android_kernel_xiaomi_sm8350/net/xfrm/xfrm_algo.c
Thomas Gleixner 2874c5fd28 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 3029 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:32 -07:00

826 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* xfrm algorithm interface
*
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
*/
#include <crypto/hash.h>
#include <crypto/skcipher.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pfkeyv2.h>
#include <linux/crypto.h>
#include <linux/scatterlist.h>
#include <net/xfrm.h>
#if IS_ENABLED(CONFIG_INET_ESP) || IS_ENABLED(CONFIG_INET6_ESP)
#include <net/esp.h>
#endif
/*
* Algorithms supported by IPsec. These entries contain properties which
* are used in key negotiation and xfrm processing, and are used to verify
* that instantiated crypto transforms have correct parameters for IPsec
* purposes.
*/
static struct xfrm_algo_desc aead_list[] = {
{
.name = "rfc4106(gcm(aes))",
.uinfo = {
.aead = {
.geniv = "seqiv",
.icv_truncbits = 64,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "rfc4106(gcm(aes))",
.uinfo = {
.aead = {
.geniv = "seqiv",
.icv_truncbits = 96,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "rfc4106(gcm(aes))",
.uinfo = {
.aead = {
.geniv = "seqiv",
.icv_truncbits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "rfc4309(ccm(aes))",
.uinfo = {
.aead = {
.geniv = "seqiv",
.icv_truncbits = 64,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "rfc4309(ccm(aes))",
.uinfo = {
.aead = {
.geniv = "seqiv",
.icv_truncbits = 96,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "rfc4309(ccm(aes))",
.uinfo = {
.aead = {
.geniv = "seqiv",
.icv_truncbits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "rfc4543(gcm(aes))",
.uinfo = {
.aead = {
.geniv = "seqiv",
.icv_truncbits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_NULL_AES_GMAC,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "rfc7539esp(chacha20,poly1305)",
.uinfo = {
.aead = {
.geniv = "seqiv",
.icv_truncbits = 128,
}
},
.pfkey_supported = 0,
},
};
static struct xfrm_algo_desc aalg_list[] = {
{
.name = "digest_null",
.uinfo = {
.auth = {
.icv_truncbits = 0,
.icv_fullbits = 0,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_AALG_NULL,
.sadb_alg_ivlen = 0,
.sadb_alg_minbits = 0,
.sadb_alg_maxbits = 0
}
},
{
.name = "hmac(md5)",
.compat = "md5",
.uinfo = {
.auth = {
.icv_truncbits = 96,
.icv_fullbits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_AALG_MD5HMAC,
.sadb_alg_ivlen = 0,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 128
}
},
{
.name = "hmac(sha1)",
.compat = "sha1",
.uinfo = {
.auth = {
.icv_truncbits = 96,
.icv_fullbits = 160,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_AALG_SHA1HMAC,
.sadb_alg_ivlen = 0,
.sadb_alg_minbits = 160,
.sadb_alg_maxbits = 160
}
},
{
.name = "hmac(sha256)",
.compat = "sha256",
.uinfo = {
.auth = {
.icv_truncbits = 96,
.icv_fullbits = 256,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
.sadb_alg_ivlen = 0,
.sadb_alg_minbits = 256,
.sadb_alg_maxbits = 256
}
},
{
.name = "hmac(sha384)",
.uinfo = {
.auth = {
.icv_truncbits = 192,
.icv_fullbits = 384,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_AALG_SHA2_384HMAC,
.sadb_alg_ivlen = 0,
.sadb_alg_minbits = 384,
.sadb_alg_maxbits = 384
}
},
{
.name = "hmac(sha512)",
.uinfo = {
.auth = {
.icv_truncbits = 256,
.icv_fullbits = 512,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_AALG_SHA2_512HMAC,
.sadb_alg_ivlen = 0,
.sadb_alg_minbits = 512,
.sadb_alg_maxbits = 512
}
},
{
.name = "hmac(rmd160)",
.compat = "rmd160",
.uinfo = {
.auth = {
.icv_truncbits = 96,
.icv_fullbits = 160,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
.sadb_alg_ivlen = 0,
.sadb_alg_minbits = 160,
.sadb_alg_maxbits = 160
}
},
{
.name = "xcbc(aes)",
.uinfo = {
.auth = {
.icv_truncbits = 96,
.icv_fullbits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
.sadb_alg_ivlen = 0,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 128
}
},
{
/* rfc4494 */
.name = "cmac(aes)",
.uinfo = {
.auth = {
