android_kernel_xiaomi_sm8350/drivers/block/elevator.c
Tejun Heo 8922e16cf6 [PATCH] 01/05 Implement generic dispatch queue
Implements generic dispatch queue which can replace all
dispatch queues implemented by each iosched.  This reduces
code duplication, eases enforcing semantics over dispatch
queue, and simplifies specific ioscheds.

Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jens Axboe <axboe@suse.de>
2005-10-28 08:44:24 +02:00

815 lines
19 KiB
C

/*
* linux/drivers/block/elevator.c
*
* Block device elevator/IO-scheduler.
*
* Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
*
* 30042000 Jens Axboe <axboe@suse.de> :
*
* Split the elevator a bit so that it is possible to choose a different
* one or even write a new "plug in". There are three pieces:
* - elevator_fn, inserts a new request in the queue list
* - elevator_merge_fn, decides whether a new buffer can be merged with
* an existing request
* - elevator_dequeue_fn, called when a request is taken off the active list
*
* 20082000 Dave Jones <davej@suse.de> :
* Removed tests for max-bomb-segments, which was breaking elvtune
* when run without -bN
*
* Jens:
* - Rework again to work with bio instead of buffer_heads
* - loose bi_dev comparisons, partition handling is right now
* - completely modularize elevator setup and teardown
*
*/
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/blkdev.h>
#include <linux/elevator.h>
#include <linux/bio.h>
#include <linux/config.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/compiler.h>
#include <asm/uaccess.h>
static DEFINE_SPINLOCK(elv_list_lock);
static LIST_HEAD(elv_list);
static inline sector_t rq_last_sector(struct request *rq)
{
return rq->sector + rq->nr_sectors;
}
/*
* can we safely merge with this request?
*/
inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
{
if (!rq_mergeable(rq))
return 0;
/*
* different data direction or already started, don't merge
*/
if (bio_data_dir(bio) != rq_data_dir(rq))
return 0;
/*
* same device and no special stuff set, merge is ok
*/
if (rq->rq_disk == bio->bi_bdev->bd_disk &&
!rq->waiting && !rq->special)
return 1;
return 0;
}
EXPORT_SYMBOL(elv_rq_merge_ok);
inline int elv_try_merge(struct request *__rq, struct bio *bio)
{
int ret = ELEVATOR_NO_MERGE;
/*
* we can merge and sequence is ok, check if it's possible
*/
if (elv_rq_merge_ok(__rq, bio)) {
if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
ret = ELEVATOR_BACK_MERGE;
else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
ret = ELEVATOR_FRONT_MERGE;
}
return ret;
}
EXPORT_SYMBOL(elv_try_merge);
inline int elv_try_last_merge(request_queue_t *q, struct bio *bio)
{
if (q->last_merge)
return elv_try_merge(q->last_merge, bio);
return ELEVATOR_NO_MERGE;
}
EXPORT_SYMBOL(elv_try_last_merge);
static struct elevator_type *elevator_find(const char *name)
{
struct elevator_type *e = NULL;
struct list_head *entry;
list_for_each(entry, &elv_list) {
struct elevator_type *__e;
__e = list_entry(entry, struct elevator_type, list);
if (!strcmp(__e->elevator_name, name)) {
e = __e;
break;
}
}
return e;
}
static void elevator_put(struct elevator_type *e)
{
module_put(e->elevator_owner);
}
static struct elevator_type *elevator_get(const char *name)
{
struct elevator_type *e;
spin_lock_irq(&elv_list_lock);
e = elevator_find(name);
if (e && !try_module_get(e->elevator_owner))
e = NULL;
spin_unlock_irq(&elv_list_lock);
return e;
}
static int elevator_attach(request_queue_t *q, struct elevator_type *e,
struct elevator_queue *eq)
{
int ret = 0;
memset(eq, 0, sizeof(*eq));
eq->ops = &e->ops;
eq->elevator_type = e;
INIT_LIST_HEAD(&q->queue_head);
q->last_merge = NULL;
q->elevator = eq;
q->last_sector = 0;
q->boundary_rq = NULL;
q->max_back_kb = 0;
if (eq->ops->elevator_init_fn)
ret = eq->ops->elevator_init_fn(q, eq);
return ret;
}
static char chosen_elevator[16];
static void elevator_setup_default(void)
{
struct elevator_type *e;
/*
* check if default is set and exists
*/
if (chosen_elevator[0] && (e = elevator_get(chosen_elevator))) {
elevator_put(e);
return;
}
#if defined(CONFIG_IOSCHED_AS)
strcpy(chosen_elevator, "anticipatory");
#elif defined(CONFIG_IOSCHED_DEADLINE)
strcpy(chosen_elevator, "deadline");
#elif defined(CONFIG_IOSCHED_CFQ)
