android_kernel_xiaomi_sm8350/drivers/net/fs_enet/fs_enet-main.c
Vitaly Bordug 5b4b845434 [PATCH] FS_ENET: use PAL for mii management
This patch should update the fs_enet infrastructure to utilize Phy Abstraction
Layer subsystem.  Along with the above, there are apparent bugfixes, overhaul
and improvements.

Signed-off-by: Vitaly Bordug <vbordug@ru.mvista.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2006-08-19 17:44:31 -04:00

1281 lines
29 KiB
C

/*
* Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
*
* Copyright (c) 2003 Intracom S.A.
* by Pantelis Antoniou <panto@intracom.gr>
*
* 2005 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
* and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <linux/fs.h>
#include <linux/platform_device.h>
#include <linux/phy.h>
#include <linux/vmalloc.h>
#include <asm/pgtable.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include "fs_enet.h"
/*************************************************/
static char version[] __devinitdata =
DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
MODULE_DESCRIPTION("Freescale Ethernet Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
module_param(fs_enet_debug, int, 0);
MODULE_PARM_DESC(fs_enet_debug,
"Freescale bitmapped debugging message enable value");
static void fs_set_multicast_list(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
(*fep->ops->set_multicast_list)(dev);
}
/* NAPI receive function */
static int fs_enet_rx_napi(struct net_device *dev, int *budget)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
cbd_t *bdp;
struct sk_buff *skb, *skbn, *skbt;
int received = 0;
u16 pkt_len, sc;
int curidx;
int rx_work_limit = 0; /* pacify gcc */
rx_work_limit = min(dev->quota, *budget);
if (!netif_running(dev))
return 0;
/*
* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = fep->cur_rx;
/* clear RX status bits for napi*/
(*fep->ops->napi_clear_rx_event)(dev);
while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
curidx = bdp - fep->rx_bd_base;
/*
* Since we have allocated space to hold a complete frame,
* the last indicator should be set.
*/
if ((sc & BD_ENET_RX_LAST) == 0)
printk(KERN_WARNING DRV_MODULE_NAME
": %s rcv is not +last\n",
dev->name);
/*
* Check for errors.
*/
if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
fep->stats.rx_errors++;
/* Frame too long or too short. */
if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
fep->stats.rx_length_errors++;
/* Frame alignment */
if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
fep->stats.rx_frame_errors++;
/* CRC Error */
if (sc & BD_ENET_RX_CR)
fep->stats.rx_crc_errors++;
/* FIFO overrun */
if (sc & BD_ENET_RX_OV)
fep->stats.rx_crc_errors++;
skb = fep->rx_skbuff[curidx];
dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE);
skbn = skb;
} else {
/* napi, got packet but no quota */
if (--rx_work_limit < 0)
break;
skb = fep->rx_skbuff[curidx];
dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE);
/*
* Process the incoming frame.
*/
fep->stats.rx_packets++;
pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
fep->stats.rx_bytes += pkt_len + 4;
if (pkt_len <= fpi->rx_copybreak) {
/* +2 to make IP header L1 cache aligned */
skbn = dev_alloc_skb(pkt_len + 2);
if (skbn != NULL) {
skb_reserve(skbn, 2); /* align IP header */
memcpy(skbn->data, skb->data, pkt_len);
/* swap */
skbt = skb;
skb = skbn;
skbn = skbt;
}
} else
skbn = dev_alloc_skb(ENET_RX_FRSIZE);
if (skbn != NULL) {
skb->dev = dev;
skb_put(skb, pkt_len); /* Make room */
skb->protocol = eth_type_trans(skb, dev);
received++;
netif_receive_skb(skb);
} else {
printk(KERN_WARNING DRV_MODULE_NAME
": %s Memory squeeze, dropping packet.\n",
dev->name);
fep->stats.rx_dropped++;
skbn = skb;
}
}
fep->rx_skbuff[curidx] = skbn;
CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE));
CBDW_DATLEN(bdp, 0);
CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
/*
* Update BD pointer to next entry.
