, NAND_CTL_CLRALE);
|
|
}
|
|
|
|
/*
|
|
* program and erase have their own busy handlers
|
|
* status, sequential in, and deplete1 need no delay
|
|
*/
|
|
switch (command) {
|
|
|
|
case NAND_CMD_CACHEDPROG:
|
|
case NAND_CMD_PAGEPROG:
|
|
case NAND_CMD_ERASE1:
|
|
case NAND_CMD_ERASE2:
|
|
case NAND_CMD_SEQIN:
|
|
case NAND_CMD_STATUS:
|
|
case NAND_CMD_DEPLETE1:
|
|
return;
|
|
|
|
/*
|
|
* read error status commands require only a short delay
|
|
*/
|
|
case NAND_CMD_STATUS_ERROR:
|
|
case NAND_CMD_STATUS_ERROR0:
|
|
case NAND_CMD_STATUS_ERROR1:
|
|
case NAND_CMD_STATUS_ERROR2:
|
|
case NAND_CMD_STATUS_ERROR3:
|
|
udelay(this->chip_delay);
|
|
return;
|
|
|
|
case NAND_CMD_RESET:
|
|
if (this->dev_ready)
|
|
break;
|
|
udelay(this->chip_delay);
|
|
this->hwcontrol(mtd, NAND_CTL_SETCLE);
|
|
this->write_byte(mtd, NAND_CMD_STATUS);
|
|
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
|
|
while ( !(this->read_byte(mtd) & NAND_STATUS_READY));
|
|
return;
|
|
|
|
case NAND_CMD_READ0:
|
|
/* Begin command latch cycle */
|
|
this->hwcontrol(mtd, NAND_CTL_SETCLE);
|
|
/* Write out the start read command */
|
|
this->write_byte(mtd, NAND_CMD_READSTART);
|
|
/* End command latch cycle */
|
|
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
|
|
/* Fall through into ready check */
|
|
|
|
/* This applies to read commands */
|
|
default:
|
|
/*
|
|
* If we don't have access to the busy pin, we apply the given
|
|
* command delay
|
|
*/
|
|
if (!this->dev_ready) {
|
|
udelay (this->chip_delay);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Apply this short delay always to ensure that we do wait tWB in
|
|
* any case on any machine. */
|
|
ndelay (100);
|
|
|
|
nand_wait_ready(mtd);
|
|
}
|
|
|
|
/**
|
|
* nand_get_device - [GENERIC] Get chip for selected access
|
|
* @this: the nand chip descriptor
|
|
* @mtd: MTD device structure
|
|
* @new_state: the state which is requested
|
|
*
|
|
* Get the device and lock it for exclusive access
|
|
*/
|
|
static int nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
|
|
{
|
|
struct nand_chip *active;
|
|
spinlock_t *lock;
|
|
wait_queue_head_t *wq;
|
|
DECLARE_WAITQUEUE (wait, current);
|
|
|
|
lock = (this->controller) ? &this->controller->lock : &this->chip_lock;
|
|
wq = (this->controller) ? &this->controller->wq : &this->wq;
|
|
retry:
|
|
active = this;
|
|
spin_lock(lock);
|
|
|
|
/* Hardware controller shared among independend devices */
|
|
if (this->controller) {
|
|
if (this->controller->active)
|
|
active = this->controller->active;
|
|
else
|
|
this->controller->active = this;
|
|
}
|
|
if (active == this && this->state == FL_READY) {
|
|
this->state = new_state;
|
|
spin_unlock(lock);
|
|
return 0;
|
|
}
|
|
if (new_state == FL_PM_SUSPENDED) {
|
|
spin_unlock(lock);
|
|
return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
|
|
}
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(wq, &wait);
|
|
spin_unlock(lock);
|
|
schedule();
|
|
remove_wait_queue(wq, &wait);
|
|
goto retry;
|
|
}
|
|
|
|
/**
|
|
* nand_wait - [DEFAULT] wait until the command is done
|
|
* @mtd: MTD device structure
|
|
* @this: NAND chip structure
|
|
* @state: state to select the max. timeout value
|
|
*
|
|
* Wait for command done. This applies to erase and program only
|
|
* Erase can take up to 400ms and program up to 20ms according to
|
|
* general NAND and SmartMedia specs
|
|
*
|
|
*/
|
|
static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
|
|
{
|
|
|
|
unsigned long timeo = jiffies;
|
|
int status;
|
|
|
|
if (state == FL_ERASING)
|
|
timeo += (HZ * 400) / 1000;
|
|
else
|
|
timeo += (HZ * 20) / 1000;
|
|
|
|
/* Apply this short delay always to ensure that we do wait tWB in
|
|
* any case on any machine. */
|
|
ndelay (100);
|
|
|
|
if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
|
|
this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
|
|
else
|
|
this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
|
|
|
|
while (time_before(jiffies, timeo)) {
|
|
/* Check, if we were interrupted */
|
|
if (this->state != state)
|
|
return 0;
|
|
|
|
if (this->dev_ready) {
|
|
if (this->dev_ready(mtd))
|
|
break;
|
|
} else {
|
|
if (this->read_byte(mtd) & NAND_STATUS_READY)
|
|
break;
|
|
}
|
|
cond_resched();
|
|
}
|
|
status = (int) this->read_byte(mtd);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* nand_write_page - [GENERIC] write one page
|
|
* @mtd: MTD device structure
|
|
* @this: NAND chip structure
|
|
* @page: startpage inside the chip, must be called with (page & this->pagemask)
|
|
* @oob_buf: out of band data buffer
|
|
* @oobsel: out of band selecttion structre
|
|
* @cached: 1 = enable cached programming if supported by chip
|
|
*
|
|
* Nand_page_program function is used for write and writev !
|
|
* This function will always program a full page of data
|
|
* If you call it with a non page aligned buffer, you're lost :)
|
|
*
|
|
* Cached programming is not supported yet.
|
|
*/
|
|
static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page,
|
|
u_char *oob_buf, struct nand_oobinfo *oobsel, int cached)
|
|
{
|
|
int i, status;
|
|
u_char ecc_code[32];
|
|
int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
|
|
int *oob_config = oobsel->eccpos;
|
|
int datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
|
|
int eccbytes = 0;
|
|
|
|
/* FIXME: Enable cached programming */
|
|
cached = 0;
|
|
|
|
/* Send command to begin auto page programming */
|
|
this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
|
|
|
|
/* Write out complete page of data, take care of eccmode */
|
|
switch (eccmode) {
|
|
/* No ecc, write all */
|
|
case NAND_ECC_NONE:
|
|
printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
|
|
this->write_buf(mtd, this->data_poi, mtd->oobblock);
|
|
break;
|
|
|
|
/* Software ecc 3/256, write all */
|
|
case NAND_ECC_SOFT:
|
|
for (; eccsteps; eccsteps--) {
|
|
this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
|
|
for (i = 0; i < 3; i++, eccidx++)
|
|
oob_buf[oob_config[eccidx]] = ecc_code[i];
|
|
datidx += this->eccsize;
|
|
}
|
|
this->write_buf(mtd, this->data_poi, mtd->oobblock);
|
|
break;
|
|
default:
|
|
eccbytes = this->eccbytes;
|
|
for (; eccsteps; eccsteps--) {
|
|
/* enable hardware ecc logic for write */
|
|
this->enable_hwecc(mtd, NAND_ECC_WRITE);
|
|
this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
|
|
this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
|
|
for (i = 0; i < eccbytes; i++, eccidx++)
|
|
oob_buf[oob_config[eccidx]] = ecc_code[i];
|
|
/* If the hardware ecc provides syndromes then
|
|
* the ecc code must be written immidiately after
|
|
* the data bytes (words) */
|
|
if (this->options & NAND_HWECC_SYNDROME)
|
|
this->write_buf(mtd, ecc_code, eccbytes);
|
|
datidx += this->eccsize;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Write out OOB data */
|
|
if (this->options & NAND_HWECC_SYNDROME)
|
|
this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
|
|
else
|
|
this->write_buf(mtd, oob_buf, mtd->oobsize);
|
|
|
|
/* Send command to actually program the data */
|
|
this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
|
|
|
|
if (!cached) {
|
|
/* call wait ready function */
|
|
status = this->waitfunc (mtd, this, FL_WRITING);
|
|
|
|
/* See if operation failed and additional status checks are available */
|
|
if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
|
|
status = this->errstat(mtd, this, FL_WRITING, status, page);
|
|
}
|
|
|
|
/* See if device thinks it succeeded */
|
|
if (status & NAND_STATUS_FAIL) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
|
|
return -EIO;
|
|
}
|
|
} else {
|
|
/* FIXME: Implement cached programming ! */
|
|
/* wait until cache is ready*/
|
|
// status = this->waitfunc (mtd, this, FL_CACHEDRPG);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
|
|
/**
|
|
* nand_verify_pages - [GENERIC] verify the chip contents after a write
|
|
* @mtd: MTD device structure
|
|
* @this: NAND chip structure
|
|
* @page: startpage inside the chip, must be called with (page & this->pagemask)
|
|
* @numpages: number of pages to verify
|
|
* @oob_buf: out of band data buffer
|
|
* @oobsel: out of band selecttion structre
|
|
* @chipnr: number of the current chip
|
|
* @oobmode: 1 = full buffer verify, 0 = ecc only
|
|
*
|
|
* The NAND device assumes that it is always writing to a cleanly erased page.
