907293d788
Definitions as per IEEE 1212 and IEEE 1394: Node ID: Concatenation of bus ID and local ID. 16 bits long. Bus ID: Identifies a particular bus within a group of buses interconnected by bus bridges. Local ID: Identifies a particular node on a bus. PHY ID: Local ID of IEEE 1394 nodes. 6 bits long. Never ever use a variable called node_id for anything else than a node ID. Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de>
1394 lines
40 KiB
C
1394 lines
40 KiB
C
/* -*- c-basic-offset: 8 -*-
|
|
*
|
|
* fw-ohci.c - Driver for OHCI 1394 boards
|
|
* Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/semaphore.h>
|
|
|
|
#include "fw-transaction.h"
|
|
#include "fw-ohci.h"
|
|
|
|
#define descriptor_output_more 0
|
|
#define descriptor_output_last (1 << 12)
|
|
#define descriptor_input_more (2 << 12)
|
|
#define descriptor_input_last (3 << 12)
|
|
#define descriptor_status (1 << 11)
|
|
#define descriptor_key_immediate (2 << 8)
|
|
#define descriptor_ping (1 << 7)
|
|
#define descriptor_yy (1 << 6)
|
|
#define descriptor_no_irq (0 << 4)
|
|
#define descriptor_irq_error (1 << 4)
|
|
#define descriptor_irq_always (3 << 4)
|
|
#define descriptor_branch_always (3 << 2)
|
|
|
|
struct descriptor {
|
|
__le16 req_count;
|
|
__le16 control;
|
|
__le32 data_address;
|
|
__le32 branch_address;
|
|
__le16 res_count;
|
|
__le16 transfer_status;
|
|
} __attribute__((aligned(16)));
|
|
|
|
struct ar_context {
|
|
struct fw_ohci *ohci;
|
|
struct descriptor descriptor;
|
|
__le32 buffer[512];
|
|
dma_addr_t descriptor_bus;
|
|
dma_addr_t buffer_bus;
|
|
|
|
u32 command_ptr;
|
|
u32 control_set;
|
|
u32 control_clear;
|
|
|
|
struct tasklet_struct tasklet;
|
|
};
|
|
|
|
struct at_context {
|
|
struct fw_ohci *ohci;
|
|
dma_addr_t descriptor_bus;
|
|
dma_addr_t buffer_bus;
|
|
|
|
struct list_head list;
|
|
|
|
struct {
|
|
struct descriptor more;
|
|
__le32 header[4];
|
|
struct descriptor last;
|
|
} d;
|
|
|
|
u32 command_ptr;
|
|
u32 control_set;
|
|
u32 control_clear;
|
|
|
|
struct tasklet_struct tasklet;
|
|
};
|
|
|
|
#define it_header_sy(v) ((v) << 0)
|
|
#define it_header_tcode(v) ((v) << 4)
|
|
#define it_header_channel(v) ((v) << 8)
|
|
#define it_header_tag(v) ((v) << 14)
|
|
#define it_header_speed(v) ((v) << 16)
|
|
#define it_header_data_length(v) ((v) << 16)
|
|
|
|
struct iso_context {
|
|
struct fw_iso_context base;
|
|
struct tasklet_struct tasklet;
|
|
u32 control_set;
|
|
u32 control_clear;
|
|
u32 command_ptr;
|
|
u32 context_match;
|
|
|
|
struct descriptor *buffer;
|
|
dma_addr_t buffer_bus;
|
|
struct descriptor *head_descriptor;
|
|
struct descriptor *tail_descriptor;
|
|
struct descriptor *tail_descriptor_last;
|
|
struct descriptor *prev_descriptor;
|
|
};
|
|
|
|
#define CONFIG_ROM_SIZE 1024
|
|
|
|
struct fw_ohci {
|
|
struct fw_card card;
|
|
|
|
__iomem char *registers;
|
|
dma_addr_t self_id_bus;
|
|
__le32 *self_id_cpu;
|
|
struct tasklet_struct bus_reset_tasklet;
|
|
int generation;
|
|
int request_generation;
|
|
|
|
/* Spinlock for accessing fw_ohci data. Never call out of
|
|
* this driver with this lock held. */
|
|
spinlock_t lock;
|
|
u32 self_id_buffer[512];
|
|
|
|
/* Config rom buffers */
|
|
__be32 *config_rom;
|
|
dma_addr_t config_rom_bus;
|
|
__be32 *next_config_rom;
|
|
dma_addr_t next_config_rom_bus;
|
|
u32 next_header;
|
|
|
|
