There are several issues with the rtas_ibm_suspend_me code, which
enables platform-assisted suspension of an LPAR as covered in PAPR
2.2.
1.) rtas_ibm_suspend_me uses on_each_cpu() to invoke
rtas_percpu_suspend_me on all cpus via IPI:
if (on_each_cpu(rtas_percpu_suspend_me, &data, 1, 0))
...
'data' is on the calling task's stack, but rtas_ibm_suspend_me takes
no measures to ensure that all instances of rtas_percpu_suspend_me are
finished accessing 'data' before returning. This can result in the
IPI'd cpus accessing random stack data and getting stuck in H_JOIN.
This is addressed by using an atomic count of workers and a completion
on the stack.
2.) rtas_percpu_suspend_me is needlessly calling H_JOIN in a loop.
The only event that can cause a cpu to return from H_JOIN is an H_PROD
from another cpu or a NMI/system reset. Each cpu need call H_JOIN
only once per suspend operation.
Remove the loop and the now unnecessary 'waiting' state variable.
3.) H_JOIN must be called with MSR[EE] off, but lazy interrupt
disabling may cause the caller of rtas_ibm_suspend_me to call H_JOIN
with it on; the local_irq_disable() in on_each_cpu() is not
sufficient.
Fix this by explicitly saving the MSR and clearing the EE bit before
calling H_JOIN.
4.) H_PROD is being called with the Linux logical cpu number as the
parameter, not the platform interrupt server value. (It's also being
called for all possible cpus, which is harmless, but unnecessary.)
This is fixed by calling H_PROD for each online cpu using
get_hard_smp_processor_id(cpu) for the argument.
Signed-off-by: Nathan Lynch <ntl@pobox.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>