*/
if ((sc & BD_ENET_RX_WRAP) == 0)
bdp++;
else
bdp = fep->rx_bd_base;
(*fep->ops->rx_bd_done)(dev);
}
fep->cur_rx = bdp;
dev->quota -= received;
*budget -= received;
if (rx_work_limit < 0)
return 1; /* not done */
/* done */
netif_rx_complete(dev);
(*fep->ops->napi_enable_rx)(dev);
return 0;
}
/* non NAPI receive function */
static int fs_enet_rx_non_napi(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
cbd_t *bdp;
struct sk_buff *skb, *skbn, *skbt;
int received = 0;
u16 pkt_len, sc;
int curidx;
/*
* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = fep->cur_rx;
while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
curidx = bdp - fep->rx_bd_base;
/*
* Since we have allocated space to hold a complete frame,
* the last indicator should be set.
*/
if ((sc & BD_ENET_RX_LAST) == 0)
printk(KERN_WARNING DRV_MODULE_NAME
": %s rcv is not +last\n",
dev->name);
/*
* Check for errors.
*/
if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
fep->stats.rx_errors++;
/* Frame too long or too short. */
if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
fep->stats.rx_length_errors++;
/* Frame alignment */
if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
fep->stats.rx_frame_errors++;
/* CRC Error */
if (sc & BD_ENET_RX_CR)
fep->stats.rx_crc_errors++;
/* FIFO overrun */
if (sc & BD_ENET_RX_OV)
fep->stats.rx_crc_errors++;
skb = fep->rx_skbuff[curidx];
dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE);
skbn = skb;
} else {
skb = fep->rx_skbuff[curidx];
dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE);
/*
* Process the incoming frame.
*/
fep->stats.rx_packets++;
pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
fep->stats.rx_bytes += pkt_len + 4;
if (pkt_len <= fpi->rx_copybreak) {
/* +2 to make IP header L1 cache aligned */
skbn = dev_alloc_skb(pkt_len + 2);
if (skbn != NULL) {
skb_reserve(skbn, 2); /* align IP header */
memcpy(skbn->data, skb->data, pkt_len);
/* swap */
skbt = skb;
skb = skbn;
skbn = skbt;
}
} else
skbn = dev_alloc_skb(ENET_RX_FRSIZE);
if (skbn != NULL) {
skb->dev = dev;
skb_put(skb, pkt_len); /* Make room */
skb->protocol = eth_type_trans(skb, dev);
received++;
netif_rx(skb);
} else {
printk(KERN_WARNING DRV_MODULE_NAME
": %s Memory squeeze, dropping packet.\n",
dev->name);
fep->stats.rx_dropped++;
skbn = skb;
}
}
fep->rx_skbuff[curidx] = skbn;
CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE));
CBDW_DATLEN(bdp, 0);
CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
/*
* Update BD pointer to next entry.
*/
if ((sc & BD_ENET_RX_WRAP) == 0)
bdp++;
else
bdp = fep->rx_bd_base;
(*fep->ops->rx_bd_done)(dev);
}
fep->cur_rx = bdp;
return 0;
}
static void fs_enet_tx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
cbd_t *bdp;
struct sk_buff *skb;
int dirtyidx, do_wake, do_restart;
u16 sc;
spin_lock(&fep->lock);
bdp = fep->dirty_tx;
do_wake = do_restart = 0;
while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
dirtyidx = bdp - fep->tx_bd_base;
if (fep->tx_free == fep->tx_ring)
break;
skb = fep->tx_skbuff[dirtyidx];
/*
* Check for errors.
*/
if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
if (sc & BD_ENET_TX_HB) /* No heartbeat */
fep->stats.tx_heartbeat_errors++;
if (sc & BD_ENET_TX_LC) /* Late collision */
fep->stats.tx_window_errors++;
if (sc & BD_ENET_TX_RL) /* Retrans limit */
fep->stats.tx_aborted_errors++;
if (sc & BD_ENET_TX_UN) /* Underrun */
fep->stats.tx_fifo_errors++;
if (sc & BD_ENET_TX_CSL) /* Carrier lost */
fep->stats.tx_carrier_errors++;
if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
fep->stats.tx_errors++;
do_restart = 1;
}
} else
fep->stats.tx_packets++;
if (sc & BD_ENET_TX_READY)
printk(KERN_WARNING DRV_MODULE_NAME
": %s HEY! Enet xmit interrupt and TX_READY.\n",
dev->name);
/*
* Deferred means some collisions occurred during transmit,
* but we eventually sent the packet OK.
