android_kernel_xiaomi_sm8350/drivers/kvm/svm.c
Ingo Molnar 07031e14c1 [PATCH] KVM: add VM-exit profiling
This adds the profile=kvm boot option, which enables KVM to profile VM
exits.

Use: "readprofile -m ./System.map | sort -n" to see the resulting
output:

   [...]
   18246 serial_out                               148.3415
   18945 native_flush_tlb                         378.9000
   23618 serial_in                                212.7748
   29279 __spin_unlock_irq                        622.9574
   43447 native_apic_write                        2068.9048
   52702 enable_8259A_irq                         742.2817
   54250 vgacon_scroll                             89.3740
   67394 ide_inb                                  6126.7273
   79514 copy_page_range                           98.1654
   84868 do_wp_page                                86.6000
  140266 pit_read                                 783.6089
  151436 ide_outb                                 25239.3333
  152668 native_io_delay                          21809.7143
  174783 mask_and_ack_8259A                       783.7803
  362404 native_set_pte_at                        36240.4000
 1688747 total                                      0.5009

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Avi Kivity <avi@qumranet.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2007-01-11 18:18:21 -08:00

1706 lines
42 KiB
C

/*
* Kernel-based Virtual Machine driver for Linux
*
* AMD SVM support
*
* Copyright (C) 2006 Qumranet, Inc.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/profile.h>
#include <asm/desc.h>
#include "kvm_svm.h"
#include "x86_emulate.h"
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
#define IOPM_ALLOC_ORDER 2
#define MSRPM_ALLOC_ORDER 1
#define DB_VECTOR 1
#define UD_VECTOR 6
#define GP_VECTOR 13
#define DR7_GD_MASK (1 << 13)
#define DR6_BD_MASK (1 << 13)
#define CR4_DE_MASK (1UL << 3)
#define SEG_TYPE_LDT 2
#define SEG_TYPE_BUSY_TSS16 3
#define KVM_EFER_LMA (1 << 10)
#define KVM_EFER_LME (1 << 8)
unsigned long iopm_base;
unsigned long msrpm_base;
struct kvm_ldttss_desc {
u16 limit0;
u16 base0;
unsigned base1 : 8, type : 5, dpl : 2, p : 1;
unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
u32 base3;
u32 zero1;
} __attribute__((packed));
struct svm_cpu_data {
int cpu;
uint64_t asid_generation;
uint32_t max_asid;
uint32_t next_asid;
struct kvm_ldttss_desc *tss_desc;
struct page *save_area;
};
static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
struct svm_init_data {
int cpu;
int r;
};
static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
#define NUM_MSR_MAPS (sizeof(msrpm_ranges) / sizeof(*msrpm_ranges))
#define MSRS_RANGE_SIZE 2048
#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
#define MAX_INST_SIZE 15
static unsigned get_addr_size(struct kvm_vcpu *vcpu)
{
struct vmcb_save_area *sa = &vcpu->svm->vmcb->save;
u16 cs_attrib;
if (!(sa->cr0 & CR0_PE_MASK) || (sa->rflags & X86_EFLAGS_VM))
return 2;
cs_attrib = sa->cs.attrib;
return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
(cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
}
static inline u8 pop_irq(struct kvm_vcpu *vcpu)
{
int word_index = __ffs(vcpu->irq_summary);
int bit_index = __ffs(vcpu->irq_pending[word_index]);
int irq = word_index * BITS_PER_LONG + bit_index;
clear_bit(bit_index, &vcpu->irq_pending[word_index]);
if (!vcpu->irq_pending[word_index])
clear_bit(word_index, &vcpu->irq_summary);
return irq;
}
static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
{
set_bit(irq, vcpu->irq_pending);
set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
}
static inline void clgi(void)
{
asm volatile (SVM_CLGI);
}
static inline void stgi(void)
{
asm volatile (SVM_STGI);
}
static inline void invlpga(unsigned long addr, u32 asid)
{
asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
}
static inline unsigned long kvm_read_cr2(void)
{
unsigned long cr2;
asm volatile ("mov %%cr2, %0" : "=r" (cr2));
return cr2;
}
static inline void kvm_write_cr2(unsigned long val)
{
asm volatile ("mov %0, %%cr2" :: "r" (val));
}
static inline unsigned long read_dr6(void)
{
unsigned long dr6;
asm volatile ("mov %%dr6, %0" : "=r" (dr6));
return dr6;
}
static inline void write_dr6(unsigned long val)
{
asm volatile ("mov %0, %%dr6" :: "r" (val));
}
static inline unsigned long read_dr7(void)
{
unsigned long dr7;
asm volatile ("mov %%dr7, %0" : "=r" (dr7));
return dr7;
}
static inline void write_dr7(unsigned long val)
{
asm volatile ("mov %0, %%dr7" :: "r" (val));
}
static inline void force_new_asid(struct kvm_vcpu *vcpu)
{
vcpu->svm->asid_generation--;
}
static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
{
force_new_asid(vcpu);
}
static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
if (!(efer & KVM_EFER_LMA))
efer &= ~KVM_EFER_LME;
vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
vcpu->shadow_efer = efer;
}
static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
{
vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
SVM_EVTINJ_VALID_ERR |
SVM_EVTINJ_TYPE_EXEPT |
GP_VECTOR;
vcpu->svm->vmcb->control.event_inj_err = error_code;
}
static void inject_ud(struct kvm_vcpu *vcpu)
{
vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
SVM_EVTINJ_TYPE_EXEPT |
UD_VECTOR;
}
static void inject_db(struct kvm_vcpu *vcpu)
{
vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
SVM_EVTINJ_TYPE_EXEPT |
DB_VECTOR;
}
static int is_page_fault(uint32_t info)
{