|
|
* Hence, it performs its internal write verification only on bits that
|
|
* transitioned from 1 to 0. The device does NOT verify the whole page on a
|
|
* byte by byte basis. It is possible that the page was not completely erased
|
|
* or the page is becoming unusable due to wear. The read with ECC would catch
|
|
* the error later when the ECC page check fails, but we would rather catch
|
|
* it early in the page write stage. Better to write no data than invalid data.
|
|
*/
|
|
static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
|
|
u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
|
|
{
|
|
int i, j, datidx = 0, oobofs = 0, res = -EIO;
|
|
int eccsteps = this->eccsteps;
|
|
int hweccbytes;
|
|
u_char oobdata[64];
|
|
|
|
hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
|
|
|
|
/* Send command to read back the first page */
|
|
this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
|
|
|
|
for(;;) {
|
|
for (j = 0; j < eccsteps; j++) {
|
|
/* Loop through and verify the data */
|
|
if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
|
|
goto out;
|
|
}
|
|
datidx += mtd->eccsize;
|
|
/* Have we a hw generator layout ? */
|
|
if (!hweccbytes)
|
|
continue;
|
|
if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
|
|
goto out;
|
|
}
|
|
oobofs += hweccbytes;
|
|
}
|
|
|
|
/* check, if we must compare all data or if we just have to
|
|
* compare the ecc bytes
|
|
*/
|
|
if (oobmode) {
|
|
if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
|
|
goto out;
|
|
}
|
|
} else {
|
|
/* Read always, else autoincrement fails */
|
|
this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);
|
|
|
|
if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
|
|
int ecccnt = oobsel->eccbytes;
|
|
|
|
for (i = 0; i < ecccnt; i++) {
|
|
int idx = oobsel->eccpos[i];
|
|
if (oobdata[idx] != oob_buf[oobofs + idx] ) {
|
|
DEBUG (MTD_DEBUG_LEVEL0,
|
|
"%s: Failed ECC write "
|
|
"verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
oobofs += mtd->oobsize - hweccbytes * eccsteps;
|
|
page++;
|
|
numpages--;
|
|
|
|
/* Apply delay or wait for ready/busy pin
|
|
* Do this before the AUTOINCR check, so no problems
|
|
* arise if a chip which does auto increment
|
|
* is marked as NOAUTOINCR by the board driver.
|
|
* Do this also before returning, so the chip is
|
|
* ready for the next command.
|
|
*/
|
|
if (!this->dev_ready)
|
|
udelay (this->chip_delay);
|
|
else
|
|
nand_wait_ready(mtd);
|
|
|
|
/* All done, return happy */
|
|
if (!numpages)
|
|
return 0;
|
|
|
|
|
|
/* Check, if the chip supports auto page increment */
|
|
if (!NAND_CANAUTOINCR(this))
|
|
this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
|
|
}
|
|
/*
|
|
* Terminate the read command. We come here in case of an error
|
|
* So we must issue a reset command.
|
|
*/
|
|
out:
|
|
this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1);
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
|
|
* @mtd: MTD device structure
|
|
* @from: offset to read from
|
|
* @len: number of bytes to read
|
|
* @retlen: pointer to variable to store the number of read bytes
|
|
* @buf: the databuffer to put data
|
|
*
|
|
* This function simply calls nand_do_read_ecc with oob buffer and oobsel = NULL
|
|
* and flags = 0xff
|
|
*/
|
|
static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
|
|
{
|
|
return nand_do_read_ecc (mtd, from, len, retlen, buf, NULL, &mtd->oobinfo, 0xff);
|
|
}
|
|
|
|
|
|
/**
|
|
* nand_read_ecc - [MTD Interface] MTD compability function for nand_do_read_ecc
|
|
* @mtd: MTD device structure
|
|
* @from: offset to read from
|
|
* @len: number of bytes to read
|
|
* @retlen: pointer to variable to store the number of read bytes
|
|
* @buf: the databuffer to put data
|
|
* @oob_buf: filesystem supplied oob data buffer
|
|
* @oobsel: oob selection structure
|
|
*
|
|
* This function simply calls nand_do_read_ecc with flags = 0xff
|
|
*/
|
|
static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
|
|
{
|
|
/* use userspace supplied oobinfo, if zero */
|
|
if (oobsel == NULL)
|
|
oobsel = &mtd->oobinfo;
|
|
return nand_do_read_ecc(mtd, from, len, retlen, buf, oob_buf, oobsel, 0xff);
|
|
}
|
|
|
|
|
|
/**
|
|
* nand_do_read_ecc - [MTD Interface] Read data with ECC
|
|
* @mtd: MTD device structure
|
|
* @from: offset to read from
|
|
* @len: number of bytes to read
|
|
* @retlen: pointer to variable to store the number of read bytes
|
|
* @buf: the databuffer to put data
|
|
* @oob_buf: filesystem supplied oob data buffer (can be NULL)
|
|
* @oobsel: oob selection structure
|
|
* @flags: flag to indicate if nand_get_device/nand_release_device should be preformed
|
|
* and how many corrected error bits are acceptable:
|
|
* bits 0..7 - number of tolerable errors
|
|
* bit 8 - 0 == do not get/release chip, 1 == get/release chip
|
|
*
|
|
* NAND read with ECC
|
|
*/
|
|
int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t * retlen, u_char * buf, u_char * oob_buf,
|
|
struct nand_oobinfo *oobsel, int flags)
|
|
{
|
|
|
|
int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
|
|
int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
|
|
struct nand_chip *this = mtd->priv;
|
|
u_char *data_poi, *oob_data = oob_buf;
|
|
u_char ecc_calc[32];
|
|
u_char ecc_code[32];
|
|
int eccmode, eccsteps;
|
|
int *oob_config, datidx;
|
|
int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
|
|
int eccbytes;
|
|
int compareecc = 1;
|
|
int oobreadlen;
|
|
|
|
|
|
DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
|
|
|
|
/* Do not allow reads past end of device */
|
|
if ((from + len) > mtd->size) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
|
|
*retlen = 0;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
if (flags & NAND_GET_DEVICE)
|
|
nand_get_device (this, mtd, FL_READING);
|
|
|
|
/* Autoplace of oob data ? Use the default placement scheme */
|
|
if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
|
|
oobsel = this->autooob;
|
|
|
|
eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
|
|
oob_config = oobsel->eccpos;
|
|
|
|
/* Select the NAND device */
|
|
chipnr = (int)(from >> this->chip_shift);
|
|
this->select_chip(mtd, chipnr);
|
|
|
|
/* First we calculate the starting page */
|
|
realpage = (int) (from >> this->page_shift);
|
|
page = realpage & this->pagemask;
|
|
|
|
/* Get raw starting column */
|
|
col = from & (mtd->oobblock - 1);
|
|
|
|
end = mtd->oobblock;
|
|
ecc = this->eccsize;
|
|
eccbytes = this->eccbytes;
|
|
|
|
if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
|
|
compareecc = 0;
|
|
|
|
oobreadlen = mtd->oobsize;
|
|
if (this->options & NAND_HWECC_SYNDROME)
|
|
oobreadlen -= oobsel->eccbytes;
|
|
|
|
/* Loop until all data read */
|
|
while (read < len) {
|
|
|
|
int aligned = (!col && (len - read) >= end);
|
|
/*
|
|
* If the read is not page aligned, we have to read into data buffer
|
|
* due to ecc, else we read into return buffer direct
|
|
*/
|
|
if (aligned)
|
|
data_poi = &buf[read];
|
|
else
|
|
data_poi = this->data_buf;
|
|
|
|
/* Check, if we have this page in the buffer
|
|
*
|
|
* FIXME: Make it work when we must provide oob data too,
|
|