*/
if (sc & BD_ENET_TX_DEF)
fep->stats.collisions++;
/* unmap */
dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
skb->len, DMA_TO_DEVICE);
/*
* Free the sk buffer associated with this last transmit.
*/
dev_kfree_skb_irq(skb);
fep->tx_skbuff[dirtyidx] = NULL;
/*
* Update pointer to next buffer descriptor to be transmitted.
*/
if ((sc & BD_ENET_TX_WRAP) == 0)
bdp++;
else
bdp = fep->tx_bd_base;
/*
* Since we have freed up a buffer, the ring is no longer
* full.
*/
if (!fep->tx_free++)
do_wake = 1;
}
fep->dirty_tx = bdp;
if (do_restart)
(*fep->ops->tx_restart)(dev);
spin_unlock(&fep->lock);
if (do_wake)
netif_wake_queue(dev);
}
/*
* The interrupt handler.
* This is called from the MPC core interrupt.
*/
static irqreturn_t
fs_enet_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = dev_id;
struct fs_enet_private *fep;
const struct fs_platform_info *fpi;
u32 int_events;
u32 int_clr_events;
int nr, napi_ok;
int handled;
fep = netdev_priv(dev);
fpi = fep->fpi;
nr = 0;
while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
nr++;
int_clr_events = int_events;
if (fpi->use_napi)
int_clr_events &= ~fep->ev_napi_rx;
(*fep->ops->clear_int_events)(dev, int_clr_events);
if (int_events & fep->ev_err)
(*fep->ops->ev_error)(dev, int_events);
if (int_events & fep->ev_rx) {
if (!fpi->use_napi)
fs_enet_rx_non_napi(dev);
else {
napi_ok = netif_rx_schedule_prep(dev);
(*fep->ops->napi_disable_rx)(dev);
(*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
/* NOTE: it is possible for FCCs in NAPI mode */
/* to submit a spurious interrupt while in poll */
if (napi_ok)
__netif_rx_schedule(dev);
}
}
if (int_events & fep->ev_tx)
fs_enet_tx(dev);
}
handled = nr > 0;
return IRQ_RETVAL(handled);
}
void fs_init_bds(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
cbd_t *bdp;
struct sk_buff *skb;
int i;
fs_cleanup_bds(dev);
fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
fep->tx_free = fep->tx_ring;
fep->cur_rx = fep->rx_bd_base;
/*
* Initialize the receive buffer descriptors.
*/
for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
skb = dev_alloc_skb(ENET_RX_FRSIZE);
if (skb == NULL) {
printk(KERN_WARNING DRV_MODULE_NAME
": %s Memory squeeze, unable to allocate skb\n",
dev->name);
break;
}
fep->rx_skbuff[i] = skb;
skb->dev = dev;
CBDW_BUFADDR(bdp,
dma_map_single(fep->dev, skb->data,
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE));
CBDW_DATLEN(bdp, 0); /* zero */
CBDW_SC(bdp, BD_ENET_RX_EMPTY |
((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
}
/*
* if we failed, fillup remainder
*/
for (; i < fep->rx_ring; i++, bdp++) {
fep->rx_skbuff[i] = NULL;
CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
}
/*
* ...and the same for transmit.
*/
for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
fep->tx_skbuff[i] = NULL;
CBDW_BUFADDR(bdp, 0);
CBDW_DATLEN(bdp, 0);
CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
}
}
void fs_cleanup_bds(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct sk_buff *skb;
cbd_t *bdp;
int i;
/*
* Reset SKB transmit buffers.