info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
}
static int is_external_interrupt(u32 info)
{
info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
}
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
if (!vcpu->svm->next_rip) {
printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
return;
}
if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) {
printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
__FUNCTION__,
vcpu->svm->vmcb->save.rip,
vcpu->svm->next_rip);
}
vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip;
vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
vcpu->interrupt_window_open = 1;
}
static int has_svm(void)
{
uint32_t eax, ebx, ecx, edx;
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
printk(KERN_INFO "has_svm: not amd\n");
return 0;
}
cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
if (eax < SVM_CPUID_FUNC) {
printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
return 0;
}
cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
printk(KERN_DEBUG "has_svm: svm not available\n");
return 0;
}
return 1;
}
static void svm_hardware_disable(void *garbage)
{
struct svm_cpu_data *svm_data
= per_cpu(svm_data, raw_smp_processor_id());
if (svm_data) {
uint64_t efer;
wrmsrl(MSR_VM_HSAVE_PA, 0);
rdmsrl(MSR_EFER, efer);
wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
per_cpu(svm_data, raw_smp_processor_id()) = 0;
__free_page(svm_data->save_area);
kfree(svm_data);
}
}
static void svm_hardware_enable(void *garbage)
{
struct svm_cpu_data *svm_data;
uint64_t efer;
#ifdef CONFIG_X86_64
struct desc_ptr gdt_descr;
#else
struct Xgt_desc_struct gdt_descr;
#endif
struct desc_struct *gdt;
int me = raw_smp_processor_id();
if (!has_svm()) {
printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
return;
}
svm_data = per_cpu(svm_data, me);
if (!svm_data) {
printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
me);
return;
}
svm_data->asid_generation = 1;
svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
svm_data->next_asid = svm_data->max_asid + 1;
asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
gdt = (struct desc_struct *)gdt_descr.address;
svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
rdmsrl(MSR_EFER, efer);
wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
wrmsrl(MSR_VM_HSAVE_PA,
page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
}
static int svm_cpu_init(int cpu)
{
struct svm_cpu_data *svm_data;
int r;
svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
if (!svm_data)
return -ENOMEM;
svm_data->cpu = cpu;
svm_data->save_area = alloc_page(GFP_KERNEL);
r = -ENOMEM;
if (!svm_data->save_area)
goto err_1;
per_cpu(svm_data, cpu) = svm_data;
return 0;
err_1:
kfree(svm_data);
return r;
}
static int set_msr_interception(u32 *msrpm, unsigned msr,
int read, int write)
{
int i;
for (i = 0; i < NUM_MSR_MAPS; i++) {
if (msr >= msrpm_ranges[i] &&
msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
u32 msr_offset = (i * MSRS_IN_RANGE + msr -
msrpm_ranges[i]) * 2;
u32 *base = msrpm + (msr_offset / 32);
u32 msr_shift = msr_offset % 32;
u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
*base = (*base & ~(0x3 << msr_shift)) |
(mask << msr_shift);
return 1;
}
}
printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
return 0;
}
static __init int svm_hardware_setup(void)
{
int cpu;
struct page *iopm_pages;
struct page *msrpm_pages;
void *msrpm_va;
int r;
kvm_emulator_want_group7_invlpg();
iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
if (!iopm_pages)
return -ENOMEM;
memset(page_address(iopm_pages), 0xff,
PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
r = -ENOMEM;
if (!msrpm_pages)
goto err_1;
msrpm_va = page_address(msrpm_pages);
memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
#ifdef CONFIG_X86_64
set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
#endif
set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
for_each_online_cpu(cpu) {
r = svm_cpu_init(cpu);
if (r)
goto err_2;
}
return 0;
err_2:
__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
msrpm_base = 0;
err_1:
__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
iopm_base = 0;
return r;
}
static __exit void svm_hardware_unsetup(void)
{
__free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
iopm_base = msrpm_base = 0;
}
static void init_seg(struct vmcb_seg *seg)
{
seg->selector = 0;
seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
seg->limit = 0xffff;
seg->base = 0;
}
static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
{
seg->selector = 0;
seg->attrib = SVM_SELECTOR_P_MASK | type;
seg->limit = 0xffff;
seg->base = 0;
}
static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
{
return 0;
}
static void init_vmcb(struct vmcb *vmcb)
{
struct vmcb_control_area *control = &vmcb->control;
struct vmcb_save_area *save = &vmcb->save;
u64 tsc;
control->intercept_cr_read = INTERCEPT_CR0_MASK |
INTERCEPT_CR3_MASK |
INTERCEPT_CR4_MASK;
control->intercept_cr_write = INTERCEPT_CR0_MASK |
INTERCEPT_CR3_MASK |
INTERCEPT_CR4_MASK;
control->intercept_dr_read = INTERCEPT_DR0_MASK |
INTERCEPT_DR1_MASK |
INTERCEPT_DR2_MASK |
INTERCEPT_DR3_MASK;
control->intercept_dr_write = INTERCEPT_DR0_MASK |
INTERCEPT_DR1_MASK |
INTERCEPT_DR2_MASK |
INTERCEPT_DR3_MASK |
INTERCEPT_DR5_MASK |
INTERCEPT_DR7_MASK;
control->intercept_exceptions = 1 << PF_VECTOR;
control->intercept = (1ULL << INTERCEPT_INTR) |
(1ULL << INTERCEPT_NMI) |
/*
* selective cr0 intercept bug?