* check the usage of data_buf oob field
|
|
*/
|
|
if (realpage == this->pagebuf && !oob_buf) {
|
|
/* aligned read ? */
|
|
if (aligned)
|
|
memcpy (data_poi, this->data_buf, end);
|
|
goto readdata;
|
|
}
|
|
|
|
/* Check, if we must send the read command */
|
|
if (sndcmd) {
|
|
this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
|
|
sndcmd = 0;
|
|
}
|
|
|
|
/* get oob area, if we have no oob buffer from fs-driver */
|
|
if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE ||
|
|
oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
|
|
oob_data = &this->data_buf[end];
|
|
|
|
eccsteps = this->eccsteps;
|
|
|
|
switch (eccmode) {
|
|
case NAND_ECC_NONE: { /* No ECC, Read in a page */
|
|
static unsigned long lastwhinge = 0;
|
|
if ((lastwhinge / HZ) != (jiffies / HZ)) {
|
|
printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
|
|
lastwhinge = jiffies;
|
|
}
|
|
this->read_buf(mtd, data_poi, end);
|
|
break;
|
|
}
|
|
|
|
case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
|
|
this->read_buf(mtd, data_poi, end);
|
|
for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc)
|
|
this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
|
|
break;
|
|
|
|
default:
|
|
for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
|
|
this->enable_hwecc(mtd, NAND_ECC_READ);
|
|
this->read_buf(mtd, &data_poi[datidx], ecc);
|
|
|
|
/* HW ecc with syndrome calculation must read the
|
|
* syndrome from flash immidiately after the data */
|
|
if (!compareecc) {
|
|
/* Some hw ecc generators need to know when the
|
|
* syndrome is read from flash */
|
|
this->enable_hwecc(mtd, NAND_ECC_READSYN);
|
|
this->read_buf(mtd, &oob_data[i], eccbytes);
|
|
/* We calc error correction directly, it checks the hw
|
|
* generator for an error, reads back the syndrome and
|
|
* does the error correction on the fly */
|
|
ecc_status = this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]);
|
|
if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: "
|
|
"Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
|
|
ecc_failed++;
|
|
}
|
|
} else {
|
|
this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* read oobdata */
|
|
this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
|
|
|
|
/* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
|
|
if (!compareecc)
|
|
goto readoob;
|
|
|
|
/* Pick the ECC bytes out of the oob data */
|
|
for (j = 0; j < oobsel->eccbytes; j++)
|
|
ecc_code[j] = oob_data[oob_config[j]];
|
|
|
|
/* correct data, if neccecary */
|
|
for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
|
|
ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
|
|
|
|
/* Get next chunk of ecc bytes */
|
|
j += eccbytes;
|
|
|
|
/* Check, if we have a fs supplied oob-buffer,
|
|
* This is the legacy mode. Used by YAFFS1
|
|
* Should go away some day
|
|
*/
|
|
if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) {
|
|
int *p = (int *)(&oob_data[mtd->oobsize]);
|
|
p[i] = ecc_status;
|
|
}
|
|
|
|
if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
|
|
ecc_failed++;
|
|
}
|
|
}
|
|
|
|
readoob:
|
|
/* check, if we have a fs supplied oob-buffer */
|
|
if (oob_buf) {
|
|
/* without autoplace. Legacy mode used by YAFFS1 */
|
|
switch(oobsel->useecc) {
|
|
case MTD_NANDECC_AUTOPLACE:
|
|
case MTD_NANDECC_AUTOPL_USR:
|
|
/* Walk through the autoplace chunks */
|
|
for (i = 0; oobsel->oobfree[i][1]; i++) {
|
|
int from = oobsel->oobfree[i][0];
|
|
int num = oobsel->oobfree[i][1];
|
|
memcpy(&oob_buf[oob], &oob_data[from], num);
|
|
oob += num;
|
|
}
|
|
break;
|
|
case MTD_NANDECC_PLACE:
|
|
/* YAFFS1 legacy mode */
|
|
oob_data += this->eccsteps * sizeof (int);
|
|
default:
|
|
oob_data += mtd->oobsize;
|
|
}
|
|
}
|
|
readdata:
|
|
/* Partial page read, transfer data into fs buffer */
|
|
if (!aligned) {
|
|
for (j = col; j < end && read < len; j++)
|
|
buf[read++] = data_poi[j];
|
|
this->pagebuf = realpage;
|
|
} else
|
|
read += mtd->oobblock;
|
|
|
|
/* Apply delay or wait for ready/busy pin
|
|
* Do this before the AUTOINCR check, so no problems
|
|
* arise if a chip which does auto increment
|
|
* is marked as NOAUTOINCR by the board driver.
|
|
*/
|
|
if (!this->dev_ready)
|
|
udelay (this->chip_delay);
|
|
else
|
|
nand_wait_ready(mtd);
|
|
|
|
if (read == len)
|
|
break;
|
|
|
|
/* For subsequent reads align to page boundary. */
|
|
col = 0;
|
|
/* Increment page address */
|
|
realpage++;
|
|
|
|
page = realpage & this->pagemask;
|
|
/* Check, if we cross a chip boundary */
|
|
if (!page) {
|
|
chipnr++;
|
|
this->select_chip(mtd, -1);
|
|
this->select_chip(mtd, chipnr);
|
|
}
|
|
/* Check, if the chip supports auto page increment
|
|
* or if we have hit a block boundary.
|
|
*/
|
|
if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
|
|
sndcmd = 1;
|
|
}
|
|
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
if (flags & NAND_GET_DEVICE)
|
|
nand_release_device(mtd);
|
|
|
|
/*
|
|
* Return success, if no ECC failures, else -EBADMSG
|
|
* fs driver will take care of that, because
|
|
* retlen == desired len and result == -EBADMSG
|
|
*/
|
|
*retlen = read;
|
|
return ecc_failed ? -EBADMSG : 0;
|
|
}
|
|
|
|
/**
|
|
* nand_read_oob - [MTD Interface] NAND read out-of-band
|
|
* @mtd: MTD device structure
|
|
* @from: offset to read from
|
|
* @len: number of bytes to read
|
|
* @retlen: pointer to variable to store the number of read bytes
|
|
* @buf: the databuffer to put data
|
|
*
|
|
* NAND read out-of-band data from the spare area
|
|
*/
|
|
static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
|
|
{
|
|
int i, col, page, chipnr;
|
|
struct nand_chip *this = mtd->priv;
|
|
int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
|
|
|
|
DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
|
|
|
|
/* Shift to get page */
|
|
page = (int)(from >> this->page_shift);
|
|
chipnr = (int)(from >> this->chip_shift);
|
|
|
|
/* Mask to get column */
|
|
col = from & (mtd->oobsize - 1);
|
|
|
|
/* Initialize return length value */
|
|
*retlen = 0;
|
|
|
|
/* Do not allow reads past end of device */
|
|
if ((from + len) > mtd->size) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
|
|
*retlen = 0;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
nand_get_device (this, mtd , FL_READING);
|
|
|
|
/* Select the NAND device */
|
|
this->select_chip(mtd, chipnr);
|
|
|
|
/* Send the read command */
|
|
this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
|
|
/*
|
|
* Read the data, if we read more than one page
|
|
* oob data, let the device transfer the data !
|
|
*/
|
|
i = 0;
|
|
while (i < len) {
|
|
int thislen = mtd->oobsize - col;
|
|
thislen = min_t(int, thislen, len);
|
|
this->read_buf(mtd, &buf[i], thislen);
|
|
i += thislen;
|
|
|
|
/* Read more ? */
|
|
if (i < len) {
|
|
page++;
|
|
col = 0;
|
|
|
|
/* Check, if we cross a chip boundary */
|
|
if (!(page & this->pagemask)) {
|
|
chipnr++;
|
|
this->select_chip(mtd, -1);
|
|
this->select_chip(mtd, chipnr);
|
|
}
|
|
|
|
/* Apply delay or wait for ready/busy pin
|
|
* Do this before the AUTOINCR check, so no problems
|
|
* arise if a chip which does auto increment
|
|
* is marked as NOAUTOINCR by the board driver.