*/
for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
if ((skb = fep->tx_skbuff[i]) == NULL)
continue;
/* unmap */
dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
skb->len, DMA_TO_DEVICE);
fep->tx_skbuff[i] = NULL;
dev_kfree_skb(skb);
}
/*
* Reset SKB receive buffers
*/
for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
if ((skb = fep->rx_skbuff[i]) == NULL)
continue;
/* unmap */
dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE);
fep->rx_skbuff[i] = NULL;
dev_kfree_skb(skb);
}
}
/**********************************************************************************/
static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
cbd_t *bdp;
int curidx;
u16 sc;
unsigned long flags;
spin_lock_irqsave(&fep->tx_lock, flags);
/*
* Fill in a Tx ring entry
*/
bdp = fep->cur_tx;
if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
netif_stop_queue(dev);
spin_unlock_irqrestore(&fep->tx_lock, flags);
/*
* Ooops. All transmit buffers are full. Bail out.
* This should not happen, since the tx queue should be stopped.
*/
printk(KERN_WARNING DRV_MODULE_NAME
": %s tx queue full!.\n", dev->name);
return NETDEV_TX_BUSY;
}
curidx = bdp - fep->tx_bd_base;
/*
* Clear all of the status flags.
*/
CBDC_SC(bdp, BD_ENET_TX_STATS);
/*
* Save skb pointer.
*/
fep->tx_skbuff[curidx] = skb;
fep->stats.tx_bytes += skb->len;
/*
* Push the data cache so the CPM does not get stale memory data.
*/
CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
skb->data, skb->len, DMA_TO_DEVICE));
CBDW_DATLEN(bdp, skb->len);
dev->trans_start = jiffies;
/*
* If this was the last BD in the ring, start at the beginning again.
*/
if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
fep->cur_tx++;
else
fep->cur_tx = fep->tx_bd_base;
if (!--fep->tx_free)
netif_stop_queue(dev);
/* Trigger transmission start */
sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
BD_ENET_TX_LAST | BD_ENET_TX_TC;
/* note that while FEC does not have this bit
* it marks it as available for software use
* yay for hw reuse :) */
if (skb->len <= 60)
sc |= BD_ENET_TX_PAD;
CBDS_SC(bdp, sc);
(*fep->ops->tx_kickstart)(dev);
spin_unlock_irqrestore(&fep->tx_lock, flags);
return NETDEV_TX_OK;
}
static int fs_request_irq(struct net_device *dev, int irq, const char *name,
irqreturn_t (*irqf)(int irq, void *dev_id, struct pt_regs *regs))
{
struct fs_enet_private *fep = netdev_priv(dev);
(*fep->ops->pre_request_irq)(dev, irq);
return request_irq(irq, irqf, IRQF_SHARED, name, dev);
}
static void fs_free_irq(struct net_device *dev, int irq)
{
struct fs_enet_private *fep = netdev_priv(dev);
free_irq(irq, dev);
(*fep->ops->post_free_irq)(dev, irq);
}
static void fs_timeout(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
unsigned long flags;
int wake = 0;
fep->stats.tx_errors++;
spin_lock_irqsave(&fep->lock, flags);
if (dev->flags & IFF_UP) {
phy_stop(fep->phydev);
(*fep->ops->stop)(dev);
(*fep->ops->restart)(dev);
phy_start(fep->phydev);
}
phy_start(fep->phydev);
wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
spin_unlock_irqrestore(&fep->lock, flags);
if (wake)
netif_wake_queue(dev);
}
/*-----------------------------------------------------------------------------
* generic link-change handler - should be sufficient for most cases
*-----------------------------------------------------------------------------*/
static void generic_adjust_link(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct phy_device *phydev = fep->phydev;
int new_state = 0;
if (phydev->link) {
/* adjust to duplex mode */
if (phydev->duplex != fep->oldduplex){