* 0: 0f 22 d8 mov %eax,%cr3
* 3: 0f 20 c0 mov %cr0,%eax
* 6: 0d 00 00 00 80 or $0x80000000,%eax
* b: 0f 22 c0 mov %eax,%cr0
* set cr3 ->interception
* get cr0 ->interception
* set cr0 -> no interception
*/
/* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
(1ULL << INTERCEPT_CPUID) |
(1ULL << INTERCEPT_HLT) |
(1ULL << INTERCEPT_INVLPGA) |
(1ULL << INTERCEPT_IOIO_PROT) |
(1ULL << INTERCEPT_MSR_PROT) |
(1ULL << INTERCEPT_TASK_SWITCH) |
(1ULL << INTERCEPT_VMRUN) |
(1ULL << INTERCEPT_VMMCALL) |
(1ULL << INTERCEPT_VMLOAD) |
(1ULL << INTERCEPT_VMSAVE) |
(1ULL << INTERCEPT_STGI) |
(1ULL << INTERCEPT_CLGI) |
(1ULL << INTERCEPT_SKINIT);
control->iopm_base_pa = iopm_base;
control->msrpm_base_pa = msrpm_base;
rdtscll(tsc);
control->tsc_offset = -tsc;
control->int_ctl = V_INTR_MASKING_MASK;
init_seg(&save->es);
init_seg(&save->ss);
init_seg(&save->ds);
init_seg(&save->fs);
init_seg(&save->gs);
save->cs.selector = 0xf000;
/* Executable/Readable Code Segment */
save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
save->cs.limit = 0xffff;
save->cs.base = 0xffff0000;
save->gdtr.limit = 0xffff;
save->idtr.limit = 0xffff;
init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
save->efer = MSR_EFER_SVME_MASK;
save->dr6 = 0xffff0ff0;
save->dr7 = 0x400;
save->rflags = 2;
save->rip = 0x0000fff0;
/*
* cr0 val on cpu init should be 0x60000010, we enable cpu
* cache by default. the orderly way is to enable cache in bios.
*/
save->cr0 = 0x00000010 | CR0_PG_MASK;
save->cr4 = CR4_PAE_MASK;
/* rdx = ?? */
}
static int svm_create_vcpu(struct kvm_vcpu *vcpu)
{
struct page *page;
int r;
r = -ENOMEM;
vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL);
if (!vcpu->svm)
goto out1;
page = alloc_page(GFP_KERNEL);
if (!page)
goto out2;
vcpu->svm->vmcb = page_address(page);
memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
vcpu->svm->cr0 = 0x00000010;
vcpu->svm->asid_generation = 0;
memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs));
init_vmcb(vcpu->svm->vmcb);
fx_init(vcpu);
return 0;
out2:
kfree(vcpu->svm);
out1:
return r;
}
static void svm_free_vcpu(struct kvm_vcpu *vcpu)
{
if (!vcpu->svm)
return;
if (vcpu->svm->vmcb)
__free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT));
kfree(vcpu->svm);
}
static struct kvm_vcpu *svm_vcpu_load(struct kvm_vcpu *vcpu)
{
get_cpu();
return vcpu;
}
static void svm_vcpu_put(struct kvm_vcpu *vcpu)
{
put_cpu();
}
static void svm_cache_regs(struct kvm_vcpu *vcpu)
{
vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax;
vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp;
vcpu->rip = vcpu->svm->vmcb->save.rip;
}
static void svm_decache_regs(struct kvm_vcpu *vcpu)
{
vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
vcpu->svm->vmcb->save.rip = vcpu->rip;
}
static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
{
return vcpu->svm->vmcb->save.rflags;
}
static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
vcpu->svm->vmcb->save.rflags = rflags;
}
static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
{
struct vmcb_save_area *save = &vcpu->svm->vmcb->save;
switch (seg) {
case VCPU_SREG_CS: return &save->cs;
case VCPU_SREG_DS: return &save->ds;
case VCPU_SREG_ES: return &save->es;
case VCPU_SREG_FS: return &save->fs;
case VCPU_SREG_GS: return &save->gs;
case VCPU_SREG_SS: return &save->ss;
case VCPU_SREG_TR: return &save->tr;
case VCPU_SREG_LDTR: return &save->ldtr;
}
BUG();
return 0;
}
static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
struct vmcb_seg *s = svm_seg(vcpu, seg);
return s->base;
}
static void svm_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vmcb_seg *s = svm_seg(vcpu, seg);
var->base = s->base;
var->limit = s->limit;
var->selector = s->selector;
var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
var->unusable = !var->present;
}
static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
*db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
*l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
}
static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
dt->limit = vcpu->svm->vmcb->save.ldtr.limit;
dt->base = vcpu->svm->vmcb->save.ldtr.base;
}
static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
vcpu->svm->vmcb->save.ldtr.limit = dt->limit;
vcpu->svm->vmcb->save.ldtr.base = dt->base ;
}
static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
dt->limit = vcpu->svm->vmcb->save.gdtr.limit;
dt->base = vcpu->svm->vmcb->save.gdtr.base;
}
static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
vcpu->svm->vmcb->save.gdtr.limit = dt->limit;
vcpu->svm->vmcb->save.gdtr.base = dt->base ;
}
static void svm_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
{
}
static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
#ifdef CONFIG_X86_64
if (vcpu->shadow_efer & KVM_EFER_LME) {
if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
vcpu->shadow_efer |= KVM_EFER_LMA;
vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
}
if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK) ) {
vcpu->shadow_efer &= ~KVM_EFER_LMA;
vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
}
}
#endif
vcpu->svm->cr0 = cr0;
vcpu->svm->vmcb->save.cr0 = cr0 | CR0_PG_MASK;
vcpu->cr0 = cr0;
}
static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
vcpu->cr4 = cr4;
vcpu->svm->vmcb->save.cr4 = cr4 | CR4_PAE_MASK;