strcpy(chosen_elevator, "cfq");
#elif defined(CONFIG_IOSCHED_NOOP)
strcpy(chosen_elevator, "noop");
#else
#error "You must build at least 1 IO scheduler into the kernel"
#endif
}
static int __init elevator_setup(char *str)
{
strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
return 0;
}
__setup("elevator=", elevator_setup);
int elevator_init(request_queue_t *q, char *name)
{
struct elevator_type *e = NULL;
struct elevator_queue *eq;
int ret = 0;
elevator_setup_default();
if (!name)
name = chosen_elevator;
e = elevator_get(name);
if (!e)
return -EINVAL;
eq = kmalloc(sizeof(struct elevator_queue), GFP_KERNEL);
if (!eq) {
elevator_put(e->elevator_type);
return -ENOMEM;
}
ret = elevator_attach(q, e, eq);
if (ret) {
kfree(eq);
elevator_put(e->elevator_type);
}
return ret;
}
void elevator_exit(elevator_t *e)
{
if (e->ops->elevator_exit_fn)
e->ops->elevator_exit_fn(e);
elevator_put(e->elevator_type);
e->elevator_type = NULL;
kfree(e);
}
/*
* Insert rq into dispatch queue of q. Queue lock must be held on
* entry. If sort != 0, rq is sort-inserted; otherwise, rq will be
* appended to the dispatch queue. To be used by specific elevators.
*/
void elv_dispatch_insert(request_queue_t *q, struct request *rq, int sort)
{
sector_t boundary;
unsigned max_back;
struct list_head *entry;
if (!sort) {
/* Specific elevator is performing sort. Step away. */
q->last_sector = rq_last_sector(rq);
q->boundary_rq = rq;
list_add_tail(&rq->queuelist, &q->queue_head);
return;
}
boundary = q->last_sector;
max_back = q->max_back_kb * 2;
boundary = boundary > max_back ? boundary - max_back : 0;
list_for_each_prev(entry, &q->queue_head) {
struct request *pos = list_entry_rq(entry);
if (pos->flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
break;
if (rq->sector >= boundary) {
if (pos->sector < boundary)
continue;
} else {
if (pos->sector >= boundary)
break;
}
if (rq->sector >= pos->sector)
break;
}
list_add(&rq->queuelist, entry);
}
int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
{
elevator_t *e = q->elevator;
if (e->ops->elevator_merge_fn)
return e->ops->elevator_merge_fn(q, req, bio);
return ELEVATOR_NO_MERGE;
}
void elv_merged_request(request_queue_t *q, struct request *rq)
{
elevator_t *e = q->elevator;
if (e->ops->elevator_merged_fn)
e->ops->elevator_merged_fn(q, rq);
}
void elv_merge_requests(request_queue_t *q, struct request *rq,
struct request *next)
{
elevator_t *e = q->elevator;
if (q->last_merge == next)
q->last_merge = NULL;
if (e->ops->elevator_merge_req_fn)
e->ops->elevator_merge_req_fn(q, rq, next);
}
void elv_requeue_request(request_queue_t *q, struct request *rq)
{
elevator_t *e = q->elevator;
/*
* it already went through dequeue, we need to decrement the
* in_flight count again
*/
if (blk_account_rq(rq)) {
q->in_flight--;
if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
e->ops->elevator_deactivate_req_fn(q, rq);
}
rq->flags &= ~REQ_STARTED;
/*
* if this is the flush, requeue the original instead and drop the flush
*/
if (rq->flags & REQ_BAR_FLUSH) {
clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
rq = rq->end_io_data;
}
__elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
}
void __elv_add_request(request_queue_t *q, struct request *rq, int where,
int plug)
{
if (rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
/*
* barriers implicitly indicate back insertion
*/
if (where == ELEVATOR_INSERT_SORT)
where = ELEVATOR_INSERT_BACK;
/*
* this request is scheduling boundary, update last_sector
*/
if (blk_fs_request(rq)) {
q->last_sector = rq_last_sector(rq);
q->boundary_rq = rq;
}
}
if (plug)
blk_plug_device(q);
rq->q = q;
if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))) {
/*
* if drain is set, store the request "locally". when the drain
* is finished, the requests will be handed ordered to the io
* scheduler
*/
list_add_tail(&rq->queuelist, &q->drain_list);
return;
}
switch (where) {
case ELEVATOR_INSERT_FRONT:
rq->flags |= REQ_SOFTBARRIER;
list_add(&rq->queuelist, &q->queue_head);
break;
case ELEVATOR_INSERT_BACK:
rq->flags |= REQ_SOFTBARRIER;
while (q->elevator->ops->elevator_dispatch_fn(q, 1))
;
list_add_tail(&rq->queuelist, &q->queue_head);
/*
* We kick the queue here for the following reasons.