new_state = 1;
fep->oldduplex = phydev->duplex;
}
if (phydev->speed != fep->oldspeed) {
new_state = 1;
fep->oldspeed = phydev->speed;
}
if (!fep->oldlink) {
new_state = 1;
fep->oldlink = 1;
netif_schedule(dev);
netif_carrier_on(dev);
netif_start_queue(dev);
}
if (new_state)
fep->ops->restart(dev);
} else if (fep->oldlink) {
new_state = 1;
fep->oldlink = 0;
fep->oldspeed = 0;
fep->oldduplex = -1;
netif_carrier_off(dev);
netif_stop_queue(dev);
}
if (new_state && netif_msg_link(fep))
phy_print_status(phydev);
}
static void fs_adjust_link(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
unsigned long flags;
spin_lock_irqsave(&fep->lock, flags);
if(fep->ops->adjust_link)
fep->ops->adjust_link(dev);
else
generic_adjust_link(dev);
spin_unlock_irqrestore(&fep->lock, flags);
}
static int fs_init_phy(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct phy_device *phydev;
fep->oldlink = 0;
fep->oldspeed = 0;
fep->oldduplex = -1;
if(fep->fpi->bus_id)
phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0);
else {
printk("No phy bus ID specified in BSP code\n");
return -EINVAL;
}
if (IS_ERR(phydev)) {
printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
return PTR_ERR(phydev);
}
fep->phydev = phydev;
return 0;
}
static int fs_enet_open(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
int r;
int err;
/* Install our interrupt handler. */
r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
if (r != 0) {
printk(KERN_ERR DRV_MODULE_NAME
": %s Could not allocate FS_ENET IRQ!", dev->name);
return -EINVAL;
}
err = fs_init_phy(dev);
if(err)
return err;
phy_start(fep->phydev);
return 0;
}
static int fs_enet_close(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
unsigned long flags;
netif_stop_queue(dev);
netif_carrier_off(dev);
phy_stop(fep->phydev);
spin_lock_irqsave(&fep->lock, flags);
(*fep->ops->stop)(dev);
spin_unlock_irqrestore(&fep->lock, flags);
/* release any irqs */
phy_disconnect(fep->phydev);
fep->phydev = NULL;
fs_free_irq(dev, fep->interrupt);
return 0;
}
static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
return &fep->stats;
}
/*************************************************************************/
static void fs_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strcpy(info->driver, DRV_MODULE_NAME);
strcpy(info->version, DRV_MODULE_VERSION);
}
static int fs_get_regs_len(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
return (*fep->ops->get_regs_len)(dev);
}
static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
struct fs_enet_private *fep = netdev_priv(dev);
unsigned long flags;
int r, len;
len = regs->len;
spin_lock_irqsave(&fep->lock, flags);
r = (*fep->ops->get_regs)(dev, p, &len);
spin_unlock_irqrestore(&fep->lock, flags);
if (r == 0)
regs->version = 0;
}
static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct fs_enet_private *fep = netdev_priv(dev);
return phy_ethtool_gset(fep->phydev, cmd);
}
static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct fs_enet_private *fep = netdev_priv(dev);
phy_ethtool_sset(fep->phydev, cmd);
return 0;
}
static int fs_nway_reset(struct net_device *dev)
{
return 0;
}
static u32 fs_get_msglevel(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
return fep->msg_enable;
}
static void fs_set_msglevel(struct net_device *dev, u32 value)
{
struct fs_enet_private *fep = netdev_priv(dev);
fep->msg_enable = value;
}
static struct ethtool_ops fs_ethtool_ops = {
.get_drvinfo = fs_get_drvinfo,
.get_regs_len = fs_get_regs_len,
.get_settings = fs_get_settings,