struct ar_context ar_request_ctx;
|
|
struct ar_context ar_response_ctx;
|
|
struct at_context at_request_ctx;
|
|
struct at_context at_response_ctx;
|
|
|
|
u32 it_context_mask;
|
|
struct iso_context *it_context_list;
|
|
u32 ir_context_mask;
|
|
struct iso_context *ir_context_list;
|
|
};
|
|
|
|
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
|
|
{
|
|
return container_of(card, struct fw_ohci, card);
|
|
}
|
|
|
|
#define CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
|
|
|
|
#define CONTEXT_RUN 0x8000
|
|
#define CONTEXT_WAKE 0x1000
|
|
#define CONTEXT_DEAD 0x0800
|
|
#define CONTEXT_ACTIVE 0x0400
|
|
|
|
#define OHCI1394_MAX_AT_REQ_RETRIES 0x2
|
|
#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
|
|
#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
|
|
|
|
#define FW_OHCI_MAJOR 240
|
|
#define OHCI1394_REGISTER_SIZE 0x800
|
|
#define OHCI_LOOP_COUNT 500
|
|
#define OHCI1394_PCI_HCI_Control 0x40
|
|
#define SELF_ID_BUF_SIZE 0x800
|
|
|
|
static char ohci_driver_name[] = KBUILD_MODNAME;
|
|
|
|
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
|
|
{
|
|
writel(data, ohci->registers + offset);
|
|
}
|
|
|
|
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
|
|
{
|
|
return readl(ohci->registers + offset);
|
|
}
|
|
|
|
static inline void flush_writes(const struct fw_ohci *ohci)
|
|
{
|
|
/* Do a dummy read to flush writes. */
|
|
reg_read(ohci, OHCI1394_Version);
|
|
}
|
|
|
|
static int
|
|
ohci_update_phy_reg(struct fw_card *card, int addr,
|
|
int clear_bits, int set_bits)
|
|
{
|
|
struct fw_ohci *ohci = fw_ohci(card);
|
|
u32 val, old;
|
|
|
|
reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
|
|
msleep(2);
|
|
val = reg_read(ohci, OHCI1394_PhyControl);
|
|
if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
|
|
fw_error("failed to set phy reg bits.\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
old = OHCI1394_PhyControl_ReadData(val);
|
|
old = (old & ~clear_bits) | set_bits;
|
|
reg_write(ohci, OHCI1394_PhyControl,
|
|
OHCI1394_PhyControl_Write(addr, old));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ar_context_run(struct ar_context *ctx)
|
|
{
|
|
reg_write(ctx->ohci, ctx->command_ptr, ctx->descriptor_bus | 1);
|
|
reg_write(ctx->ohci, ctx->control_set, CONTEXT_RUN);
|
|
flush_writes(ctx->ohci);
|
|
}
|
|
|
|
static void ar_context_tasklet(unsigned long data)
|
|
{
|
|
struct ar_context *ctx = (struct ar_context *)data;
|
|
struct fw_ohci *ohci = ctx->ohci;
|
|
u32 status;
|
|
int length, speed, ack, timestamp, tcode;
|
|
|
|
/* FIXME: What to do about evt_* errors? */
|
|
length = le16_to_cpu(ctx->descriptor.req_count) -
|
|
le16_to_cpu(ctx->descriptor.res_count) - 4;
|
|
status = le32_to_cpu(ctx->buffer[length / 4]);
|
|
ack = ((status >> 16) & 0x1f) - 16;
|
|
speed = (status >> 21) & 0x7;
|
|
timestamp = status & 0xffff;
|
|
|
|
ctx->buffer[0] = le32_to_cpu(ctx->buffer[0]);
|
|
ctx->buffer[1] = le32_to_cpu(ctx->buffer[1]);
|
|
ctx->buffer[2] = le32_to_cpu(ctx->buffer[2]);
|
|
|
|
tcode = (ctx->buffer[0] >> 4) & 0x0f;
|
|
if (TCODE_IS_BLOCK_PACKET(tcode))
|
|
ctx->buffer[3] = le32_to_cpu(ctx->buffer[3]);
|
|
|
|
/* The OHCI bus reset handler synthesizes a phy packet with
|
|
* the new generation number when a bus reset happens (see
|
|
* section 8.4.2.3). This helps us determine when a request
|
|
