android_kernel_xiaomi_sm8350/arch/x86/kernel/hpet.c
Carlos R. Mafra 6fd592daae x86: clean up computation of HPET .mult variables
While reading through the HPET code I realized that the
computation of .mult variables could be done with less
lines of code, resulting in a 1.6% text size saving
for hpet.o

So I propose the following patch, which applies against
today's Linus -git tree.

>From 0c6507e400e9ca5f7f14331e18f8c12baf75a9d3 Mon Sep 17 00:00:00 2001
From: Carlos R. Mafra <crmafra@ift.unesp.br>
Date: Mon, 5 May 2008 19:38:53 -0300

The computation of clocksource_hpet.mult

       tmp = (u64)hpet_period << HPET_SHIFT;
       do_div(tmp, FSEC_PER_NSEC);
       clocksource_hpet.mult = (u32)tmp;

can be streamlined if we note that it is equal to

       clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);

Furthermore, the computation of hpet_clockevent.mult

       uint64_t hpet_freq;

       hpet_freq = 1000000000000000ULL;
       do_div(hpet_freq, hpet_period);
       hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
                                     NSEC_PER_SEC, hpet_clockevent.shift);

can also be streamlined with the observation that hpet_period and hpet_freq are
inverse to each other (in proper units).

So instead of computing hpet_freq and using (schematically)
div_sc(hpet_freq, 10^9, shift) we use the trick of calling with the
arguments in reverse order, div_sc(10^6, hpet_period, shift).

The different power of ten is due to frequency being in Hertz (1/sec)
and the period being in units of femtosecond. Explicitly,

mult = (hpet_freq * 2^shift)/10^9    (before)
mult = (10^6 * 2^shift)/hpet_period  (after)

because hpet_freq = 10^15/hpet_period.

The comments in the code are also updated to reflect the changes.

As a result,

   text    data     bss     dec     hex filename
   2957     425      92    3474     d92 arch/x86/kernel/hpet.o
   3006     425      92    3523     dc3 arch/x86/kernel/hpet.o.old

a 1.6% reduction in text size.

Signed-off-by: Carlos R. Mafra <crmafra@ift.unesp.br>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 21:27:54 +02:00