.set_settings = fs_set_settings,
.nway_reset = fs_nway_reset,
.get_link = ethtool_op_get_link,
.get_msglevel = fs_get_msglevel,
.set_msglevel = fs_set_msglevel,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = ethtool_op_set_tx_csum, /* local! */
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
.get_regs = fs_get_regs,
};
static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
unsigned long flags;
int rc;
if (!netif_running(dev))
return -EINVAL;
spin_lock_irqsave(&fep->lock, flags);
rc = phy_mii_ioctl(fep->phydev, mii, cmd);
spin_unlock_irqrestore(&fep->lock, flags);
return rc;
}
extern int fs_mii_connect(struct net_device *dev);
extern void fs_mii_disconnect(struct net_device *dev);
static struct net_device *fs_init_instance(struct device *dev,
const struct fs_platform_info *fpi)
{
struct net_device *ndev = NULL;
struct fs_enet_private *fep = NULL;
int privsize, i, r, err = 0, registered = 0;
/* guard */
if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
return ERR_PTR(-EINVAL);
privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
(fpi->rx_ring + fpi->tx_ring));
ndev = alloc_etherdev(privsize);
if (!ndev) {
err = -ENOMEM;
goto err;
}
SET_MODULE_OWNER(ndev);
fep = netdev_priv(ndev);
memset(fep, 0, privsize); /* clear everything */
fep->dev = dev;
dev_set_drvdata(dev, ndev);
fep->fpi = fpi;
if (fpi->init_ioports)
fpi->init_ioports();
#ifdef CONFIG_FS_ENET_HAS_FEC
if (fs_get_fec_index(fpi->fs_no) >= 0)
fep->ops = &fs_fec_ops;
#endif
#ifdef CONFIG_FS_ENET_HAS_SCC
if (fs_get_scc_index(fpi->fs_no) >=0 )
fep->ops = &fs_scc_ops;
#endif
#ifdef CONFIG_FS_ENET_HAS_FCC
if (fs_get_fcc_index(fpi->fs_no) >= 0)
fep->ops = &fs_fcc_ops;
#endif
if (fep->ops == NULL) {
printk(KERN_ERR DRV_MODULE_NAME
": %s No matching ops found (%d).\n",
ndev->name, fpi->fs_no);
err = -EINVAL;
goto err;
}
r = (*fep->ops->setup_data)(ndev);
if (r != 0) {
printk(KERN_ERR DRV_MODULE_NAME
": %s setup_data failed\n",
ndev->name);
err = r;
goto err;
}
/* point rx_skbuff, tx_skbuff */
fep->rx_skbuff = (struct sk_buff **)&fep[1];
fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
/* init locks */
spin_lock_init(&fep->lock);
spin_lock_init(&fep->tx_lock);
/*
* Set the Ethernet address.
*/
for (i = 0; i < 6; i++)
ndev->dev_addr[i] = fpi->macaddr[i];
r = (*fep->ops->allocate_bd)(ndev);
if (fep->ring_base == NULL) {
printk(KERN_ERR DRV_MODULE_NAME
": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
err = r;
goto err;
}
/*
* Set receive and transmit descriptor base.
*/
fep->rx_bd_base = fep->ring_base;
fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
/* initialize ring size variables */
fep->tx_ring = fpi->tx_ring;
fep->rx_ring = fpi->rx_ring;
/*
* The FEC Ethernet specific entries in the device structure.
*/
ndev->open = fs_enet_open;
ndev->hard_start_xmit = fs_enet_start_xmit;
ndev->tx_timeout = fs_timeout;
ndev->watchdog_timeo = 2 * HZ;
ndev->stop = fs_enet_close;
ndev->get_stats = fs_enet_get_stats;
ndev->set_multicast_list = fs_set_multicast_list;
if (fpi->use_napi) {
ndev->poll = fs_enet_rx_napi;
ndev->weight = fpi->napi_weight;
}
ndev->ethtool_ops = &fs_ethtool_ops;
ndev->do_ioctl = fs_ioctl;
init_timer(&fep->phy_timer_list);
netif_carrier_off(ndev);
err = register_netdev(ndev);
if (err != 0) {
printk(KERN_ERR DRV_MODULE_NAME
": %s register_netdev failed.\n", ndev->name);
goto err;
}
registered = 1;
return ndev;
err:
if (ndev != NULL) {
if (registered)
unregister_netdev(ndev);
if (fep != NULL) {
(*fep->ops->free_bd)(ndev);
(*fep->ops->cleanup_data)(ndev);
}
free_netdev(ndev);
}