|
|
*/
|
|
if (!this->dev_ready)
|
|
udelay (this->chip_delay);
|
|
else
|
|
nand_wait_ready(mtd);
|
|
|
|
/* Check, if the chip supports auto page increment
|
|
* or if we have hit a block boundary.
|
|
*/
|
|
if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
|
|
/* For subsequent page reads set offset to 0 */
|
|
this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
nand_release_device(mtd);
|
|
|
|
/* Return happy */
|
|
*retlen = len;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_read_raw - [GENERIC] Read raw data including oob into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: temporary buffer
|
|
* @from: offset to read from
|
|
* @len: number of bytes to read
|
|
* @ooblen: number of oob data bytes to read
|
|
*
|
|
* Read raw data including oob into buffer
|
|
*/
|
|
int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
int page = (int) (from >> this->page_shift);
|
|
int chip = (int) (from >> this->chip_shift);
|
|
int sndcmd = 1;
|
|
int cnt = 0;
|
|
int pagesize = mtd->oobblock + mtd->oobsize;
|
|
int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
|
|
|
|
/* Do not allow reads past end of device */
|
|
if ((from + len) > mtd->size) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
nand_get_device (this, mtd , FL_READING);
|
|
|
|
this->select_chip (mtd, chip);
|
|
|
|
/* Add requested oob length */
|
|
len += ooblen;
|
|
|
|
while (len) {
|
|
if (sndcmd)
|
|
this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask);
|
|
sndcmd = 0;
|
|
|
|
this->read_buf (mtd, &buf[cnt], pagesize);
|
|
|
|
len -= pagesize;
|
|
cnt += pagesize;
|
|
page++;
|
|
|
|
if (!this->dev_ready)
|
|
udelay (this->chip_delay);
|
|
else
|
|
nand_wait_ready(mtd);
|
|
|
|
/* Check, if the chip supports auto page increment */
|
|
if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
|
|
sndcmd = 1;
|
|
}
|
|
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
nand_release_device(mtd);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer
|
|
* @mtd: MTD device structure
|
|
* @fsbuf: buffer given by fs driver
|
|
* @oobsel: out of band selection structre
|
|
* @autoplace: 1 = place given buffer into the oob bytes
|
|
* @numpages: number of pages to prepare
|
|
*
|
|
* Return:
|
|
* 1. Filesystem buffer available and autoplacement is off,
|
|
* return filesystem buffer
|
|
* 2. No filesystem buffer or autoplace is off, return internal
|
|
* buffer
|
|
* 3. Filesystem buffer is given and autoplace selected
|
|
* put data from fs buffer into internal buffer and
|
|
* retrun internal buffer
|
|
*
|
|
* Note: The internal buffer is filled with 0xff. This must
|
|
* be done only once, when no autoplacement happens
|
|
* Autoplacement sets the buffer dirty flag, which
|
|
* forces the 0xff fill before using the buffer again.
|
|
*
|
|
*/
|
|
static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
|
|
int autoplace, int numpages)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
int i, len, ofs;
|
|
|
|
/* Zero copy fs supplied buffer */
|
|
if (fsbuf && !autoplace)
|
|
return fsbuf;
|
|
|
|
/* Check, if the buffer must be filled with ff again */
|
|
if (this->oobdirty) {
|
|
memset (this->oob_buf, 0xff,
|
|
mtd->oobsize << (this->phys_erase_shift - this->page_shift));
|
|
this->oobdirty = 0;
|
|
}
|
|
|
|
/* If we have no autoplacement or no fs buffer use the internal one */
|
|
if (!autoplace || !fsbuf)
|
|
return this->oob_buf;
|
|
|
|
/* Walk through the pages and place the data */
|
|
this->oobdirty = 1;
|
|
ofs = 0;
|
|
while (numpages--) {
|
|
for (i = 0, len = 0; len < mtd->oobavail; i++) {
|
|
int to = ofs + oobsel->oobfree[i][0];
|
|
int num = oobsel->oobfree[i][1];
|
|
memcpy (&this->oob_buf[to], fsbuf, num);
|
|
len += num;
|
|
fsbuf += num;
|
|
}
|
|
ofs += mtd->oobavail;
|
|
}
|
|
return this->oob_buf;
|
|
}
|
|
|
|
#define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
|
|
|
|
/**
|
|
* nand_write - [MTD Interface] compability function for nand_write_ecc
|
|
* @mtd: MTD device structure
|
|
* @to: offset to write to
|
|
* @len: number of bytes to write
|
|
* @retlen: pointer to variable to store the number of written bytes
|
|
* @buf: the data to write
|
|
*
|
|
* This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
|
|
*
|
|
*/
|
|
static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
|
|
{
|
|
return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
|
|
}
|
|
|
|
/**
|
|
* nand_write_ecc - [MTD Interface] NAND write with ECC
|
|
* @mtd: MTD device structure
|
|
* @to: offset to write to
|
|
* @len: number of bytes to write
|
|
* @retlen: pointer to variable to store the number of written bytes
|
|
* @buf: the data to write
|
|
* @eccbuf: filesystem supplied oob data buffer
|
|
* @oobsel: oob selection structure
|
|
*
|
|
* NAND write with ECC
|
|
*/
|
|
static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
|
|
{
|
|
int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
|
|
int autoplace = 0, numpages, totalpages;
|
|
struct nand_chip *this = mtd->priv;
|
|
u_char *oobbuf, *bufstart;
|
|
int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
|
|
|
|
DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
|
|
|
|
/* Initialize retlen, in case of early exit */
|
|
*retlen = 0;
|
|
|
|
/* Do not allow write past end of device */
|
|
if ((to + len) > mtd->size) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* reject writes, which are not page aligned */
|
|
if (NOTALIGNED (to) || NOTALIGNED(len)) {
|
|
printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
nand_get_device (this, mtd, FL_WRITING);
|
|
|
|
/* Calculate chipnr */
|
|
chipnr = (int)(to >> this->chip_shift);
|
|
/* Select the NAND device */
|
|
this->select_chip(mtd, chipnr);
|
|
|
|
/* Check, if it is write protected */
|
|
if (nand_check_wp(mtd))
|
|
goto out;
|
|
|
|
/* if oobsel is NULL, use chip defaults */
|
|
if (oobsel == NULL)
|
|
oobsel = &mtd->oobinfo;
|
|
|
|
/* Autoplace of oob data ? Use the default placement scheme */
|
|
if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
|
|
oobsel = this->autooob;
|
|
autoplace = 1;
|
|
}
|
|
if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
|
|
autoplace = 1;
|
|
|
|
/* Setup variables and oob buffer */
|
|
totalpages = len >> this->page_shift;
|
|
page = (int) (to >> this->page_shift);
|
|
/* Invalidate the page cache, if we write to the cached page */
|
|
if (page <= this->pagebuf && this->pagebuf < (page + totalpages))
|
|
this->pagebuf = -1;
|
|
|
|
/* Set it relative to chip */
|
|
page &= this->pagemask;
|
|
startpage = page;
|
|
/* Calc number of pages we can write in one go */
|
|
numpages = min (ppblock - (startpage & (ppblock - 1)), totalpages);
|
|
oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages);
|
|
bufstart = (u_char *)buf;
|
|
|
|
/* Loop until all data is written */
|
|
while (written < len) {
|
|
|
|
this->data_poi = (u_char*) &buf[written];
|
|
/* Write one page. If this is the last page to write
|
|
* or the last page in this block, then use the
|
|
* real pageprogram command, else select cached programming
|
|
* if supported by the chip.
|
|
*/
|
|
ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
|
|
if (ret) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
|
|
goto out;
|
|
}
|
|
/* Next oob page */
|
|
oob += mtd->oobsize;
|
|
/* Update written bytes count */
|
|
written += mtd->oobblock;
|
|
if (written == len)
|
|
goto cmp;
|
|
|
|
/* Increment page address */
|
|
page++;
|
|
|
|
/* Have we hit a block boundary ? Then we have to verify and
|
|
* if verify is ok, we have to setup the oob buffer for
|
|
* the next pages.