710 lines
16 KiB
C

#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/hpet.h>
#include <linux/init.h>
#include <linux/sysdev.h>
#include <linux/pm.h>
#include <asm/fixmap.h>
#include <asm/hpet.h>
#include <asm/i8253.h>
#include <asm/io.h>
#define HPET_MASK CLOCKSOURCE_MASK(32)
#define HPET_SHIFT 22
/* FSEC = 10^-15
NSEC = 10^-9 */
#define FSEC_PER_NSEC 1000000L
/*
* HPET address is set in acpi/boot.c, when an ACPI entry exists
*/
unsigned long hpet_address;
static void __iomem *hpet_virt_address;
unsigned long hpet_readl(unsigned long a)
{
return readl(hpet_virt_address + a);
}
static inline void hpet_writel(unsigned long d, unsigned long a)
{
writel(d, hpet_virt_address + a);
}
#ifdef CONFIG_X86_64
#include <asm/pgtable.h>
static inline void hpet_set_mapping(void)
{
set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
}
static inline void hpet_clear_mapping(void)
{
hpet_virt_address = NULL;
}
#else
static inline void hpet_set_mapping(void)
{
hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
}
static inline void hpet_clear_mapping(void)
{
iounmap(hpet_virt_address);
hpet_virt_address = NULL;
}
#endif
/*
* HPET command line enable / disable
*/
static int boot_hpet_disable;
int hpet_force_user;
static int __init hpet_setup(char* str)
{
if (str) {
if (!strncmp("disable", str, 7))
boot_hpet_disable = 1;
if (!strncmp("force", str, 5))
hpet_force_user = 1;
}
return 1;
}
__setup("hpet=", hpet_setup);
static int __init disable_hpet(char *str)
{
boot_hpet_disable = 1;
return 1;
}
__setup("nohpet", disable_hpet);
static inline int is_hpet_capable(void)
{
return (!boot_hpet_disable && hpet_address);
}
/*
* HPET timer interrupt enable / disable
*/
static int hpet_legacy_int_enabled;
/**
* is_hpet_enabled - check whether the hpet timer interrupt is enabled
*/
int is_hpet_enabled(void)
{
return is_hpet_capable() && hpet_legacy_int_enabled;
}
EXPORT_SYMBOL_GPL(is_hpet_enabled);
/*
* When the hpet driver (/dev/hpet) is enabled, we need to reserve
* timer 0 and timer 1 in case of RTC emulation.
*/
#ifdef CONFIG_HPET
static void hpet_reserve_platform_timers(unsigned long id)
{
struct hpet __iomem *hpet = hpet_virt_address;
struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
unsigned int nrtimers, i;
struct hpet_data hd;
nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
memset(&hd, 0, sizeof (hd));
hd.hd_phys_address = hpet_address;
hd.hd_address = hpet;
hd.hd_nirqs = nrtimers;
hd.hd_flags = HPET_DATA_PLATFORM;
hpet_reserve_timer(&hd, 0);
#ifdef CONFIG_HPET_EMULATE_RTC
hpet_reserve_timer(&hd, 1);
#endif
hd.hd_irq[0] = HPET_LEGACY_8254;
hd.hd_irq[1] = HPET_LEGACY_RTC;
for (i = 2; i < nrtimers; timer++, i++) {
hd.hd_irq[i] = (readl(&timer->hpet_config) & Tn_INT_ROUTE_CNF_MASK) >>
Tn_INT_ROUTE_CNF_SHIFT;
}
hpet_alloc(&hd);
}
#else
static void hpet_reserve_platform_timers(unsigned long id) { }
#endif
/*
* Common hpet info
*/
static unsigned long hpet_period;
static void hpet_legacy_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt);
static int hpet_legacy_next_event(unsigned long delta,
struct clock_event_device *evt);
/*
* The hpet clock event device
*/
static struct clock_event_device hpet_clockevent = {
.name = "hpet",
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
.set_mode = hpet_legacy_set_mode,
.set_next_event = hpet_legacy_next_event,
.shift = 32,
.irq = 0,
.rating = 50,
};
static void hpet_start_counter(void)
{
unsigned long cfg = hpet_readl(HPET_CFG);
cfg &= ~HPET_CFG_ENABLE;
hpet_writel(cfg, HPET_CFG);
hpet_writel(0, HPET_COUNTER);
hpet_writel(0, HPET_COUNTER + 4);
cfg |= HPET_CFG_ENABLE;
hpet_writel(cfg, HPET_CFG);
}
static void hpet_resume_device(void)
{
force_hpet_resume();
}
static void hpet_restart_counter(void)
{
hpet_resume_device();
hpet_start_counter();
}
static void hpet_enable_legacy_int(void)
{
unsigned long cfg = hpet_readl(HPET_CFG);
cfg |= HPET_CFG_LEGACY;
hpet_writel(cfg, HPET_CFG);
hpet_legacy_int_enabled = 1;
}
static void hpet_legacy_clockevent_register(void)
{
/* Start HPET legacy interrupts */
hpet_enable_legacy_int();
/*
* The mult factor is defined as (include/linux/clockchips.h)
* mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
* hpet_period is in units of femtoseconds (per cycle), so
* mult/2^shift = cyc/ns = 10^6/hpet_period
* mult = (10^6 * 2^shift)/hpet_period
* mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
*/
hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
hpet_period, hpet_clockevent.shift);
/* Calculate the min / max delta */
hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
&hpet_clockevent);
hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
&hpet_clockevent);
/*
* Start hpet with the boot cpu mask and make it
* global after the IO_APIC has been initialized.
*/
hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
clockevents_register_device(&hpet_clockevent);
global_clock_event = &hpet_clockevent;
printk(KERN_DEBUG "hpet clockevent registered\n");
}
static void hpet_legacy_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