}
static void svm_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vmcb_seg *s = svm_seg(vcpu, seg);
s->base = var->base;
s->limit = var->limit;
s->selector = var->selector;
if (var->unusable)
s->attrib = 0;
else {
s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
}
if (seg == VCPU_SREG_CS)
vcpu->svm->vmcb->save.cpl
= (vcpu->svm->vmcb->save.cs.attrib
>> SVM_SELECTOR_DPL_SHIFT) & 3;
}
/* FIXME:
vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
*/
static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
{
return -EOPNOTSUPP;
}
static void load_host_msrs(struct kvm_vcpu *vcpu)
{
int i;
for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
wrmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
}
static void save_host_msrs(struct kvm_vcpu *vcpu)
{
int i;
for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
rdmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
}
static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
{
if (svm_data->next_asid > svm_data->max_asid) {
++svm_data->asid_generation;
svm_data->next_asid = 1;
vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
}
vcpu->cpu = svm_data->cpu;
vcpu->svm->asid_generation = svm_data->asid_generation;
vcpu->svm->vmcb->control.asid = svm_data->next_asid++;
}
static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
{
invlpga(address, vcpu->svm->vmcb->control.asid); // is needed?
}
static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
{
return vcpu->svm->db_regs[dr];
}
static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
int *exception)
{
*exception = 0;
if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) {
vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK;
*exception = DB_VECTOR;
return;
}
switch (dr) {
case 0 ... 3:
vcpu->svm->db_regs[dr] = value;
return;
case 4 ... 5:
if (vcpu->cr4 & CR4_DE_MASK) {
*exception = UD_VECTOR;
return;
}
case 7: {
if (value & ~((1ULL << 32) - 1)) {
*exception = GP_VECTOR;
return;
}
vcpu->svm->vmcb->save.dr7 = value;
return;
}
default:
printk(KERN_DEBUG "%s: unexpected dr %u\n",
__FUNCTION__, dr);
*exception = UD_VECTOR;
return;
}
}
static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
u64 fault_address;
u32 error_code;
enum emulation_result er;
int r;
if (is_external_interrupt(exit_int_info))
push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
spin_lock(&vcpu->kvm->lock);
fault_address = vcpu->svm->vmcb->control.exit_info_2;
error_code = vcpu->svm->vmcb->control.exit_info_1;
r = kvm_mmu_page_fault(vcpu, fault_address, error_code);
if (r < 0) {
spin_unlock(&vcpu->kvm->lock);
return r;
}
if (!r) {
spin_unlock(&vcpu->kvm->lock);
return 1;
}
er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
spin_unlock(&vcpu->kvm->lock);
switch (er) {
case EMULATE_DONE:
return 1;
case EMULATE_DO_MMIO:
++kvm_stat.mmio_exits;
kvm_run->exit_reason = KVM_EXIT_MMIO;
return 0;
case EMULATE_FAIL:
vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
break;
default:
BUG();
}
kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
return 0;
}
static int io_get_override(struct kvm_vcpu *vcpu,
struct vmcb_seg **seg,
int *addr_override)
{
u8 inst[MAX_INST_SIZE];
unsigned ins_length;
gva_t rip;
int i;
rip = vcpu->svm->vmcb->save.rip;
ins_length = vcpu->svm->next_rip - rip;
rip += vcpu->svm->vmcb->save.cs.base;
if (ins_length > MAX_INST_SIZE)
printk(KERN_DEBUG
"%s: inst length err, cs base 0x%llx rip 0x%llx "
"next rip 0x%llx ins_length %u\n",
__FUNCTION__,
vcpu->svm->vmcb->save.cs.base,
vcpu->svm->vmcb->save.rip,
vcpu->svm->vmcb->control.exit_info_2,
ins_length);
if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
/* #PF */
return 0;
*addr_override = 0;
*seg = 0;
for (i = 0; i < ins_length; i++)
switch (inst[i]) {
case 0xf0:
case 0xf2:
case 0xf3:
case 0x66:
continue;
case 0x67:
*addr_override = 1;
continue;
case 0x2e:
*seg = &vcpu->svm->vmcb->save.cs;
continue;
case 0x36:
*seg = &vcpu->svm->vmcb->save.ss;
continue;
case 0x3e:
*seg = &vcpu->svm->vmcb->save.ds;
continue;
case 0x26:
*seg = &vcpu->svm->vmcb->save.es;
continue;
case 0x64:
*seg = &vcpu->svm->vmcb->save.fs;
continue;
case 0x65:
*seg = &vcpu->svm->vmcb->save.gs;
continue;
default:
return 1;
}
printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
return 0;
}
static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, u64 *address)
{
unsigned long addr_mask;
unsigned long *reg;
struct vmcb_seg *seg;
int addr_override;
struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save;
u16 cs_attrib = save_area->cs.attrib;
unsigned addr_size = get_addr_size(vcpu);
if (!io_get_override(vcpu, &seg, &addr_override))
return 0;
if (addr_override)
addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
if (ins) {
reg = &vcpu->regs[VCPU_REGS_RDI];
seg = &vcpu->svm->vmcb->save.es;
} else {
reg = &vcpu->regs[VCPU_REGS_RSI];
seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds;
}
addr_mask = ~0ULL >> (64 - (addr_size * 8));
if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
!(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
*address = (*reg & addr_mask);
return addr_mask;
}
if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
svm_inject_gp(vcpu, 0);
return 0;
}
*address = (*reg & addr_mask) + seg->base;
return addr_mask;
}
static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug?