|
|
*/
|
|
if (!(page & (ppblock - 1))){
|
|
int ofs;
|
|
this->data_poi = bufstart;
|
|
ret = nand_verify_pages (mtd, this, startpage,
|
|
page - startpage,
|
|
oobbuf, oobsel, chipnr, (eccbuf != NULL));
|
|
if (ret) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
|
|
goto out;
|
|
}
|
|
*retlen = written;
|
|
|
|
ofs = autoplace ? mtd->oobavail : mtd->oobsize;
|
|
if (eccbuf)
|
|
eccbuf += (page - startpage) * ofs;
|
|
totalpages -= page - startpage;
|
|
numpages = min (totalpages, ppblock);
|
|
page &= this->pagemask;
|
|
startpage = page;
|
|
oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel,
|
|
autoplace, numpages);
|
|
oob = 0;
|
|
/* Check, if we cross a chip boundary */
|
|
if (!page) {
|
|
chipnr++;
|
|
this->select_chip(mtd, -1);
|
|
this->select_chip(mtd, chipnr);
|
|
}
|
|
}
|
|
}
|
|
/* Verify the remaining pages */
|
|
cmp:
|
|
this->data_poi = bufstart;
|
|
ret = nand_verify_pages (mtd, this, startpage, totalpages,
|
|
oobbuf, oobsel, chipnr, (eccbuf != NULL));
|
|
if (!ret)
|
|
*retlen = written;
|
|
else
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
|
|
|
|
out:
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
nand_release_device(mtd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* nand_write_oob - [MTD Interface] NAND write out-of-band
|
|
* @mtd: MTD device structure
|
|
* @to: offset to write to
|
|
* @len: number of bytes to write
|
|
* @retlen: pointer to variable to store the number of written bytes
|
|
* @buf: the data to write
|
|
*
|
|
* NAND write out-of-band
|
|
*/
|
|
static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
|
|
{
|
|
int column, page, status, ret = -EIO, chipnr;
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
|
|
|
|
/* Shift to get page */
|
|
page = (int) (to >> this->page_shift);
|
|
chipnr = (int) (to >> this->chip_shift);
|
|
|
|
/* Mask to get column */
|
|
column = to & (mtd->oobsize - 1);
|
|
|
|
/* Initialize return length value */
|
|
*retlen = 0;
|
|
|
|
/* Do not allow write past end of page */
|
|
if ((column + len) > mtd->oobsize) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
nand_get_device (this, mtd, FL_WRITING);
|
|
|
|
/* Select the NAND device */
|
|
this->select_chip(mtd, chipnr);
|
|
|
|
/* Reset the chip. Some chips (like the Toshiba TC5832DC found
|
|
in one of my DiskOnChip 2000 test units) will clear the whole
|
|
data page too if we don't do this. I have no clue why, but
|
|
I seem to have 'fixed' it in the doc2000 driver in
|
|
August 1999. dwmw2. */
|
|
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
|
|
|
|
/* Check, if it is write protected */
|
|
if (nand_check_wp(mtd))
|
|
goto out;
|
|
|
|
/* Invalidate the page cache, if we write to the cached page */
|
|
if (page == this->pagebuf)
|
|
this->pagebuf = -1;
|
|
|
|
if (NAND_MUST_PAD(this)) {
|
|
/* Write out desired data */
|
|
this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
|
|
/* prepad 0xff for partial programming */
|
|
this->write_buf(mtd, ffchars, column);
|
|
/* write data */
|
|
this->write_buf(mtd, buf, len);
|
|
/* postpad 0xff for partial programming */
|
|
this->write_buf(mtd, ffchars, mtd->oobsize - (len+column));
|
|
} else {
|
|
/* Write out desired data */
|
|
this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
|
|
/* write data */
|
|
this->write_buf(mtd, buf, len);
|
|
}
|
|
/* Send command to program the OOB data */
|
|
this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
|
|
status = this->waitfunc (mtd, this, FL_WRITING);
|
|
|
|
/* See if device thinks it succeeded */
|
|
if (status & NAND_STATUS_FAIL) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
/* Return happy */
|
|
*retlen = len;
|
|
|
|
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
|
|
/* Send command to read back the data */
|
|
this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask);
|
|
|
|
if (this->verify_buf(mtd, buf, len)) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
#endif
|
|
ret = 0;
|
|
out:
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
nand_release_device(mtd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
|
|
* @mtd: MTD device structure
|
|
* @vecs: the iovectors to write
|
|
* @count: number of vectors
|
|
* @to: offset to write to
|
|
* @retlen: pointer to variable to store the number of written bytes
|
|
*
|
|
* NAND write with kvec. This just calls the ecc function
|
|
*/
|
|
static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
|
|
loff_t to, size_t * retlen)
|
|
{
|
|
return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));
|
|
}
|
|
|
|
/**
|
|
* nand_writev_ecc - [MTD Interface] write with iovec with ecc
|
|
* @mtd: MTD device structure
|
|
* @vecs: the iovectors to write
|
|
* @count: number of vectors
|
|
* @to: offset to write to
|
|
* @retlen: pointer to variable to store the number of written bytes
|
|
* @eccbuf: filesystem supplied oob data buffer
|
|
* @oobsel: oob selection structure
|
|
*
|
|
* NAND write with iovec with ecc
|
|
*/
|
|
static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
|
|
loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
|
|
{
|
|
int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
|
|
int oob, numpages, autoplace = 0, startpage;
|
|
struct nand_chip *this = mtd->priv;
|
|
int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
|
|
u_char *oobbuf, *bufstart;
|
|
|
|
/* Preset written len for early exit */
|
|
*retlen = 0;
|
|
|
|
/* Calculate total length of data */
|
|
total_len = 0;
|
|
for (i = 0; i < count; i++)
|
|
total_len += (int) vecs[i].iov_len;
|
|
|
|
DEBUG (MTD_DEBUG_LEVEL3,
|
|
"nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
|
|
|
|
/* Do not allow write past end of page */
|
|
if ((to + total_len) > mtd->size) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* reject writes, which are not page aligned */
|
|
if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
|
|
printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
nand_get_device (this, mtd, FL_WRITING);
|
|
|
|
/* Get the current chip-nr */
|
|
chipnr = (int) (to >> this->chip_shift);
|
|
/* Select the NAND device */
|
|
this->select_chip(mtd, chipnr);
|
|
|
|
/* Check, if it is write protected */
|
|
if (nand_check_wp(mtd))
|
|
goto out;
|
|
|
|
/* if oobsel is NULL, use chip defaults */
|
|
if (oobsel == NULL)
|
|
oobsel = &mtd->oobinfo;
|
|
|
|
/* Autoplace of oob data ? Use the default placement scheme */
|
|
if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
|
|
oobsel = this->autooob;
|
|
autoplace = 1;
|
|
}
|
|
if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
|
|
autoplace = 1;
|
|
|
|
/* Setup start page */
|
|
page = (int) (to >> this->page_shift);
|
|
/* Invalidate the page cache, if we write to the cached page */
|
|
if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))
|
|
this->pagebuf = -1;
|
|
|
|
startpage = page & this->pagemask;
|
|
|
|
/* Loop until all kvec' data has been written */
|
|
len = 0;
|
|
while (count) {
|
|
/* If the given tuple is >= pagesize then
|
|
* write it out from the iov
|
|
*/
|
|
if ((vecs->iov_len - len) >= mtd->oobblock) {
|
|
/* Calc number of pages we can write
|
|
* out of this iov in one go */
|
|
numpages = (vecs->iov_len - len) >> this->page_shift;
|
|
/* Do not cross block boundaries */
|
|
numpages = min (ppblock - (startpage & (ppblock - 1)), numpages);
|
|
oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
|
|
bufstart = (u_char *)vecs->iov_base;
|
|
bufstart += len;
|
|
this->data_poi = bufstart;
|
|
oob = 0;
|
|
for (i = 1; i <= numpages; i++) {
|
|
/* Write one page. If this is the last page to write
|
|
* then use the real pageprogram command, else select
|
|
* cached programming if supported by the chip.