unsigned long cfg, cmp, now;
uint64_t delta;
switch(mode) {
case CLOCK_EVT_MODE_PERIODIC:
delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
delta >>= hpet_clockevent.shift;
now = hpet_readl(HPET_COUNTER);
cmp = now + (unsigned long) delta;
cfg = hpet_readl(HPET_T0_CFG);
cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
HPET_TN_SETVAL | HPET_TN_32BIT;
hpet_writel(cfg, HPET_T0_CFG);
/*
* The first write after writing TN_SETVAL to the
* config register sets the counter value, the second
* write sets the period.
*/
hpet_writel(cmp, HPET_T0_CMP);
udelay(1);
hpet_writel((unsigned long) delta, HPET_T0_CMP);
break;
case CLOCK_EVT_MODE_ONESHOT:
cfg = hpet_readl(HPET_T0_CFG);
cfg &= ~HPET_TN_PERIODIC;
cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
hpet_writel(cfg, HPET_T0_CFG);
break;
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN:
cfg = hpet_readl(HPET_T0_CFG);
cfg &= ~HPET_TN_ENABLE;
hpet_writel(cfg, HPET_T0_CFG);
break;
case CLOCK_EVT_MODE_RESUME:
hpet_enable_legacy_int();
break;
}
}
static int hpet_legacy_next_event(unsigned long delta,
struct clock_event_device *evt)
{
unsigned long cnt;
cnt = hpet_readl(HPET_COUNTER);
cnt += delta;
hpet_writel(cnt, HPET_T0_CMP);
return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
}
/*
* Clock source related code
*/
static cycle_t read_hpet(void)
{
return (cycle_t)hpet_readl(HPET_COUNTER);
}
#ifdef CONFIG_X86_64
static cycle_t __vsyscall_fn vread_hpet(void)
{
return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
}
#endif
static struct clocksource clocksource_hpet = {
.name = "hpet",
.rating = 250,
.read = read_hpet,
.mask = HPET_MASK,
.shift = HPET_SHIFT,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
.resume = hpet_restart_counter,
#ifdef CONFIG_X86_64
.vread = vread_hpet,
#endif
};
static int hpet_clocksource_register(void)
{
u64 start, now;
cycle_t t1;
/* Start the counter */
hpet_start_counter();
/* Verify whether hpet counter works */
t1 = read_hpet();
rdtscll(start);
/*
* We don't know the TSC frequency yet, but waiting for
* 200000 TSC cycles is safe:
* 4 GHz == 50us
* 1 GHz == 200us
*/
do {
rep_nop();
rdtscll(now);
} while ((now - start) < 200000UL);
if (t1 == read_hpet()) {
printk(KERN_WARNING
"HPET counter not counting. HPET disabled\n");
return -ENODEV;
}
/*
* The definition of mult is (include/linux/clocksource.h)
* mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
* so we first need to convert hpet_period to ns/cyc units:
* mult/2^shift = ns/cyc = hpet_period/10^6
* mult = (hpet_period * 2^shift)/10^6
* mult = (hpet_period << shift)/FSEC_PER_NSEC
*/
clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
clocksource_register(&clocksource_hpet);
return 0;
}
/**
* hpet_enable - Try to setup the HPET timer. Returns 1 on success.
*/
int __init hpet_enable(void)
{
unsigned long id;
if (!is_hpet_capable())
return 0;
hpet_set_mapping();
/*
* Read the period and check for a sane value:
*/
hpet_period = hpet_readl(HPET_PERIOD);
if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
goto out_nohpet;
/*
* Read the HPET ID register to retrieve the IRQ routing
* information and the number of channels
*/
id = hpet_readl(HPET_ID);
#ifdef CONFIG_HPET_EMULATE_RTC
/*
* The legacy routing mode needs at least two channels, tick timer
* and the rtc emulation channel.
*/
if (!(id & HPET_ID_NUMBER))
goto out_nohpet;
#endif
if (hpet_clocksource_register())
goto out_nohpet;
if (id & HPET_ID_LEGSUP) {
hpet_legacy_clockevent_register();
return 1;
}
return 0;
out_nohpet:
hpet_clear_mapping();
boot_hpet_disable = 1;
return 0;
}
/*
* Needs to be late, as the reserve_timer code calls kalloc !
*
* Not a problem on i386 as hpet_enable is called from late_time_init,
* but on x86_64 it is necessary !
*/
static __init int hpet_late_init(void)
{
if (boot_hpet_disable)
return -ENODEV;
if (!hpet_address) {
if (!force_hpet_address)
return -ENODEV;
hpet_address = force_hpet_address;
hpet_enable();
if (!hpet_virt_address)
return -ENODEV;
}
hpet_reserve_platform_timers(hpet_readl(HPET_ID));
return 0;
}
fs_initcall(hpet_late_init);
void hpet_disable(void)
{
if (is_hpet_capable()) {
unsigned long cfg = hpet_readl(HPET_CFG);
if (hpet_legacy_int_enabled) {
cfg &= ~HPET_CFG_LEGACY;
hpet_legacy_int_enabled = 0;
}
cfg &= ~HPET_CFG_ENABLE;
hpet_writel(cfg, HPET_CFG);
}
}
#ifdef CONFIG_HPET_EMULATE_RTC
/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
* is enabled, we support RTC interrupt functionality in software.
* RTC has 3 kinds of interrupts:
* 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
* is updated
* 2) Alarm Interrupt - generate an interrupt at a specific time of day
* 3) Periodic Interrupt - generate periodic interrupt, with frequencies
* 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
* (1) and (2) above are implemented using polling at a frequency of
* 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
* overhead. (DEFAULT_RTC_INT_FREQ)
* For (3), we use interrupts at 64Hz or user specified periodic