* was received and make sure we send the response in the same
|
|
* generation. We only need this for requests; for responses
|
|
* we use the unique tlabel for finding the matching
|
|
* request. */
|
|
|
|
if (ack + 16 == 0x09)
|
|
ohci->request_generation = (ctx->buffer[2] >> 16) & 0xff;
|
|
else if (ctx == &ohci->ar_request_ctx)
|
|
fw_core_handle_request(&ohci->card, speed, ack, timestamp,
|
|
ohci->request_generation,
|
|
length, ctx->buffer);
|
|
else
|
|
fw_core_handle_response(&ohci->card, speed, ack, timestamp,
|
|
length, ctx->buffer);
|
|
|
|
ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
|
|
ctx->descriptor.req_count = cpu_to_le16(sizeof ctx->buffer);
|
|
ctx->descriptor.res_count = cpu_to_le16(sizeof ctx->buffer);
|
|
|
|
dma_sync_single_for_device(ohci->card.device, ctx->descriptor_bus,
|
|
sizeof ctx->descriptor_bus, DMA_TO_DEVICE);
|
|
|
|
/* FIXME: We stop and restart the ar context here, what if we
|
|
* stop while a receive is in progress? Maybe we could just
|
|
* loop the context back to itself and use it in buffer fill
|
|
* mode as intended... */
|
|
|
|
reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
|
|
ar_context_run(ctx);
|
|
}
|
|
|
|
static int
|
|
ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 control_set)
|
|
{
|
|
ctx->descriptor_bus =
|
|
dma_map_single(ohci->card.device, &ctx->descriptor,
|
|
sizeof ctx->descriptor, DMA_TO_DEVICE);
|
|
if (ctx->descriptor_bus == 0)
|
|
return -ENOMEM;
|
|
|
|
if (ctx->descriptor_bus & 0xf)
|
|
fw_notify("descriptor not 16-byte aligned: 0x%08lx\n",
|
|
(unsigned long)ctx->descriptor_bus);
|
|
|
|
ctx->buffer_bus =
|
|
dma_map_single(ohci->card.device, ctx->buffer,
|
|
sizeof ctx->buffer, DMA_FROM_DEVICE);
|
|
|
|
if (ctx->buffer_bus == 0) {
|
|
dma_unmap_single(ohci->card.device, ctx->descriptor_bus,
|
|
sizeof ctx->descriptor, DMA_TO_DEVICE);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memset(&ctx->descriptor, 0, sizeof ctx->descriptor);
|
|
ctx->descriptor.control = cpu_to_le16(descriptor_input_more |
|
|
descriptor_status |
|
|
descriptor_branch_always);
|
|
ctx->descriptor.req_count = cpu_to_le16(sizeof ctx->buffer);
|
|
ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
|
|
ctx->descriptor.res_count = cpu_to_le16(sizeof ctx->buffer);
|
|
|
|
ctx->control_set = control_set;
|
|
ctx->control_clear = control_set + 4;
|
|
ctx->command_ptr = control_set + 12;
|
|
ctx->ohci = ohci;
|
|
|
|
tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
|
|
|
|
ar_context_run(ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
|
|
{
|
|
struct fw_packet *p, *next;
|
|
|
|
list_for_each_entry_safe(p, next, list, link)
|
|
p->callback(p, &ohci->card, p->status);
|
|
}
|
|
|
|
static void
|
|
complete_transmission(struct fw_packet *packet,
|
|
int status, struct list_head *list)
|
|
{
|
|
list_move_tail(&packet->link, list);
|
|
packet->status = status;
|
|
}
|
|
|
|
/* This function prepares the first packet in the context queue for
|
|
* transmission. Must always be called with the ochi->lock held to
|
|
* ensure proper generation handling and locking around packet queue
|
|
* manipulation. */
|
|
static void
|
|
at_context_setup_packet(struct at_context *ctx, struct list_head *list)
|
|
{
|
|
struct fw_packet *packet;
|
|
struct fw_ohci *ohci = ctx->ohci;
|
|
int z, tcode;
|
|
|
|
packet = fw_packet(ctx->list.next);