.icv_truncbits = 96,
.icv_fullbits = 128,
}
},
.pfkey_supported = 0,
},
};
static struct xfrm_algo_desc ealg_list[] = {
{
.name = "ecb(cipher_null)",
.compat = "cipher_null",
.uinfo = {
.encr = {
.blockbits = 8,
.defkeybits = 0,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_EALG_NULL,
.sadb_alg_ivlen = 0,
.sadb_alg_minbits = 0,
.sadb_alg_maxbits = 0
}
},
{
.name = "cbc(des)",
.compat = "des",
.uinfo = {
.encr = {
.geniv = "echainiv",
.blockbits = 64,
.defkeybits = 64,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_EALG_DESCBC,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 64,
.sadb_alg_maxbits = 64
}
},
{
.name = "cbc(des3_ede)",
.compat = "des3_ede",
.uinfo = {
.encr = {
.geniv = "echainiv",
.blockbits = 64,
.defkeybits = 192,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_EALG_3DESCBC,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 192,
.sadb_alg_maxbits = 192
}
},
{
.name = "cbc(cast5)",
.compat = "cast5",
.uinfo = {
.encr = {
.geniv = "echainiv",
.blockbits = 64,
.defkeybits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_CASTCBC,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 40,
.sadb_alg_maxbits = 128
}
},
{
.name = "cbc(blowfish)",
.compat = "blowfish",
.uinfo = {
.encr = {
.geniv = "echainiv",
.blockbits = 64,
.defkeybits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 40,
.sadb_alg_maxbits = 448
}
},
{
.name = "cbc(aes)",
.compat = "aes",
.uinfo = {
.encr = {
.geniv = "echainiv",
.blockbits = 128,
.defkeybits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_AESCBC,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "cbc(serpent)",
.compat = "serpent",
.uinfo = {
.encr = {
.geniv = "echainiv",
.blockbits = 128,
.defkeybits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_SERPENTCBC,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256,
}
},
{
.name = "cbc(camellia)",
.compat = "camellia",
.uinfo = {
.encr = {
.geniv = "echainiv",
.blockbits = 128,
.defkeybits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "cbc(twofish)",
.compat = "twofish",
.uinfo = {
.encr = {
.geniv = "echainiv",
.blockbits = 128,
.defkeybits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "rfc3686(ctr(aes))",
.uinfo = {
.encr = {
.geniv = "seqiv",
.blockbits = 128,
.defkeybits = 160, /* 128-bit key + 32-bit nonce */
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_AESCTR,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 160,
.sadb_alg_maxbits = 288
}
},
};
static struct xfrm_algo_desc calg_list[] = {
{
.name = "deflate",
.uinfo = {
.comp = {
.threshold = 90,
}
},
.pfkey_supported = 1,
.desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
},
{
.name = "lzs",
.uinfo = {
.comp = {
.threshold = 90,
}
},
.pfkey_supported = 1,
.desc = { .sadb_alg_id = SADB_X_CALG_LZS }
},
{
.name = "lzjh",
.uinfo = {
.comp = {
.threshold = 50,
}
},
.pfkey_supported = 1,
.desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
},
};
static inline int aalg_entries(void)
{
return ARRAY_SIZE(aalg_list);
}
static inline int ealg_entries(void)
{
return ARRAY_SIZE(ealg_list);
}
static inline int calg_entries(void)
{
return ARRAY_SIZE(calg_list);
}
struct xfrm_algo_list {
struct xfrm_algo_desc *algs;
int entries;
u32 type;
u32 mask;
};
static const struct xfrm_algo_list xfrm_aead_list = {
.algs = aead_list,
.entries = ARRAY_SIZE(aead_list),
.type = CRYPTO_ALG_TYPE_AEAD,
.mask = CRYPTO_ALG_TYPE_MASK,
};
static const struct xfrm_algo_list xfrm_aalg_list = {
.algs = aalg_list,
.entries = ARRAY_SIZE(aalg_list),
.type = CRYPTO_ALG_TYPE_HASH,
.mask = CRYPTO_ALG_TYPE_HASH_MASK,
};
static const struct xfrm_algo_list xfrm_ealg_list = {
.algs = ealg_list,
.entries = ARRAY_SIZE(ealg_list),
.type = CRYPTO_ALG_TYPE_BLKCIPHER,
.mask = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
};
static const struct xfrm_algo_list xfrm_calg_list = {
.algs = calg_list,
.entries = ARRAY_SIZE(calg_list),
.type = CRYPTO_ALG_TYPE_COMPRESS,
.mask = CRYPTO_ALG_TYPE_MASK,
};
static struct xfrm_algo_desc *xfrm_find_algo(