dev_set_drvdata(dev, NULL);
return ERR_PTR(err);
}
static int fs_cleanup_instance(struct net_device *ndev)
{
struct fs_enet_private *fep;
const struct fs_platform_info *fpi;
struct device *dev;
if (ndev == NULL)
return -EINVAL;
fep = netdev_priv(ndev);
if (fep == NULL)
return -EINVAL;
fpi = fep->fpi;
unregister_netdev(ndev);
dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
fep->ring_base, fep->ring_mem_addr);
/* reset it */
(*fep->ops->cleanup_data)(ndev);
dev = fep->dev;
if (dev != NULL) {
dev_set_drvdata(dev, NULL);
fep->dev = NULL;
}
free_netdev(ndev);
return 0;
}
/**************************************************************************************/
/* handy pointer to the immap */
void *fs_enet_immap = NULL;
static int setup_immap(void)
{
phys_addr_t paddr = 0;
unsigned long size = 0;
#ifdef CONFIG_CPM1
paddr = IMAP_ADDR;
size = 0x10000; /* map 64K */
#endif
#ifdef CONFIG_CPM2
paddr = CPM_MAP_ADDR;
size = 0x40000; /* map 256 K */
#endif
fs_enet_immap = ioremap(paddr, size);
if (fs_enet_immap == NULL)
return -EBADF; /* XXX ahem; maybe just BUG_ON? */
return 0;
}
static void cleanup_immap(void)
{
if (fs_enet_immap != NULL) {
iounmap(fs_enet_immap);
fs_enet_immap = NULL;
}
}
/**************************************************************************************/
static int __devinit fs_enet_probe(struct device *dev)
{
struct net_device *ndev;
/* no fixup - no device */
if (dev->platform_data == NULL) {
printk(KERN_INFO "fs_enet: "
"probe called with no platform data; "
"remove unused devices\n");
return -ENODEV;
}
ndev = fs_init_instance(dev, dev->platform_data);
if (IS_ERR(ndev))
return PTR_ERR(ndev);
return 0;
}
static int fs_enet_remove(struct device *dev)
{
return fs_cleanup_instance(dev_get_drvdata(dev));
}
static struct device_driver fs_enet_fec_driver = {
.name = "fsl-cpm-fec",
.bus = &platform_bus_type,
.probe = fs_enet_probe,
.remove = fs_enet_remove,
#ifdef CONFIG_PM
/* .suspend = fs_enet_suspend, TODO */
/* .resume = fs_enet_resume, TODO */
#endif
};
static struct device_driver fs_enet_scc_driver = {
.name = "fsl-cpm-scc",
.bus = &platform_bus_type,
.probe = fs_enet_probe,
.remove = fs_enet_remove,
#ifdef CONFIG_PM
/* .suspend = fs_enet_suspend, TODO */
/* .resume = fs_enet_resume, TODO */
#endif
};
static struct device_driver fs_enet_fcc_driver = {
.name = "fsl-cpm-fcc",
.bus = &platform_bus_type,
.probe = fs_enet_probe,
.remove = fs_enet_remove,
#ifdef CONFIG_PM
/* .suspend = fs_enet_suspend, TODO */
/* .resume = fs_enet_resume, TODO */
#endif
};
static int __init fs_init(void)
{
int r;
printk(KERN_INFO
"%s", version);
r = setup_immap();
if (r != 0)
return r;
#ifdef CONFIG_FS_ENET_HAS_FCC
/* let's insert mii stuff */
r = fs_enet_mdio_bb_init();
if (r != 0) {
printk(KERN_ERR DRV_MODULE_NAME
"BB PHY init failed.\n");
return r;
}
r = driver_register(&fs_enet_fcc_driver);
if (r != 0)
goto err;
#endif
#ifdef CONFIG_FS_ENET_HAS_FEC
r = fs_enet_mdio_fec_init();
if (r != 0) {
printk(KERN_ERR DRV_MODULE_NAME
"FEC PHY init failed.\n");
return r;
}
r = driver_register(&fs_enet_fec_driver);
if (r != 0)
goto err;
#endif
#ifdef CONFIG_FS_ENET_HAS_SCC
r = driver_register(&fs_enet_scc_driver);
if (r != 0)
goto err;
#endif
return 0;
err:
cleanup_immap();
return r;
}
static void __exit fs_cleanup(void)
{
driver_unregister(&fs_enet_fec_driver);
driver_unregister(&fs_enet_fcc_driver);
driver_unregister(&fs_enet_scc_driver);
cleanup_immap();
}
/**************************************************************************************/
module_init(fs_init);
module_exit(fs_cleanup);