|
|
|
|
memset(&ctx->d, 0, sizeof ctx->d);
|
|
if (packet->payload_length > 0) {
|
|
packet->payload_bus = dma_map_single(ohci->card.device,
|
|
packet->payload,
|
|
packet->payload_length,
|
|
DMA_TO_DEVICE);
|
|
if (packet->payload_bus == 0) {
|
|
complete_transmission(packet, -ENOMEM, list);
|
|
return;
|
|
}
|
|
|
|
ctx->d.more.control =
|
|
cpu_to_le16(descriptor_output_more |
|
|
descriptor_key_immediate);
|
|
ctx->d.more.req_count = cpu_to_le16(packet->header_length);
|
|
ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
|
|
ctx->d.last.control =
|
|
cpu_to_le16(descriptor_output_last |
|
|
descriptor_irq_always |
|
|
descriptor_branch_always);
|
|
ctx->d.last.req_count = cpu_to_le16(packet->payload_length);
|
|
ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
|
|
z = 3;
|
|
} else {
|
|
ctx->d.more.control =
|
|
cpu_to_le16(descriptor_output_last |
|
|
descriptor_key_immediate |
|
|
descriptor_irq_always |
|
|
descriptor_branch_always);
|
|
ctx->d.more.req_count = cpu_to_le16(packet->header_length);
|
|
ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
|
|
z = 2;
|
|
}
|
|
|
|
/* The DMA format for asyncronous link packets is different
|
|
* from the IEEE1394 layout, so shift the fields around
|
|
* accordingly. If header_length is 8, it's a PHY packet, to
|
|
* which we need to prepend an extra quadlet. */
|
|
if (packet->header_length > 8) {
|
|
ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
|
|
(packet->speed << 16));
|
|
ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
|
|
(packet->header[0] & 0xffff0000));
|
|
ctx->d.header[2] = cpu_to_le32(packet->header[2]);
|
|
|
|
tcode = (packet->header[0] >> 4) & 0x0f;
|
|
if (TCODE_IS_BLOCK_PACKET(tcode))
|
|
ctx->d.header[3] = cpu_to_le32(packet->header[3]);
|
|
else
|
|
ctx->d.header[3] = packet->header[3];
|
|
} else {
|
|
ctx->d.header[0] =
|
|
cpu_to_le32((OHCI1394_phy_tcode << 4) |
|
|
(packet->speed << 16));
|
|
ctx->d.header[1] = cpu_to_le32(packet->header[0]);
|
|
ctx->d.header[2] = cpu_to_le32(packet->header[1]);
|
|
ctx->d.more.req_count = cpu_to_le16(12);
|
|
}
|
|
|
|
/* FIXME: Document how the locking works. */
|
|
if (ohci->generation == packet->generation) {
|
|
reg_write(ctx->ohci, ctx->command_ptr,
|
|
ctx->descriptor_bus | z);
|
|
reg_write(ctx->ohci, ctx->control_set,
|
|
CONTEXT_RUN | CONTEXT_WAKE);
|
|
} else {
|
|
/* We dont return error codes from this function; all
|
|
* transmission errors are reported through the
|
|
* callback. */
|
|
complete_transmission(packet, -ESTALE, list);
|
|
}
|
|
}
|
|
|
|
static void at_context_stop(struct at_context *ctx)
|
|
{
|
|
u32 reg;
|
|
|
|
reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
|
|
|
|
reg = reg_read(ctx->ohci, ctx->control_set);
|
|
if (reg & CONTEXT_ACTIVE)
|
|
fw_notify("Tried to stop context, but it is still active "
|
|
"(0x%08x).\n", reg);
|
|
}
|
|
|
|
static void at_context_tasklet(unsigned long data)
|
|
{
|
|
struct at_context *ctx = (struct at_context *)data;
|
|
struct fw_ohci *ohci = ctx->ohci;
|
|
struct fw_packet *packet;
|
|
LIST_HEAD(list);
|
|
unsigned long flags;
|
|
int evt;
|
|
|
|
spin_lock_irqsave(&ohci->lock, flags);
|
|
|
|
packet = fw_packet(ctx->list.next);
|
|
|
|
at_context_stop(ctx);
|
|
|
|
if (packet->payload_length > 0) {
|
|
dma_unmap_single(ohci->card.device, packet->payload_bus,