|
|
*/
|
|
ret = nand_write_page (mtd, this, page & this->pagemask,
|
|
&oobbuf[oob], oobsel, i != numpages);
|
|
if (ret)
|
|
goto out;
|
|
this->data_poi += mtd->oobblock;
|
|
len += mtd->oobblock;
|
|
oob += mtd->oobsize;
|
|
page++;
|
|
}
|
|
/* Check, if we have to switch to the next tuple */
|
|
if (len >= (int) vecs->iov_len) {
|
|
vecs++;
|
|
len = 0;
|
|
count--;
|
|
}
|
|
} else {
|
|
/* We must use the internal buffer, read data out of each
|
|
* tuple until we have a full page to write
|
|
*/
|
|
int cnt = 0;
|
|
while (cnt < mtd->oobblock) {
|
|
if (vecs->iov_base != NULL && vecs->iov_len)
|
|
this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
|
|
/* Check, if we have to switch to the next tuple */
|
|
if (len >= (int) vecs->iov_len) {
|
|
vecs++;
|
|
len = 0;
|
|
count--;
|
|
}
|
|
}
|
|
this->pagebuf = page;
|
|
this->data_poi = this->data_buf;
|
|
bufstart = this->data_poi;
|
|
numpages = 1;
|
|
oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
|
|
ret = nand_write_page (mtd, this, page & this->pagemask,
|
|
oobbuf, oobsel, 0);
|
|
if (ret)
|
|
goto out;
|
|
page++;
|
|
}
|
|
|
|
this->data_poi = bufstart;
|
|
ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
|
|
if (ret)
|
|
goto out;
|
|
|
|
written += mtd->oobblock * numpages;
|
|
/* All done ? */
|
|
if (!count)
|
|
break;
|
|
|
|
startpage = page & this->pagemask;
|
|
/* Check, if we cross a chip boundary */
|
|
if (!startpage) {
|
|
chipnr++;
|
|
this->select_chip(mtd, -1);
|
|
this->select_chip(mtd, chipnr);
|
|
}
|
|
}
|
|
ret = 0;
|
|
out:
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
nand_release_device(mtd);
|
|
|
|
*retlen = written;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* single_erease_cmd - [GENERIC] NAND standard block erase command function
|
|
* @mtd: MTD device structure
|
|
* @page: the page address of the block which will be erased
|
|
*
|
|
* Standard erase command for NAND chips
|
|
*/
|
|
static void single_erase_cmd (struct mtd_info *mtd, int page)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
/* Send commands to erase a block */
|
|
this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
|
|
this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
|
|
}
|
|
|
|
/**
|
|
* multi_erease_cmd - [GENERIC] AND specific block erase command function
|
|
* @mtd: MTD device structure
|
|
* @page: the page address of the block which will be erased
|
|
*
|
|
* AND multi block erase command function
|
|
* Erase 4 consecutive blocks
|
|
*/
|
|
static void multi_erase_cmd (struct mtd_info *mtd, int page)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
/* Send commands to erase a block */
|
|
this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
|
|
this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
|
|
this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
|
|
this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
|
|
this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
|
|
}
|
|
|
|
/**
|
|
* nand_erase - [MTD Interface] erase block(s)
|
|
* @mtd: MTD device structure
|
|
* @instr: erase instruction
|
|
*
|
|
* Erase one ore more blocks
|
|
*/
|
|
static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
return nand_erase_nand (mtd, instr, 0);
|
|
}
|
|
|
|
#define BBT_PAGE_MASK 0xffffff3f
|
|
/**
|
|
* nand_erase_intern - [NAND Interface] erase block(s)
|
|
* @mtd: MTD device structure
|
|
* @instr: erase instruction
|
|
* @allowbbt: allow erasing the bbt area
|
|
*
|
|
* Erase one ore more blocks
|
|
*/
|
|
int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
|
|
{
|
|
int page, len, status, pages_per_block, ret, chipnr;
|
|
struct nand_chip *this = mtd->priv;
|
|
int rewrite_bbt[NAND_MAX_CHIPS]={0}; /* flags to indicate the page, if bbt needs to be rewritten. */
|
|
unsigned int bbt_masked_page; /* bbt mask to compare to page being erased. */
|
|
/* It is used to see if the current page is in the same */
|
|
/* 256 block group and the same bank as the bbt. */
|
|
|
|
DEBUG (MTD_DEBUG_LEVEL3,
|
|
"nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
|
|
|
|
/* Start address must align on block boundary */
|
|
if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Length must align on block boundary */
|
|
if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Do not allow erase past end of device */
|
|
if ((instr->len + instr->addr) > mtd->size) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
instr->fail_addr = 0xffffffff;
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
nand_get_device (this, mtd, FL_ERASING);
|
|
|
|
/* Shift to get first page */
|
|
page = (int) (instr->addr >> this->page_shift);
|
|
chipnr = (int) (instr->addr >> this->chip_shift);
|
|
|
|
/* Calculate pages in each block */
|
|
pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
|
|
|
|
/* Select the NAND device */
|
|
this->select_chip(mtd, chipnr);
|
|
|
|
/* Check the WP bit */
|
|
/* Check, if it is write protected */
|
|
if (nand_check_wp(mtd)) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
|
|
instr->state = MTD_ERASE_FAILED;
|
|
goto erase_exit;
|
|
}
|
|
|
|
/* if BBT requires refresh, set the BBT page mask to see if the BBT should be rewritten */
|
|
if (this->options & BBT_AUTO_REFRESH) {
|
|
bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
|
|
} else {
|
|
bbt_masked_page = 0xffffffff; /* should not match anything */
|
|
}
|
|
|
|
/* Loop through the pages */
|
|
len = instr->len;
|
|
|
|
instr->state = MTD_ERASING;
|
|
|
|
while (len) {
|
|
/* Check if we have a bad block, we do not erase bad blocks ! */
|
|
if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
|
|
printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
|
|
instr->state = MTD_ERASE_FAILED;
|
|
goto erase_exit;
|
|
}
|
|
|
|
/* Invalidate the page cache, if we erase the block which contains
|
|
the current cached page */
|
|
if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
|
|
this->pagebuf = -1;
|
|
|
|
this->erase_cmd (mtd, page & this->pagemask);
|
|
|
|
status = this->waitfunc (mtd, this, FL_ERASING);
|
|
|
|
/* See if operation failed and additional status checks are available */
|
|
if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
|
|
status = this->errstat(mtd, this, FL_ERASING, status, page);
|
|
}
|
|
|
|
/* See if block erase succeeded */
|
|
if (status & NAND_STATUS_FAIL) {
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
|
|
instr->state = MTD_ERASE_FAILED;
|
|
instr->fail_addr = (page << this->page_shift);
|
|
goto erase_exit;
|
|
}
|
|
|
|
/* if BBT requires refresh, set the BBT rewrite flag to the page being erased */
|
|
if (this->options & BBT_AUTO_REFRESH) {
|
|
if (((page & BBT_PAGE_MASK) == bbt_masked_page) &&
|
|
(page != this->bbt_td->pages[chipnr])) {
|
|
rewrite_bbt[chipnr] = (page << this->page_shift);
|
|
}
|
|
}
|
|
|
|
/* Increment page address and decrement length */
|
|
len -= (1 << this->phys_erase_shift);
|
|
page += pages_per_block;
|
|
|
|
/* Check, if we cross a chip boundary */
|
|
if (len && !(page & this->pagemask)) {
|
|
chipnr++;
|
|
this->select_chip(mtd, -1);
|
|
this->select_chip(mtd, chipnr);
|
|
|
|
/* if BBT requires refresh and BBT-PERCHIP,
|
|
* set the BBT page mask to see if this BBT should be rewritten */
|
|
if ((this->options & BBT_AUTO_REFRESH) && (this->bbt_td->options & NAND_BBT_PERCHIP)) {
|
|
bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
|
|
}
|
|
|
|
}
|
|
}
|
|
instr->state = MTD_ERASE_DONE;
|
|
|
|
erase_exit:
|
|
|
|
ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
|
|
/* Do call back function */
|
|
if (!ret)
|
|
mtd_erase_callback(instr);
|
|
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
nand_release_device(mtd);
|
|
|
|
/* if BBT requires refresh and erase was successful, rewrite any selected bad block tables */
|
|
if ((this->options & BBT_AUTO_REFRESH) && (!ret)) {
|
|
for (chipnr = 0; chipnr < this->numchips; chipnr++) {
|
|
if (rewrite_bbt[chipnr]) {
|
|
/* update the BBT for chip */
|
|
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt (%d:0x%0x 0x%0x)\n",
|
|
chipnr, rewrite_bbt[chipnr], this->bbt_td->pages[chipnr]);
|
|
nand_update_bbt (mtd, rewrite_bbt[chipnr]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return more or less happy */
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_sync - [MTD Interface] sync
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Sync is actually a wait for chip ready function
|
|
*/
|
|
static void nand_sync (struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
nand_get_device (this, mtd, FL_SYNCING);
|
|
/* Release it and go back */
|
|
nand_release_device (mtd);
|
|
}
|
|
|
|
|
|
/**
|
|
* nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset relative to mtd start
|
|
*/
|
|
static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
/* Check for invalid offset */
|
|
if (ofs > mtd->size)
|
|
return -EINVAL;
|
|
|
|
return nand_block_checkbad (mtd, ofs, 1, 0);
|
|
}
|
|
|
|
/**
|
|
* nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset relative to mtd start
|
|
*/
|
|
static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
int ret;
|
|
|
|
if ((ret = nand_block_isbad(mtd, ofs))) {
|
|
/* If it was bad already, return success and do nothing. */
|
|
if (ret > 0)
|
|
return 0;
|
|
return ret;
|
|
}
|
|
|
|
return this->block_markbad(mtd, ofs);
|
|
}
|
|
|
|
/**
|
|
* nand_suspend - [MTD Interface] Suspend the NAND flash
|
|
* @mtd: MTD device structure
|
|
*/
|
|
static int nand_suspend(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
return nand_get_device (this, mtd, FL_PM_SUSPENDED);
|
|
}
|
|
|
|
/**
|
|
* nand_resume - [MTD Interface] Resume the NAND flash
|
|
* @mtd: MTD device structure
|
|
*/
|
|
static void nand_resume(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
if (this->state == FL_PM_SUSPENDED)
|
|
nand_release_device(mtd);
|
|
else
|
|
printk(KERN_ERR "resume() called for the chip which is not "
|
|
"in suspended state\n");
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* nand_scan - [NAND Interface] Scan for the NAND device
|
|
* @mtd: MTD device structure
|
|
* @maxchips: Number of chips to scan for
|
|
*
|
|
* This fills out all the not initialized function pointers
|
|
* with the defaults.