int _in = io_info & SVM_IOIO_TYPE_MASK;
++kvm_stat.io_exits;
vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2;
kvm_run->exit_reason = KVM_EXIT_IO;
kvm_run->io.port = io_info >> 16;
kvm_run->io.direction = (_in) ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
kvm_run->io.size = ((io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT);
kvm_run->io.string = (io_info & SVM_IOIO_STR_MASK) != 0;
kvm_run->io.rep = (io_info & SVM_IOIO_REP_MASK) != 0;
if (kvm_run->io.string) {
unsigned addr_mask;
addr_mask = io_adress(vcpu, _in, &kvm_run->io.address);
if (!addr_mask) {
printk(KERN_DEBUG "%s: get io address failed\n", __FUNCTION__);
return 1;
}
if (kvm_run->io.rep) {
kvm_run->io.count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
kvm_run->io.string_down = (vcpu->svm->vmcb->save.rflags
& X86_EFLAGS_DF) != 0;
}
} else {
kvm_run->io.value = vcpu->svm->vmcb->save.rax;
}
return 0;
}
static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
return 1;
}
static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1;
skip_emulated_instruction(vcpu);
if (vcpu->irq_summary)
return 1;
kvm_run->exit_reason = KVM_EXIT_HLT;
++kvm_stat.halt_exits;
return 0;
}
static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
inject_ud(vcpu);
return 1;
}
static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
return 0;
}
static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
kvm_run->exit_reason = KVM_EXIT_CPUID;
return 0;
}
static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
if (emulate_instruction(vcpu, 0, 0, 0) != EMULATE_DONE)
printk(KERN_ERR "%s: failed\n", __FUNCTION__);
return 1;
}
static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
{
switch (ecx) {
case MSR_IA32_TIME_STAMP_COUNTER: {
u64 tsc;
rdtscll(tsc);
*data = vcpu->svm->vmcb->control.tsc_offset + tsc;
break;
}
case MSR_K6_STAR:
*data = vcpu->svm->vmcb->save.star;
break;
#ifdef CONFIG_X86_64
case MSR_LSTAR:
*data = vcpu->svm->vmcb->save.lstar;
break;
case MSR_CSTAR:
*data = vcpu->svm->vmcb->save.cstar;
break;
case MSR_KERNEL_GS_BASE:
*data = vcpu->svm->vmcb->save.kernel_gs_base;
break;
case MSR_SYSCALL_MASK:
*data = vcpu->svm->vmcb->save.sfmask;
break;
#endif
case MSR_IA32_SYSENTER_CS:
*data = vcpu->svm->vmcb->save.sysenter_cs;
break;
case MSR_IA32_SYSENTER_EIP:
*data = vcpu->svm->vmcb->save.sysenter_eip;
break;
case MSR_IA32_SYSENTER_ESP:
*data = vcpu->svm->vmcb->save.sysenter_esp;
break;
default:
return kvm_get_msr_common(vcpu, ecx, data);
}
return 0;
}
static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u32 ecx = vcpu->regs[VCPU_REGS_RCX];
u64 data;
if (svm_get_msr(vcpu, ecx, &data))
svm_inject_gp(vcpu, 0);
else {
vcpu->svm->vmcb->save.rax = data & 0xffffffff;
vcpu->regs[VCPU_REGS_RDX] = data >> 32;
vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
skip_emulated_instruction(vcpu);
}
return 1;
}
static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
{
switch (ecx) {
case MSR_IA32_TIME_STAMP_COUNTER: {
u64 tsc;
rdtscll(tsc);
vcpu->svm->vmcb->control.tsc_offset = data - tsc;
break;
}
case MSR_K6_STAR:
vcpu->svm->vmcb->save.star = data;
break;
#ifdef CONFIG_X86_64_
case MSR_LSTAR:
vcpu->svm->vmcb->save.lstar = data;
break;
case MSR_CSTAR:
vcpu->svm->vmcb->save.cstar = data;
break;
case MSR_KERNEL_GS_BASE:
vcpu->svm->vmcb->save.kernel_gs_base = data;
break;
case MSR_SYSCALL_MASK:
vcpu->svm->vmcb->save.sfmask = data;
break;
#endif
case MSR_IA32_SYSENTER_CS:
vcpu->svm->vmcb->save.sysenter_cs = data;
break;
case MSR_IA32_SYSENTER_EIP:
vcpu->svm->vmcb->save.sysenter_eip = data;
break;
case MSR_IA32_SYSENTER_ESP:
vcpu->svm->vmcb->save.sysenter_esp = data;
break;
default:
return kvm_set_msr_common(vcpu, ecx, data);
}
return 0;
}
static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u32 ecx = vcpu->regs[VCPU_REGS_RCX];
u64 data = (vcpu->svm->vmcb->save.rax & -1u)
| ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
if (svm_set_msr(vcpu, ecx, data))
svm_inject_gp(vcpu, 0);
else
skip_emulated_instruction(vcpu);
return 1;
}
static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
if (vcpu->svm->vmcb->control.exit_info_1)
return wrmsr_interception(vcpu, kvm_run);
else
return rdmsr_interception(vcpu, kvm_run);
}
static int interrupt_window_interception(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
/*
* If the user space waits to inject interrupts, exit as soon as
* possible
*/
if (kvm_run->request_interrupt_window &&
!vcpu->irq_summary) {
++kvm_stat.irq_window_exits;
kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