|
|
packet->payload_length, DMA_TO_DEVICE);
|
|
evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
|
|
packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
|
|
}
|
|
else {
|
|
evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
|
|
packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
|
|
}
|
|
|
|
if (evt < 16) {
|
|
switch (evt) {
|
|
case OHCI1394_evt_timeout:
|
|
/* Async response transmit timed out. */
|
|
complete_transmission(packet, -ETIMEDOUT, &list);
|
|
break;
|
|
|
|
case OHCI1394_evt_flushed:
|
|
/* The packet was flushed should give same
|
|
* error as when we try to use a stale
|
|
* generation count. */
|
|
complete_transmission(packet, -ESTALE, &list);
|
|
break;
|
|
|
|
case OHCI1394_evt_missing_ack:
|
|
/* This would be a higher level software
|
|
* error, it is using a valid (current)
|
|
* generation count, but the node is not on
|
|
* the bus. */
|
|
complete_transmission(packet, -ENODEV, &list);
|
|
break;
|
|
|
|
default:
|
|
complete_transmission(packet, -EIO, &list);
|
|
break;
|
|
}
|
|
} else
|
|
complete_transmission(packet, evt - 16, &list);
|
|
|
|
/* If more packets are queued, set up the next one. */
|
|
if (!list_empty(&ctx->list))
|
|
at_context_setup_packet(ctx, &list);
|
|
|
|
spin_unlock_irqrestore(&ohci->lock, flags);
|
|
|
|
do_packet_callbacks(ohci, &list);
|
|
}
|
|
|
|
static int
|
|
at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 control_set)
|
|
{
|
|
INIT_LIST_HEAD(&ctx->list);
|
|
|
|
ctx->descriptor_bus =
|
|
dma_map_single(ohci->card.device, &ctx->d,
|
|
sizeof ctx->d, DMA_TO_DEVICE);
|
|
if (ctx->descriptor_bus == 0)
|
|
return -ENOMEM;
|
|
|
|
ctx->control_set = control_set;
|
|
ctx->control_clear = control_set + 4;
|
|
ctx->command_ptr = control_set + 12;
|
|
ctx->ohci = ohci;
|
|
|
|
tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
|
|
{
|
|
LIST_HEAD(list);
|
|
unsigned long flags;
|
|
int was_empty;
|
|
|
|
spin_lock_irqsave(&ctx->ohci->lock, flags);
|
|
|
|
was_empty = list_empty(&ctx->list);
|
|
list_add_tail(&packet->link, &ctx->list);
|
|
if (was_empty)
|
|
at_context_setup_packet(ctx, &list);
|
|
|
|
spin_unlock_irqrestore(&ctx->ohci->lock, flags);
|
|
|
|
do_packet_callbacks(ctx->ohci, &list);
|
|
}
|
|
|
|
static void bus_reset_tasklet(unsigned long data)
|
|
{
|
|
struct fw_ohci *ohci = (struct fw_ohci *)data;
|
|
int self_id_count, i, j, reg, node_id;
|
|
int generation, new_generation;
|
|
unsigned long flags;
|
|
|
|
reg = reg_read(ohci, OHCI1394_NodeID);
|
|
if (!(reg & OHCI1394_NodeID_idValid)) {
|
|
fw_error("node ID not valid, new bus reset in progress\n");
|
|
return;
|
|
}
|
|
node_id = reg & 0xffff;
|
|
|
|
/* The count in the SelfIDCount register is the number of
|
|
* bytes in the self ID receive buffer. Since we also receive
|
|
* the inverted quadlets and a header quadlet, we shift one
|
|
* bit extra to get the actual number of self IDs. */
|
|
|
|
self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
|
|
generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
|
|
|
|
for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
|
|
if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
|
|
fw_error("inconsistent self IDs\n");
|
|
ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
|
|
}
|
|
|
|
/* Check the consistency of the self IDs we just read. The
|