|
|
* The flash ID is read and the mtd/chip structures are
|
|
* filled with the appropriate values. Buffers are allocated if
|
|
* they are not provided by the board driver
|
|
*
|
|
*/
|
|
int nand_scan (struct mtd_info *mtd, int maxchips)
|
|
{
|
|
int i, nand_maf_id, nand_dev_id, busw, maf_id;
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
/* Get buswidth to select the correct functions*/
|
|
busw = this->options & NAND_BUSWIDTH_16;
|
|
|
|
/* check for proper chip_delay setup, set 20us if not */
|
|
if (!this->chip_delay)
|
|
this->chip_delay = 20;
|
|
|
|
/* check, if a user supplied command function given */
|
|
if (this->cmdfunc == NULL)
|
|
this->cmdfunc = nand_command;
|
|
|
|
/* check, if a user supplied wait function given */
|
|
if (this->waitfunc == NULL)
|
|
this->waitfunc = nand_wait;
|
|
|
|
if (!this->select_chip)
|
|
this->select_chip = nand_select_chip;
|
|
if (!this->write_byte)
|
|
this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
|
|
if (!this->read_byte)
|
|
this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
|
|
if (!this->write_word)
|
|
this->write_word = nand_write_word;
|
|
if (!this->read_word)
|
|
this->read_word = nand_read_word;
|
|
if (!this->block_bad)
|
|
this->block_bad = nand_block_bad;
|
|
if (!this->block_markbad)
|
|
this->block_markbad = nand_default_block_markbad;
|
|
if (!this->write_buf)
|
|
this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
|
|
if (!this->read_buf)
|
|
this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
|
|
if (!this->verify_buf)
|
|
this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
|
|
if (!this->scan_bbt)
|
|
this->scan_bbt = nand_default_bbt;
|
|
|
|
/* Select the device */
|
|
this->select_chip(mtd, 0);
|
|
|
|
/* Send the command for reading device ID */
|
|
this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
|
|
|
|
/* Read manufacturer and device IDs */
|
|
nand_maf_id = this->read_byte(mtd);
|
|
nand_dev_id = this->read_byte(mtd);
|
|
|
|
/* Print and store flash device information */
|
|
for (i = 0; nand_flash_ids[i].name != NULL; i++) {
|
|
|
|
if (nand_dev_id != nand_flash_ids[i].id)
|
|
continue;
|
|
|
|
if (!mtd->name) mtd->name = nand_flash_ids[i].name;
|
|
this->chipsize = nand_flash_ids[i].chipsize << 20;
|
|
|
|
/* New devices have all the information in additional id bytes */
|
|
if (!nand_flash_ids[i].pagesize) {
|
|
int extid;
|
|
/* The 3rd id byte contains non relevant data ATM */
|
|
extid = this->read_byte(mtd);
|
|
/* The 4th id byte is the important one */
|
|
extid = this->read_byte(mtd);
|
|
/* Calc pagesize */
|
|
mtd->oobblock = 1024 << (extid & 0x3);
|
|
extid >>= 2;
|
|
/* Calc oobsize */
|
|
mtd->oobsize = (8 << (extid & 0x01)) * (mtd->oobblock >> 9);
|
|
extid >>= 2;
|
|
/* Calc blocksize. Blocksize is multiples of 64KiB */
|
|
mtd->erasesize = (64 * 1024) << (extid & 0x03);
|
|
extid >>= 2;
|
|
/* Get buswidth information */
|
|
busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
|
|
|
|
} else {
|
|
/* Old devices have this data hardcoded in the
|
|
* device id table */
|
|
mtd->erasesize = nand_flash_ids[i].erasesize;
|
|
mtd->oobblock = nand_flash_ids[i].pagesize;
|
|
mtd->oobsize = mtd->oobblock / 32;
|
|
busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
|
|
}
|
|
|
|
/* Try to identify manufacturer */
|
|
for (maf_id = 0; nand_manuf_ids[maf_id].id != 0x0; maf_id++) {
|
|
if (nand_manuf_ids[maf_id].id == nand_maf_id)
|
|
break;
|
|
}
|
|
|
|
/* Check, if buswidth is correct. Hardware drivers should set
|
|
* this correct ! */
|
|
if (busw != (this->options & NAND_BUSWIDTH_16)) {
|
|
printk (KERN_INFO "NAND device: Manufacturer ID:"
|
|
" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
|
|
nand_manuf_ids[maf_id].name , mtd->name);
|
|
printk (KERN_WARNING
|
|
"NAND bus width %d instead %d bit\n",
|
|
(this->options & NAND_BUSWIDTH_16) ? 16 : 8,
|
|
busw ? 16 : 8);
|
|
this->select_chip(mtd, -1);
|
|
return 1;
|
|
}
|
|
|
|
/* Calculate the address shift from the page size */
|
|
this->page_shift = ffs(mtd->oobblock) - 1;
|
|
this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
|
|
this->chip_shift = ffs(this->chipsize) - 1;
|
|
|
|
/* Set the bad block position */
|
|
this->badblockpos = mtd->oobblock > 512 ?
|
|
NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
|
|
|
|
/* Get chip options, preserve non chip based options */
|
|
this->options &= ~NAND_CHIPOPTIONS_MSK;
|
|
this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
|
|
/* Set this as a default. Board drivers can override it, if neccecary */
|
|
this->options |= NAND_NO_AUTOINCR;
|
|
/* Check if this is a not a samsung device. Do not clear the options
|
|
* for chips which are not having an extended id.