* - The elevator might have returned NULL previously
* to delay requests and returned them now. As the
* queue wasn't empty before this request, ll_rw_blk
* won't run the queue on return, resulting in hang.
* - Usually, back inserted requests won't be merged
* with anything. There's no point in delaying queue
* processing.
*/
blk_remove_plug(q);
q->request_fn(q);
break;
case ELEVATOR_INSERT_SORT:
BUG_ON(!blk_fs_request(rq));
rq->flags |= REQ_SORTED;
q->elevator->ops->elevator_add_req_fn(q, rq);
break;
default:
printk(KERN_ERR "%s: bad insertion point %d\n",
__FUNCTION__, where);
BUG();
}
if (blk_queue_plugged(q)) {
int nrq = q->rq.count[READ] + q->rq.count[WRITE]
- q->in_flight;
if (nrq >= q->unplug_thresh)
__generic_unplug_device(q);
}
}
void elv_add_request(request_queue_t *q, struct request *rq, int where,
int plug)
{
unsigned long flags;
spin_lock_irqsave(q->queue_lock, flags);
__elv_add_request(q, rq, where, plug);
spin_unlock_irqrestore(q->queue_lock, flags);
}
static inline struct request *__elv_next_request(request_queue_t *q)
{
struct request *rq;
if (unlikely(list_empty(&q->queue_head) &&
!q->elevator->ops->elevator_dispatch_fn(q, 0)))
return NULL;
rq = list_entry_rq(q->queue_head.next);
/*
* if this is a barrier write and the device has to issue a
* flush sequence to support it, check how far we are
*/
if (blk_fs_request(rq) && blk_barrier_rq(rq)) {
BUG_ON(q->ordered == QUEUE_ORDERED_NONE);
if (q->ordered == QUEUE_ORDERED_FLUSH &&
!blk_barrier_preflush(rq))
rq = blk_start_pre_flush(q, rq);
}
return rq;
}
struct request *elv_next_request(request_queue_t *q)
{
struct request *rq;
int ret;
while ((rq = __elv_next_request(q)) != NULL) {
if (!(rq->flags & REQ_STARTED)) {
elevator_t *e = q->elevator;
/*
* This is the first time the device driver
* sees this request (possibly after
* requeueing). Notify IO scheduler.
*/
if (blk_sorted_rq(rq) &&
e->ops->elevator_activate_req_fn)
e->ops->elevator_activate_req_fn(q, rq);
/*
* just mark as started even if we don't start
* it, a request that has been delayed should
* not be passed by new incoming requests
*/
rq->flags |= REQ_STARTED;
}
if (rq == q->last_merge)
q->last_merge = NULL;
if (!q->boundary_rq || q->boundary_rq == rq) {
q->last_sector = rq_last_sector(rq);
q->boundary_rq = NULL;
}
if ((rq->flags & REQ_DONTPREP) || !q->prep_rq_fn)
break;
ret = q->prep_rq_fn(q, rq);
if (ret == BLKPREP_OK) {
break;
} else if (ret == BLKPREP_DEFER) {
/*
* the request may have been (partially) prepped.