return 0;
}
return 1;
}
static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run) = {
[SVM_EXIT_READ_CR0] = emulate_on_interception,
[SVM_EXIT_READ_CR3] = emulate_on_interception,
[SVM_EXIT_READ_CR4] = emulate_on_interception,
/* for now: */
[SVM_EXIT_WRITE_CR0] = emulate_on_interception,
[SVM_EXIT_WRITE_CR3] = emulate_on_interception,
[SVM_EXIT_WRITE_CR4] = emulate_on_interception,
[SVM_EXIT_READ_DR0] = emulate_on_interception,
[SVM_EXIT_READ_DR1] = emulate_on_interception,
[SVM_EXIT_READ_DR2] = emulate_on_interception,
[SVM_EXIT_READ_DR3] = emulate_on_interception,
[SVM_EXIT_WRITE_DR0] = emulate_on_interception,
[SVM_EXIT_WRITE_DR1] = emulate_on_interception,
[SVM_EXIT_WRITE_DR2] = emulate_on_interception,
[SVM_EXIT_WRITE_DR3] = emulate_on_interception,
[SVM_EXIT_WRITE_DR5] = emulate_on_interception,
[SVM_EXIT_WRITE_DR7] = emulate_on_interception,
[SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
[SVM_EXIT_INTR] = nop_on_interception,
[SVM_EXIT_NMI] = nop_on_interception,
[SVM_EXIT_SMI] = nop_on_interception,
[SVM_EXIT_INIT] = nop_on_interception,
[SVM_EXIT_VINTR] = interrupt_window_interception,
/* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
[SVM_EXIT_CPUID] = cpuid_interception,
[SVM_EXIT_HLT] = halt_interception,
[SVM_EXIT_INVLPG] = emulate_on_interception,
[SVM_EXIT_INVLPGA] = invalid_op_interception,
[SVM_EXIT_IOIO] = io_interception,
[SVM_EXIT_MSR] = msr_interception,
[SVM_EXIT_TASK_SWITCH] = task_switch_interception,
[SVM_EXIT_VMRUN] = invalid_op_interception,
[SVM_EXIT_VMMCALL] = invalid_op_interception,
[SVM_EXIT_VMLOAD] = invalid_op_interception,
[SVM_EXIT_VMSAVE] = invalid_op_interception,
[SVM_EXIT_STGI] = invalid_op_interception,
[SVM_EXIT_CLGI] = invalid_op_interception,
[SVM_EXIT_SKINIT] = invalid_op_interception,
};
static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u32 exit_code = vcpu->svm->vmcb->control.exit_code;
kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) &&
exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
"exit_code 0x%x\n",
__FUNCTION__, vcpu->svm->vmcb->control.exit_int_info,
exit_code);
if (exit_code >= sizeof(svm_exit_handlers) / sizeof(*svm_exit_handlers)
|| svm_exit_handlers[exit_code] == 0) {
kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
printk(KERN_ERR "%s: 0x%x @ 0x%llx cr0 0x%lx rflags 0x%llx\n",
__FUNCTION__,
exit_code,
vcpu->svm->vmcb->save.rip,
vcpu->cr0,
vcpu->svm->vmcb->save.rflags);
return 0;
}
return svm_exit_handlers[exit_code](vcpu, kvm_run);
}
static void reload_tss(struct kvm_vcpu *vcpu)
{
int cpu = raw_smp_processor_id();
struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
svm_data->tss_desc->type = 9; //available 32/64-bit TSS
load_TR_desc();
}
static void pre_svm_run(struct kvm_vcpu *vcpu)
{
int cpu = raw_smp_processor_id();
struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
if (vcpu->cpu != cpu ||
vcpu->svm->asid_generation != svm_data->asid_generation)
new_asid(vcpu, svm_data);
}
static inline void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
{
struct vmcb_control_area *control;
control = &vcpu->svm->vmcb->control;
control->int_vector = pop_irq(vcpu);
control->int_ctl &= ~V_INTR_PRIO_MASK;
control->int_ctl |= V_IRQ_MASK |
((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
}
static void kvm_reput_irq(struct kvm_vcpu *vcpu)
{
struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
if (control->int_ctl & V_IRQ_MASK) {
control->int_ctl &= ~V_IRQ_MASK;
push_irq(vcpu, control->int_vector);
}
vcpu->interrupt_window_open =
!(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
}
static void do_interrupt_requests(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
vcpu->interrupt_window_open =
(!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
if (vcpu->interrupt_window_open && vcpu->irq_summary)
/*
* If interrupts enabled, and not blocked by sti or mov ss. Good.
*/
kvm_do_inject_irq(vcpu);
/*
* Interrupts blocked. Wait for unblock.
*/
if (!vcpu->interrupt_window_open &&
(vcpu->irq_summary || kvm_run->request_interrupt_window)) {
control->intercept |= 1ULL << INTERCEPT_VINTR;
} else
control->intercept &= ~(1ULL << INTERCEPT_VINTR);
}
static void post_kvm_run_save(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
vcpu->irq_summary == 0);
kvm_run->if_flag = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
kvm_run->cr8 = vcpu->cr8;
kvm_run->apic_base = vcpu->apic_base;
}
/*
* Check if userspace requested an interrupt window, and that the
* interrupt window is open.