|
|
*/
|
|
if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
|
|
this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
|
|
|
|
/* Check for AND chips with 4 page planes */
|
|
if (this->options & NAND_4PAGE_ARRAY)
|
|
this->erase_cmd = multi_erase_cmd;
|
|
else
|
|
this->erase_cmd = single_erase_cmd;
|
|
|
|
/* Do not replace user supplied command function ! */
|
|
if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
|
|
this->cmdfunc = nand_command_lp;
|
|
|
|
printk (KERN_INFO "NAND device: Manufacturer ID:"
|
|
" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
|
|
nand_manuf_ids[maf_id].name , nand_flash_ids[i].name);
|
|
break;
|
|
}
|
|
|
|
if (!nand_flash_ids[i].name) {
|
|
printk (KERN_WARNING "No NAND device found!!!\n");
|
|
this->select_chip(mtd, -1);
|
|
return 1;
|
|
}
|
|
|
|
for (i=1; i < maxchips; i++) {
|
|
this->select_chip(mtd, i);
|
|
|
|
/* Send the command for reading device ID */
|
|
this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
|
|
|
|
/* Read manufacturer and device IDs */
|
|
if (nand_maf_id != this->read_byte(mtd) ||
|
|
nand_dev_id != this->read_byte(mtd))
|
|
break;
|
|
}
|
|
if (i > 1)
|
|
printk(KERN_INFO "%d NAND chips detected\n", i);
|
|
|
|
/* Allocate buffers, if neccecary */
|
|
if (!this->oob_buf) {
|
|
size_t len;
|
|
len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
|
|
this->oob_buf = kmalloc (len, GFP_KERNEL);
|
|
if (!this->oob_buf) {
|
|
printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
|
|
return -ENOMEM;
|
|
}
|
|
this->options |= NAND_OOBBUF_ALLOC;
|
|
}
|
|
|
|
if (!this->data_buf) {
|
|
size_t len;
|
|
len = mtd->oobblock + mtd->oobsize;
|
|
this->data_buf = kmalloc (len, GFP_KERNEL);
|
|
if (!this->data_buf) {
|
|
if (this->options & NAND_OOBBUF_ALLOC)
|
|
kfree (this->oob_buf);
|
|
printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
|
|
return -ENOMEM;
|
|
}
|
|
this->options |= NAND_DATABUF_ALLOC;
|
|
}
|
|
|
|
/* Store the number of chips and calc total size for mtd */
|
|
this->numchips = i;
|
|
mtd->size = i * this->chipsize;
|
|
/* Convert chipsize to number of pages per chip -1. */
|
|
this->pagemask = (this->chipsize >> this->page_shift) - 1;
|
|
/* Preset the internal oob buffer */
|
|
memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
|
|
|
|
/* If no default placement scheme is given, select an
|
|
* appropriate one */
|
|
if (!this->autooob) {
|
|
/* Select the appropriate default oob placement scheme for
|
|
* placement agnostic filesystems */
|
|
switch (mtd->oobsize) {
|
|
case 8:
|
|
this->autooob = &nand_oob_8;
|
|
break;
|
|
case 16:
|
|
this->autooob = &nand_oob_16;
|
|
break;
|
|
case 64:
|
|
this->autooob = &nand_oob_64;
|
|
break;
|
|
default:
|
|
printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
|
|
mtd->oobsize);
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/* The number of bytes available for the filesystem to place fs dependend
|
|
* oob data */
|
|
mtd->oobavail = 0;
|
|
for (i = 0; this->autooob->oobfree[i][1]; i++)
|
|
mtd->oobavail += this->autooob->oobfree[i][1];
|
|
|
|
/*
|
|
* check ECC mode, default to software
|
|
* if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
|
|
* fallback to software ECC
|
|
*/
|
|
this->eccsize = 256; /* set default eccsize */
|
|
this->eccbytes = 3;
|
|
|
|
switch (this->eccmode) {
|
|
case NAND_ECC_HW12_2048:
|
|
if (mtd->oobblock < 2048) {
|
|
printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
|
|
mtd->oobblock);
|
|
this->eccmode = NAND_ECC_SOFT;
|
|
this->calculate_ecc = nand_calculate_ecc;
|
|
this->correct_data = nand_correct_data;
|
|
} else
|
|
this->eccsize = 2048;
|
|
break;
|
|
|
|
case NAND_ECC_HW3_512:
|
|
case NAND_ECC_HW6_512:
|
|
case NAND_ECC_HW8_512:
|
|
if (mtd->oobblock == 256) {
|
|
printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
|
|
this->eccmode = NAND_ECC_SOFT;
|
|
this->calculate_ecc = nand_calculate_ecc;
|
|
this->correct_data = nand_correct_data;
|
|
} else
|
|
this->eccsize = 512; /* set eccsize to 512 */
|
|
break;
|
|
|
|
case NAND_ECC_HW3_256:
|
|
break;
|
|
|
|
case NAND_ECC_NONE:
|
|
printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
|
|
this->eccmode = NAND_ECC_NONE;
|
|
break;
|
|
|
|
case NAND_ECC_SOFT:
|
|
this->calculate_ecc = nand_calculate_ecc;
|
|
this->correct_data = nand_correct_data;
|
|
break;
|
|
|
|
default:
|
|
printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
|
|
BUG();
|
|
}
|
|
|
|
/* Check hardware ecc function availability and adjust number of ecc bytes per
|
|
* calculation step
|
|
*/
|
|
switch (this->eccmode) {
|
|
case NAND_ECC_HW12_2048:
|
|
this->eccbytes += 4;
|
|
case NAND_ECC_HW8_512:
|
|
this->eccbytes += 2;
|
|
case NAND_ECC_HW6_512:
|
|
this->eccbytes += 3;
|
|
case NAND_ECC_HW3_512:
|
|
case NAND_ECC_HW3_256:
|
|
if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
|
|
break;
|
|
printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
|
|
BUG();
|
|
}
|
|
|
|
mtd->eccsize = this->eccsize;
|
|
|
|
/* Set the number of read / write steps for one page to ensure ECC generation */
|
|
switch (this->eccmode) {
|
|
case NAND_ECC_HW12_2048:
|
|
this->eccsteps = mtd->oobblock / 2048;
|
|
break;
|
|
case NAND_ECC_HW3_512:
|
|
case NAND_ECC_HW6_512:
|
|
case NAND_ECC_HW8_512:
|
|
this->eccsteps = mtd->oobblock / 512;
|
|
break;
|
|
case NAND_ECC_HW3_256:
|
|
case NAND_ECC_SOFT:
|
|
this->eccsteps = mtd->oobblock / 256;
|
|
break;
|
|
|
|
case NAND_ECC_NONE:
|
|
this->eccsteps = 1;
|
|
break;
|
|
}
|
|
|
|
/* Initialize state, waitqueue and spinlock */
|
|
this->state = FL_READY;
|
|
init_waitqueue_head (&this->wq);
|
|
spin_lock_init (&this->chip_lock);
|
|
|
|
/* De-select the device */
|
|
this->select_chip(mtd, -1);
|
|
|
|
/* Invalidate the pagebuffer reference */
|
|
this->pagebuf = -1;
|
|
|
|
/* Fill in remaining MTD driver data */
|
|
mtd->type = MTD_NANDFLASH;
|
|
mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
|
|
mtd->ecctype = MTD_ECC_SW;
|
|
mtd->erase = nand_erase;
|
|
mtd->point = NULL;
|
|
mtd->unpoint = NULL;
|
|
mtd->read = nand_read;
|
|
mtd->write = nand_write;
|
|
mtd->read_ecc = nand_read_ecc;
|
|
mtd->write_ecc = nand_write_ecc;
|
|
mtd->read_oob = nand_read_oob;
|
|
mtd->write_oob = nand_write_oob;
|
|
mtd->readv = NULL;
|
|
mtd->writev = nand_writev;
|
|
mtd->writev_ecc = nand_writev_ecc;
|
|
mtd->sync = nand_sync;
|
|
mtd->lock = NULL;
|
|
mtd->unlock = NULL;
|
|
mtd->suspend = nand_suspend;
|
|
mtd->resume = nand_resume;
|
|
mtd->block_isbad = nand_block_isbad;
|
|
mtd->block_markbad = nand_block_markbad;
|
|
|
|
/* and make the autooob the default one */
|
|
memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
|
|
|
|
mtd->owner = THIS_MODULE;
|
|
|
|
/* Check, if we should skip the bad block table scan */
|
|
if (this->options & NAND_SKIP_BBTSCAN)
|
|
return 0;
|
|
|
|
/* Build bad block table */
|
|
return this->scan_bbt (mtd);
|
|
}
|
|
|
|
/**
|
|
* nand_release - [NAND Interface] Free resources held by the NAND device
|
|
* @mtd: MTD device structure
|
|
*/
|
|
void nand_release (struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
#ifdef CONFIG_MTD_PARTITIONS
|
|
/* Deregister partitions */
|
|
del_mtd_partitions (mtd);
|
|
#endif
|
|
/* Deregister the device */
|
|
del_mtd_device (mtd);
|
|
|
|
/* Free bad block table memory, if allocated */
|
|
if (this->bbt)
|
|
kfree (this->bbt);
|
|
/* Buffer allocated by nand_scan ? */
|
|
if (this->options & NAND_OOBBUF_ALLOC)
|
|
kfree (this->oob_buf);
|
|
/* Buffer allocated by nand_scan ? */
|
|
if (this->options & NAND_DATABUF_ALLOC)
|
|
kfree (this->data_buf);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL (nand_scan);
|
|
EXPORT_SYMBOL_GPL (nand_release);
|
|
|
|
MODULE_LICENSE ("GPL");
|
|
MODULE_AUTHOR ("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
|
|
MODULE_DESCRIPTION ("Generic NAND flash driver code");
|