* we need to keep this request in the front to
* avoid resource deadlock. REQ_STARTED will
* prevent other fs requests from passing this one.
*/
rq = NULL;
break;
} else if (ret == BLKPREP_KILL) {
int nr_bytes = rq->hard_nr_sectors << 9;
if (!nr_bytes)
nr_bytes = rq->data_len;
blkdev_dequeue_request(rq);
rq->flags |= REQ_QUIET;
end_that_request_chunk(rq, 0, nr_bytes);
end_that_request_last(rq);
} else {
printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
ret);
break;
}
}
return rq;
}
void elv_dequeue_request(request_queue_t *q, struct request *rq)
{
BUG_ON(list_empty(&rq->queuelist));
list_del_init(&rq->queuelist);
/*
* the time frame between a request being removed from the lists
* and to it is freed is accounted as io that is in progress at
* the driver side.
*/
if (blk_account_rq(rq))
q->in_flight++;
/*
* the main clearing point for q->last_merge is on retrieval of
* request by driver (it calls elv_next_request()), but it _can_
* also happen here if a request is added to the queue but later
* deleted without ever being given to driver (merged with another
* request).
*/
if (rq == q->last_merge)
q->last_merge = NULL;
}
int elv_queue_empty(request_queue_t *q)
{
elevator_t *e = q->elevator;
if (!list_empty(&q->queue_head))
return 0;
if (e->ops->elevator_queue_empty_fn)
return e->ops->elevator_queue_empty_fn(q);
return 1;
}
struct request *elv_latter_request(request_queue_t *q, struct request *rq)
{
struct list_head *next;
elevator_t *e = q->elevator;
if (e->ops->elevator_latter_req_fn)
return e->ops->elevator_latter_req_fn(q, rq);
next = rq->queuelist.next;
if (next != &q->queue_head && next != &rq->queuelist)
return list_entry_rq(next);
return NULL;
}
struct request *elv_former_request(request_queue_t *q, struct request *rq)
{
struct list_head *prev;
elevator_t *e = q->elevator;
if (e->ops->elevator_former_req_fn)
return e->ops->elevator_former_req_fn(q, rq);
prev = rq->queuelist.prev;
if (prev != &q->queue_head && prev != &rq->queuelist)
return list_entry_rq(prev);
return NULL;
}
int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
int gfp_mask)
{
elevator_t *e = q->elevator;
if (e->ops->elevator_set_req_fn)
return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask);
rq->elevator_private = NULL;
return 0;
}
void elv_put_request(request_queue_t *q, struct request *rq)
{
elevator_t *e = q->elevator;
if (e->ops->elevator_put_req_fn)
e->ops->elevator_put_req_fn(q, rq);
}
int elv_may_queue(request_queue_t *q, int rw, struct bio *bio)
{
elevator_t *e = q->elevator;
if (e->ops->elevator_may_queue_fn)
return e->ops->elevator_may_queue_fn(q, rw, bio);
return ELV_MQUEUE_MAY;
}
void elv_completed_request(request_queue_t *q, struct request *rq)
{
elevator_t *e = q->elevator;
/*
* request is released from the driver, io must be done
*/
if (blk_account_rq(rq)) {
q->in_flight--;
if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
e->ops->elevator_completed_req_fn(q, rq);
}
}
int elv_register_queue(struct request_queue *q)
{
elevator_t *e = q->elevator;
e->kobj.parent = kobject_get(&q->kobj);
if (!e->kobj.parent)
return -EBUSY;
snprintf(e->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
e->kobj.ktype = e->elevator_type->elevator_ktype;
return kobject_register(&e->kobj);
}
void elv_unregister_queue(struct request_queue *q)
{
if (q) {
elevator_t *e = q->elevator;
kobject_unregister(&e->kobj);
kobject_put(&q->kobj);
}
}
int elv_register(struct elevator_type *e)
{
spin_lock_irq(&elv_list_lock);
if (elevator_find(e->elevator_name))
BUG();
list_add_tail(&e->list, &elv_list);
spin_unlock_irq(&elv_list_lock);
printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
if (!strcmp(e->elevator_name, chosen_elevator))
printk(" (default)");
printk("\n");
return 0;
}
EXPORT_SYMBOL_GPL(elv_register);
void elv_unregister(struct elevator_type *e)
{
spin_lock_irq(&elv_list_lock);
list_del_init(&e->list);
spin_unlock_irq(&elv_list_lock);
}
EXPORT_SYMBOL_GPL(elv_unregister);
/*
* switch to new_e io scheduler. be careful not to introduce deadlocks -
* we don't free the old io scheduler, before we have allocated what we
* need for the new one. this way we have a chance of going back to the old
* one, if the new one fails init for some reason. we also do an intermediate
* switch to noop to ensure safety with stack-allocated requests, since they
* don't originate from the block layer allocator. noop is safe here, because
* it never needs to touch the elevator itself for completion events. DRAIN
* flags will make sure we don't touch it for additions either.