|
* problem we face is that a new bus reset can start while we
|
|
* read out the self IDs from the DMA buffer. If this happens,
|
|
* the DMA buffer will be overwritten with new self IDs and we
|
|
* will read out inconsistent data. The OHCI specification
|
|
* (section 11.2) recommends a technique similar to
|
|
* linux/seqlock.h, where we remember the generation of the
|
|
* self IDs in the buffer before reading them out and compare
|
|
* it to the current generation after reading them out. If
|
|
* the two generations match we know we have a consistent set
|
|
* of self IDs. */
|
|
|
|
new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
|
|
if (new_generation != generation) {
|
|
fw_notify("recursive bus reset detected, "
|
|
"discarding self ids\n");
|
|
return;
|
|
}
|
|
|
|
/* FIXME: Document how the locking works. */
|
|
spin_lock_irqsave(&ohci->lock, flags);
|
|
|
|
ohci->generation = generation;
|
|
at_context_stop(&ohci->at_request_ctx);
|
|
at_context_stop(&ohci->at_response_ctx);
|
|
reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
|
|
|
|
/* This next bit is unrelated to the AT context stuff but we
|
|
* have to do it under the spinlock also. If a new config rom
|
|
* was set up before this reset, the old one is now no longer
|
|
* in use and we can free it. Update the config rom pointers
|
|
* to point to the current config rom and clear the
|
|
* next_config_rom pointer so a new udpate can take place. */
|
|
|
|
if (ohci->next_config_rom != NULL) {
|
|
dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
|
|
ohci->config_rom, ohci->config_rom_bus);
|
|
ohci->config_rom = ohci->next_config_rom;
|
|
ohci->config_rom_bus = ohci->next_config_rom_bus;
|
|
ohci->next_config_rom = NULL;
|
|
|
|
/* Restore config_rom image and manually update
|
|
* config_rom registers. Writing the header quadlet
|
|
* will indicate that the config rom is ready, so we
|
|
* do that last. */
|
|
reg_write(ohci, OHCI1394_BusOptions,
|
|
be32_to_cpu(ohci->config_rom[2]));
|
|
ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
|
|
reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&ohci->lock, flags);
|
|
|
|
fw_core_handle_bus_reset(&ohci->card, node_id, generation,
|
|
self_id_count, ohci->self_id_buffer);
|
|
}
|
|
|
|
static irqreturn_t irq_handler(int irq, void *data)
|
|
{
|
|
struct fw_ohci *ohci = data;
|
|
u32 event, iso_event;
|
|
int i;
|
|
|
|
event = reg_read(ohci, OHCI1394_IntEventClear);
|
|
|
|
if (!event)
|
|
return IRQ_NONE;
|
|
|
|
reg_write(ohci, OHCI1394_IntEventClear, event);
|
|
|
|
if (event & OHCI1394_selfIDComplete)
|
|
tasklet_schedule(&ohci->bus_reset_tasklet);
|
|
|
|
if (event & OHCI1394_RQPkt)
|
|
tasklet_schedule(&ohci->ar_request_ctx.tasklet);
|
|
|
|
if (event & OHCI1394_RSPkt)
|
|
tasklet_schedule(&ohci->ar_response_ctx.tasklet);
|
|
|
|
if (event & OHCI1394_reqTxComplete)
|
|
tasklet_schedule(&ohci->at_request_ctx.tasklet);
|
|
|
|
if (event & OHCI1394_respTxComplete)
|
|
tasklet_schedule(&ohci->at_response_ctx.tasklet);
|
|
|
|
iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
|
|
reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
|
|
|
|
while (iso_event) {
|
|
i = ffs(iso_event) - 1;
|
|
tasklet_schedule(&ohci->ir_context_list[i].tasklet);
|
|
iso_event &= ~(1 << i);
|
|
}
|
|
|
|
iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