const struct xfrm_algo_list *algo_list,
int match(const struct xfrm_algo_desc *entry, const void *data),
const void *data, int probe)
{
struct xfrm_algo_desc *list = algo_list->algs;
int i, status;
for (i = 0; i < algo_list->entries; i++) {
if (!match(list + i, data))
continue;
if (list[i].available)
return &list[i];
if (!probe)
break;
status = crypto_has_alg(list[i].name, algo_list->type,
algo_list->mask);
if (!status)
break;
list[i].available = status;
return &list[i];
}
return NULL;
}
static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
const void *data)
{
return entry->desc.sadb_alg_id == (unsigned long)data;
}
struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
{
return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
(void *)(unsigned long)alg_id, 1);
}
EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
{
return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
(void *)(unsigned long)alg_id, 1);
}
EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
{
return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
(void *)(unsigned long)alg_id, 1);
}
EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
const void *data)
{
const char *name = data;
return name && (!strcmp(name, entry->name) ||
(entry->compat && !strcmp(name, entry->compat)));
}
struct xfrm_algo_desc *xfrm_aalg_get_byname(const char *name, int probe)
{
return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
probe);
}
EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
struct xfrm_algo_desc *xfrm_ealg_get_byname(const char *name, int probe)
{
return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
probe);
}
EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
struct xfrm_algo_desc *xfrm_calg_get_byname(const char *name, int probe)
{
return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
probe);
}
EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
struct xfrm_aead_name {
const char *name;
int icvbits;
};
static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
const void *data)
{
const struct xfrm_aead_name *aead = data;
const char *name = aead->name;
return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
!strcmp(name, entry->name);
}
struct xfrm_algo_desc *xfrm_aead_get_byname(const char *name, int icv_len, int probe)
{
struct xfrm_aead_name data = {
.name = name,
.icvbits = icv_len,
};
return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
probe);
}
EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
{
if (idx >= aalg_entries())
return NULL;
return &aalg_list[idx];
}
EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
{
if (idx >= ealg_entries())
return NULL;
return &ealg_list[idx];
}
EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
/*
* Probe for the availability of crypto algorithms, and set the available
* flag for any algorithms found on the system. This is typically called by
* pfkey during userspace SA add, update or register.
*/
void xfrm_probe_algs(void)
{
int i, status;
BUG_ON(in_softirq());
for (i = 0; i < aalg_entries(); i++) {
status = crypto_has_ahash(aalg_list[i].name, 0, 0);
if (aalg_list[i].available != status)
aalg_list[i].available = status;
}
for (i = 0; i < ealg_entries(); i++) {
status = crypto_has_skcipher(ealg_list[i].name, 0, 0);
if (ealg_list[i].available != status)
ealg_list[i].available = status;
}
for (i = 0; i < calg_entries(); i++) {
status = crypto_has_comp(calg_list[i].name, 0,
CRYPTO_ALG_ASYNC);
if (calg_list[i].available != status)
calg_list[i].available = status;
}
}
EXPORT_SYMBOL_GPL(xfrm_probe_algs);
int xfrm_count_pfkey_auth_supported(void)
{
int i, n;
for (i = 0, n = 0; i < aalg_entries(); i++)
if (aalg_list[i].available && aalg_list[i].pfkey_supported)
n++;
return n;
}
EXPORT_SYMBOL_GPL(xfrm_count_pfkey_auth_supported);
int xfrm_count_pfkey_enc_supported(void)
{
int i, n;
for (i = 0, n = 0; i < ealg_entries(); i++)
if (ealg_list[i].available && ealg_list[i].pfkey_supported)
n++;
return n;
}
EXPORT_SYMBOL_GPL(xfrm_count_pfkey_enc_supported);
MODULE_LICENSE("GPL");