*/
static void elevator_switch(request_queue_t *q, struct elevator_type *new_e)
{
elevator_t *e = kmalloc(sizeof(elevator_t), GFP_KERNEL);
struct elevator_type *noop_elevator = NULL;
elevator_t *old_elevator;
if (!e)
goto error;
/*
* first step, drain requests from the block freelist
*/
blk_wait_queue_drained(q, 0);
/*
* unregister old elevator data
*/
elv_unregister_queue(q);
old_elevator = q->elevator;
/*
* next step, switch to noop since it uses no private rq structures
* and doesn't allocate any memory for anything. then wait for any
* non-fs requests in-flight
*/
noop_elevator = elevator_get("noop");
spin_lock_irq(q->queue_lock);
elevator_attach(q, noop_elevator, e);
spin_unlock_irq(q->queue_lock);
blk_wait_queue_drained(q, 1);
/*
* attach and start new elevator
*/
if (elevator_attach(q, new_e, e))
goto fail;
if (elv_register_queue(q))
goto fail_register;
/*
* finally exit old elevator and start queue again
*/
elevator_exit(old_elevator);
blk_finish_queue_drain(q);
elevator_put(noop_elevator);
return;
fail_register:
/*
* switch failed, exit the new io scheduler and reattach the old
* one again (along with re-adding the sysfs dir)
*/
elevator_exit(e);
fail:
q->elevator = old_elevator;
elv_register_queue(q);
blk_finish_queue_drain(q);
error:
if (noop_elevator)
elevator_put(noop_elevator);
elevator_put(new_e);
printk(KERN_ERR "elevator: switch to %s failed\n",new_e->elevator_name);
}
ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
{
char elevator_name[ELV_NAME_MAX];
struct elevator_type *e;
memset(elevator_name, 0, sizeof(elevator_name));
strncpy(elevator_name, name, sizeof(elevator_name));
if (elevator_name[strlen(elevator_name) - 1] == '\n')
elevator_name[strlen(elevator_name) - 1] = '\0';
e = elevator_get(elevator_name);
if (!e) {
printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
return -EINVAL;
}
if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name))
return count;
elevator_switch(q, e);
return count;
}
ssize_t elv_iosched_show(request_queue_t *q, char *name)
{
elevator_t *e = q->elevator;
struct elevator_type *elv = e->elevator_type;
struct list_head *entry;
int len = 0;
spin_lock_irq(q->queue_lock);
list_for_each(entry, &elv_list) {
struct elevator_type *__e;
__e = list_entry(entry, struct elevator_type, list);
if (!strcmp(elv->elevator_name, __e->elevator_name))
len += sprintf(name+len, "[%s] ", elv->elevator_name);
else
len += sprintf(name+len, "%s ", __e->elevator_name);
}
spin_unlock_irq(q->queue_lock);
len += sprintf(len+name, "\n");
return len;
}
EXPORT_SYMBOL(elv_dispatch_insert);
EXPORT_SYMBOL(elv_add_request);
EXPORT_SYMBOL(__elv_add_request);
EXPORT_SYMBOL(elv_requeue_request);
EXPORT_SYMBOL(elv_next_request);
EXPORT_SYMBOL(elv_dequeue_request);
EXPORT_SYMBOL(elv_queue_empty);
EXPORT_SYMBOL(elv_completed_request);
EXPORT_SYMBOL(elevator_exit);
EXPORT_SYMBOL(elevator_init);