* frequency, whichever is higher.
*/
#include <linux/mc146818rtc.h>
#include <linux/rtc.h>
#include <asm/rtc.h>
#define DEFAULT_RTC_INT_FREQ 64
#define DEFAULT_RTC_SHIFT 6
#define RTC_NUM_INTS 1
static unsigned long hpet_rtc_flags;
static unsigned long hpet_prev_update_sec;
static struct rtc_time hpet_alarm_time;
static unsigned long hpet_pie_count;
static unsigned long hpet_t1_cmp;
static unsigned long hpet_default_delta;
static unsigned long hpet_pie_delta;
static unsigned long hpet_pie_limit;
static rtc_irq_handler irq_handler;
/*
* Registers a IRQ handler.
*/
int hpet_register_irq_handler(rtc_irq_handler handler)
{
if (!is_hpet_enabled())
return -ENODEV;
if (irq_handler)
return -EBUSY;
irq_handler = handler;
return 0;
}
EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
/*
* Deregisters the IRQ handler registered with hpet_register_irq_handler()
* and does cleanup.
*/
void hpet_unregister_irq_handler(rtc_irq_handler handler)
{
if (!is_hpet_enabled())
return;
irq_handler = NULL;
hpet_rtc_flags = 0;
}
EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
/*
* Timer 1 for RTC emulation. We use one shot mode, as periodic mode
* is not supported by all HPET implementations for timer 1.
*
* hpet_rtc_timer_init() is called when the rtc is initialized.
*/
int hpet_rtc_timer_init(void)
{
unsigned long cfg, cnt, delta, flags;
if (!is_hpet_enabled())
return 0;
if (!hpet_default_delta) {
uint64_t clc;
clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
hpet_default_delta = (unsigned long) clc;
}
if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
delta = hpet_default_delta;
else
delta = hpet_pie_delta;
local_irq_save(flags);
cnt = delta + hpet_readl(HPET_COUNTER);
hpet_writel(cnt, HPET_T1_CMP);
hpet_t1_cmp = cnt;
cfg = hpet_readl(HPET_T1_CFG);
cfg &= ~HPET_TN_PERIODIC;
cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
hpet_writel(cfg, HPET_T1_CFG);
local_irq_restore(flags);
return 1;
}
EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
/*
* The functions below are called from rtc driver.
* Return 0 if HPET is not being used.
* Otherwise do the necessary changes and return 1.
*/
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
{
if (!is_hpet_enabled())
return 0;
hpet_rtc_flags &= ~bit_mask;
return 1;
}
EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
int hpet_set_rtc_irq_bit(unsigned long bit_mask)
{
unsigned long oldbits = hpet_rtc_flags;
if (!is_hpet_enabled())
return 0;
hpet_rtc_flags |= bit_mask;
if (!oldbits)
hpet_rtc_timer_init();
return 1;
}
EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
unsigned char sec)
{
if (!is_hpet_enabled())
return 0;
hpet_alarm_time.tm_hour = hrs;
hpet_alarm_time.tm_min = min;
hpet_alarm_time.tm_sec = sec;
return 1;
}
EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
int hpet_set_periodic_freq(unsigned long freq)
{
uint64_t clc;
if (!is_hpet_enabled())
return 0;
if (freq <= DEFAULT_RTC_INT_FREQ)
hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
else {
clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
do_div(clc, freq);
clc >>= hpet_clockevent.shift;
hpet_pie_delta = (unsigned long) clc;
}
return 1;
}
EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
int hpet_rtc_dropped_irq(void)
{
return is_hpet_enabled();
}
EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
static void hpet_rtc_timer_reinit(void)
{
unsigned long cfg, delta;
int lost_ints = -1;
if (unlikely(!hpet_rtc_flags)) {
cfg = hpet_readl(HPET_T1_CFG);
cfg &= ~HPET_TN_ENABLE;
hpet_writel(cfg, HPET_T1_CFG);
return;
}
if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
delta = hpet_default_delta;
else
delta = hpet_pie_delta;
/*
* Increment the comparator value until we are ahead of the
* current count.
*/
do {
hpet_t1_cmp += delta;
hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
lost_ints++;
} while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
if (lost_ints) {
if (hpet_rtc_flags & RTC_PIE)
hpet_pie_count += lost_ints;
if (printk_ratelimit())
printk(KERN_WARNING "rtc: lost %d interrupts\n",
lost_ints);
}
}
irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
{
struct rtc_time curr_time;
unsigned long rtc_int_flag = 0;
hpet_rtc_timer_reinit();
memset(&curr_time, 0, sizeof(struct rtc_time));
if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
get_rtc_time(&curr_time);
if (hpet_rtc_flags & RTC_UIE &&
curr_time.tm_sec != hpet_prev_update_sec) {
rtc_int_flag = RTC_UF;
hpet_prev_update_sec = curr_time.tm_sec;
}
if (hpet_rtc_flags & RTC_PIE &&
++hpet_pie_count >= hpet_pie_limit) {
rtc_int_flag |= RTC_PF;
hpet_pie_count = 0;
}
if (hpet_rtc_flags & RTC_AIE &&
(curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
(curr_time.tm_min == hpet_alarm_time.tm_min) &&
(curr_time.tm_hour == hpet_alarm_time.tm_hour))
rtc_int_flag |= RTC_AF;
if (rtc_int_flag) {
rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
if (irq_handler)
irq_handler(rtc_int_flag, dev_id);
}
return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
#endif