|
|
reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
|
|
|
|
while (iso_event) {
|
|
i = ffs(iso_event) - 1;
|
|
tasklet_schedule(&ohci->it_context_list[i].tasklet);
|
|
iso_event &= ~(1 << i);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
|
|
{
|
|
struct fw_ohci *ohci = fw_ohci(card);
|
|
struct pci_dev *dev = to_pci_dev(card->device);
|
|
|
|
/* When the link is not yet enabled, the atomic config rom
|
|
* update mechanism described below in ohci_set_config_rom()
|
|
* is not active. We have to update ConfigRomHeader and
|
|
* BusOptions manually, and the write to ConfigROMmap takes
|
|
* effect immediately. We tie this to the enabling of the
|
|
* link, so we have a valid config rom before enabling - the
|
|
* OHCI requires that ConfigROMhdr and BusOptions have valid
|
|
* values before enabling.
|
|
*
|
|
* However, when the ConfigROMmap is written, some controllers
|
|
* always read back quadlets 0 and 2 from the config rom to
|
|
* the ConfigRomHeader and BusOptions registers on bus reset.
|
|
* They shouldn't do that in this initial case where the link
|
|
* isn't enabled. This means we have to use the same
|
|
* workaround here, setting the bus header to 0 and then write
|
|
* the right values in the bus reset tasklet.
|
|
*/
|
|
|
|
ohci->next_config_rom =
|
|
dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
|
|
&ohci->next_config_rom_bus, GFP_KERNEL);
|
|
if (ohci->next_config_rom == NULL)
|
|
return -ENOMEM;
|
|
|
|
memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
|
|
fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
|
|
|
|
ohci->next_header = config_rom[0];
|
|
ohci->next_config_rom[0] = 0;
|
|
reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
|
|
reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
|
|
reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
|
|
|
|
reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
|
|
|
|
if (request_irq(dev->irq, irq_handler,
|
|
SA_SHIRQ, ohci_driver_name, ohci)) {
|
|
fw_error("Failed to allocate shared interrupt %d.\n",
|
|
dev->irq);
|
|
dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
|
|
ohci->config_rom, ohci->config_rom_bus);
|
|
return -EIO;
|
|
}
|
|
|
|
reg_write(ohci, OHCI1394_HCControlSet,
|
|
OHCI1394_HCControl_linkEnable |
|
|
OHCI1394_HCControl_BIBimageValid);
|
|
flush_writes(ohci);
|
|
|
|
/* We are ready to go, initiate bus reset to finish the
|
|
* initialization. */
|
|
|
|
fw_core_initiate_bus_reset(&ohci->card, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
|
|
{
|
|
struct fw_ohci *ohci;
|
|
unsigned long flags;
|
|
int retval = 0;
|
|
__be32 *next_config_rom;
|
|
dma_addr_t next_config_rom_bus;
|
|
|
|
ohci = fw_ohci(card);
|
|
|
|
/* When the OHCI controller is enabled, the config rom update
|
|
* mechanism is a bit tricky, but easy enough to use. See
|
|
* section 5.5.6 in the OHCI specification.
|
|
*
|
|
* The OHCI controller caches the new config rom address in a
|
|
* shadow register (ConfigROMmapNext) and needs a bus reset
|
|
* for the changes to take place. When the bus reset is
|
|
* detected, the controller loads the new values for the
|
|
* ConfigRomHeader and BusOptions registers from the specified
|
|
* config rom and loads ConfigROMmap from the ConfigROMmapNext
|
|
* shadow register. All automatically and atomically.