*
* No need to exit to userspace if we already have an interrupt queued.
*/
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
return (!vcpu->irq_summary &&
kvm_run->request_interrupt_window &&
vcpu->interrupt_window_open &&
(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
}
static void save_db_regs(unsigned long *db_regs)
{
asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
}
static void load_db_regs(unsigned long *db_regs)
{
asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
}
static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u16 fs_selector;
u16 gs_selector;
u16 ldt_selector;
int r;
again:
do_interrupt_requests(vcpu, kvm_run);
clgi();
pre_svm_run(vcpu);
save_host_msrs(vcpu);
fs_selector = read_fs();
gs_selector = read_gs();
ldt_selector = read_ldt();
vcpu->svm->host_cr2 = kvm_read_cr2();
vcpu->svm->host_dr6 = read_dr6();
vcpu->svm->host_dr7 = read_dr7();
vcpu->svm->vmcb->save.cr2 = vcpu->cr2;
if (vcpu->svm->vmcb->save.dr7 & 0xff) {
write_dr7(0);
save_db_regs(vcpu->svm->host_db_regs);
load_db_regs(vcpu->svm->db_regs);
}
fx_save(vcpu->host_fx_image);
fx_restore(vcpu->guest_fx_image);
asm volatile (
#ifdef CONFIG_X86_64
"push %%rbx; push %%rcx; push %%rdx;"
"push %%rsi; push %%rdi; push %%rbp;"
"push %%r8; push %%r9; push %%r10; push %%r11;"
"push %%r12; push %%r13; push %%r14; push %%r15;"
#else
"push %%ebx; push %%ecx; push %%edx;"
"push %%esi; push %%edi; push %%ebp;"
#endif
#ifdef CONFIG_X86_64
"mov %c[rbx](%[vcpu]), %%rbx \n\t"
"mov %c[rcx](%[vcpu]), %%rcx \n\t"
"mov %c[rdx](%[vcpu]), %%rdx \n\t"
"mov %c[rsi](%[vcpu]), %%rsi \n\t"
"mov %c[rdi](%[vcpu]), %%rdi \n\t"
"mov %c[rbp](%[vcpu]), %%rbp \n\t"
"mov %c[r8](%[vcpu]), %%r8 \n\t"
"mov %c[r9](%[vcpu]), %%r9 \n\t"
"mov %c[r10](%[vcpu]), %%r10 \n\t"
"mov %c[r11](%[vcpu]), %%r11 \n\t"
"mov %c[r12](%[vcpu]), %%r12 \n\t"
"mov %c[r13](%[vcpu]), %%r13 \n\t"
"mov %c[r14](%[vcpu]), %%r14 \n\t"
"mov %c[r15](%[vcpu]), %%r15 \n\t"
#else
"mov %c[rbx](%[vcpu]), %%ebx \n\t"
"mov %c[rcx](%[vcpu]), %%ecx \n\t"
"mov %c[rdx](%[vcpu]), %%edx \n\t"
"mov %c[rsi](%[vcpu]), %%esi \n\t"
"mov %c[rdi](%[vcpu]), %%edi \n\t"
"mov %c[rbp](%[vcpu]), %%ebp \n\t"
#endif
#ifdef CONFIG_X86_64
/* Enter guest mode */
"push %%rax \n\t"
"mov %c[svm](%[vcpu]), %%rax \n\t"
"mov %c[vmcb](%%rax), %%rax \n\t"
SVM_VMLOAD "\n\t"
SVM_VMRUN "\n\t"
SVM_VMSAVE "\n\t"
"pop %%rax \n\t"
#else
/* Enter guest mode */
"push %%eax \n\t"
"mov %c[svm](%[vcpu]), %%eax \n\t"
"mov %c[vmcb](%%eax), %%eax \n\t"
SVM_VMLOAD "\n\t"
SVM_VMRUN "\n\t"
SVM_VMSAVE "\n\t"
"pop %%eax \n\t"
#endif
/* Save guest registers, load host registers */
#ifdef CONFIG_X86_64
"mov %%rbx, %c[rbx](%[vcpu]) \n\t"
"mov %%rcx, %c[rcx](%[vcpu]) \n\t"
"mov %%rdx, %c[rdx](%[vcpu]) \n\t"
"mov %%rsi, %c[rsi](%[vcpu]) \n\t"
"mov %%rdi, %c[rdi](%[vcpu]) \n\t"
"mov %%rbp, %c[rbp](%[vcpu]) \n\t"
"mov %%r8, %c[r8](%[vcpu]) \n\t"
"mov %%r9, %c[r9](%[vcpu]) \n\t"
"mov %%r10, %c[r10](%[vcpu]) \n\t"
"mov %%r11, %c[r11](%[vcpu]) \n\t"
"mov %%r12, %c[r12](%[vcpu]) \n\t"
"mov %%r13, %c[r13](%[vcpu]) \n\t"
"mov %%r14, %c[r14](%[vcpu]) \n\t"
"mov %%r15, %c[r15](%[vcpu]) \n\t"
"pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
"pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
"pop %%rbp; pop %%rdi; pop %%rsi;"
"pop %%rdx; pop %%rcx; pop %%rbx; \n\t"
#else
"mov %%ebx, %c[rbx](%[vcpu]) \n\t"
"mov %%ecx, %c[rcx](%[vcpu]) \n\t"
"mov %%edx, %c[rdx](%[vcpu]) \n\t"
"mov %%esi, %c[rsi](%[vcpu]) \n\t"
"mov %%edi, %c[rdi](%[vcpu]) \n\t"
"mov %%ebp, %c[rbp](%[vcpu]) \n\t"
"pop %%ebp; pop %%edi; pop %%esi;"
"pop %%edx; pop %%ecx; pop %%ebx; \n\t"
#endif
:
: [vcpu]"a"(vcpu),
[svm]"i"(offsetof(struct kvm_vcpu, svm)),
[vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
[rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
[rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
[rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
[rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
[rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
[rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
#ifdef CONFIG_X86_64
,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
[r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
[r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
[r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
[r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
[r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
[r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
[r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
#endif
: "cc", "memory" );
fx_save(vcpu->guest_fx_image);
fx_restore(vcpu->host_fx_image);
if ((vcpu->svm->vmcb->save.dr7 & 0xff))
load_db_regs(vcpu->svm->host_db_regs);
vcpu->cr2 = vcpu->svm->vmcb->save.cr2;
write_dr6(vcpu->svm->host_dr6);
write_dr7(vcpu->svm->host_dr7);
kvm_write_cr2(vcpu->svm->host_cr2);
load_fs(fs_selector);
load_gs(gs_selector);
load_ldt(ldt_selector);
load_host_msrs(vcpu);
reload_tss(vcpu);
/*
* Profile KVM exit RIPs:
*/
if (unlikely(prof_on == KVM_PROFILING))
profile_hit(KVM_PROFILING,
(void *)(unsigned long)vcpu->svm->vmcb->save.rip);
stgi();
kvm_reput_irq(vcpu);
vcpu->svm->next_rip = 0;
if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
kvm_run->exit_reason = vcpu->svm->vmcb->control.exit_code;
post_kvm_run_save(vcpu, kvm_run);
return 0;
}
r = handle_exit(vcpu, kvm_run);
if (r > 0) {
if (signal_pending(current)) {
++kvm_stat.signal_exits;
post_kvm_run_save(vcpu, kvm_run);
return -EINTR;
}
if (dm_request_for_irq_injection(vcpu, kvm_run)) {
++kvm_stat.request_irq_exits;
post_kvm_run_save(vcpu, kvm_run);
return -EINTR;
}
kvm_resched(vcpu);
goto again;
}
post_kvm_run_save(vcpu, kvm_run);
return r;
}
static void svm_flush_tlb(struct kvm_vcpu *vcpu)
{
force_new_asid(vcpu);
}
static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
{
vcpu->svm->vmcb->save.cr3 = root;
force_new_asid(vcpu);
}
static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
unsigned long addr,
uint32_t err_code)
{
uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
++kvm_stat.pf_guest;
if (is_page_fault(exit_int_info)) {
vcpu->svm->vmcb->control.event_inj_err = 0;
vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
SVM_EVTINJ_VALID_ERR |
SVM_EVTINJ_TYPE_EXEPT |
DF_VECTOR;
return;
}
vcpu->cr2 = addr;
vcpu->svm->vmcb->save.cr2 = addr;
vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
SVM_EVTINJ_VALID_ERR |
SVM_EVTINJ_TYPE_EXEPT |
PF_VECTOR;
vcpu->svm->vmcb->control.event_inj_err = err_code;
}
static int is_disabled(void)
{
return 0;
}
static struct kvm_arch_ops svm_arch_ops = {
.cpu_has_kvm_support = has_svm,
.disabled_by_bios = is_disabled,
.hardware_setup = svm_hardware_setup,
.hardware_unsetup = svm_hardware_unsetup,
.hardware_enable = svm_hardware_enable,
.hardware_disable = svm_hardware_disable,
.vcpu_create = svm_create_vcpu,
.vcpu_free = svm_free_vcpu,
.vcpu_load = svm_vcpu_load,
.vcpu_put = svm_vcpu_put,
.set_guest_debug = svm_guest_debug,
.get_msr = svm_get_msr,
.set_msr = svm_set_msr,
.get_segment_base = svm_get_segment_base,
.get_segment = svm_get_segment,
.set_segment = svm_set_segment,
.get_cs_db_l_bits = svm_get_cs_db_l_bits,
.decache_cr0_cr4_guest_bits = svm_decache_cr0_cr4_guest_bits,
.set_cr0 = svm_set_cr0,
.set_cr0_no_modeswitch = svm_set_cr0,
.set_cr3 = svm_set_cr3,
.set_cr4 = svm_set_cr4,
.set_efer = svm_set_efer,
.get_idt = svm_get_idt,
.set_idt = svm_set_idt,
.get_gdt = svm_get_gdt,
.set_gdt = svm_set_gdt,
.get_dr = svm_get_dr,
.set_dr = svm_set_dr,
.cache_regs = svm_cache_regs,
.decache_regs = svm_decache_regs,
.get_rflags = svm_get_rflags,
.set_rflags = svm_set_rflags,
.invlpg = svm_invlpg,
.tlb_flush = svm_flush_tlb,
.inject_page_fault = svm_inject_page_fault,
.inject_gp = svm_inject_gp,
.run = svm_vcpu_run,
.skip_emulated_instruction = skip_emulated_instruction,
.vcpu_setup = svm_vcpu_setup,
};
static int __init svm_init(void)
{
return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
}
static void __exit svm_exit(void)
{
kvm_exit_arch();
}
module_init(svm_init)
module_exit(svm_exit)