|
|
*
|
|
* Now, there's a twist to this story. The automatic load of
|
|
* ConfigRomHeader and BusOptions doesn't honor the
|
|
* noByteSwapData bit, so with a be32 config rom, the
|
|
* controller will load be32 values in to these registers
|
|
* during the atomic update, even on litte endian
|
|
* architectures. The workaround we use is to put a 0 in the
|
|
* header quadlet; 0 is endian agnostic and means that the
|
|
* config rom isn't ready yet. In the bus reset tasklet we
|
|
* then set up the real values for the two registers.
|
|
*
|
|
* We use ohci->lock to avoid racing with the code that sets
|
|
* ohci->next_config_rom to NULL (see bus_reset_tasklet).
|
|
*/
|
|
|
|
next_config_rom =
|
|
dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
|
|
&next_config_rom_bus, GFP_KERNEL);
|
|
if (next_config_rom == NULL)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_irqsave(&ohci->lock, flags);
|
|
|
|
if (ohci->next_config_rom == NULL) {
|
|
ohci->next_config_rom = next_config_rom;
|
|
ohci->next_config_rom_bus = next_config_rom_bus;
|
|
|
|
memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
|
|
fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
|
|
length * 4);
|
|
|
|
ohci->next_header = config_rom[0];
|
|
ohci->next_config_rom[0] = 0;
|
|
|
|
reg_write(ohci, OHCI1394_ConfigROMmap,
|
|
ohci->next_config_rom_bus);
|
|
} else {
|
|
dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
|
|
next_config_rom, next_config_rom_bus);
|
|
retval = -EBUSY;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&ohci->lock, flags);
|
|
|
|
/* Now initiate a bus reset to have the changes take
|
|
* effect. We clean up the old config rom memory and DMA
|
|
* mappings in the bus reset tasklet, since the OHCI
|
|
* controller could need to access it before the bus reset
|
|
* takes effect. */
|
|
if (retval == 0)
|
|
fw_core_initiate_bus_reset(&ohci->card, 1);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
|
|
{
|
|
struct fw_ohci *ohci = fw_ohci(card);
|
|
|
|
at_context_transmit(&ohci->at_request_ctx, packet);
|
|
}
|
|
|
|
static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
|
|
{
|
|
struct fw_ohci *ohci = fw_ohci(card);
|
|
|
|
at_context_transmit(&ohci->at_response_ctx, packet);
|
|
}
|
|
|
|
static int
|
|
ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
|
|
{
|
|
struct fw_ohci *ohci = fw_ohci(card);
|
|
unsigned long flags;
|
|
int n, retval = 0;
|
|
|
|
/* FIXME: Make sure this bitmask is cleared when we clear the busReset
|
|
* interrupt bit. Clear physReqResourceAllBuses on bus reset. */
|
|
|
|
spin_lock_irqsave(&ohci->lock, flags);
|
|
|
|
if (ohci->generation != generation) {
|
|
retval = -ESTALE;
|
|
goto out;
|
|
}
|
|
|
|
/* NOTE, if the node ID contains a non-local bus ID, physical DMA is
|
|
* enabled for _all_ nodes on remote buses. */
|
|
|
|
n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
|
|
if (n < 32)
|
|
reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
|
|
else
|
|
reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
|
|
|
|
flush_writes(ohci);
|
|
out:
|
|
spin_unlock_irqrestore(&ohci->lock, flags);
|
|
return retval;
|
|
}
|
|
|
|
static void ir_context_tasklet(unsigned long data)
|
|
{
|
|
struct iso_context *ctx = (struct iso_context *)data;
|
|
|
|
(void)ctx;
|
|
}
|
|
|
|
#define ISO_BUFFER_SIZE (64 * 1024)
|
|
|
|
static void flush_iso_context(struct iso_context *ctx)
|
|
{
|
|
struct fw_ohci *ohci = fw_ohci(ctx->base.card);
|
|
struct descriptor *d, *last;
|
|
u32 address;
|
|
int z;
|
|
|
|
dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
|
|
ISO_BUFFER_SIZE, DMA_TO_DEVICE);
|
|
|
|
d = ctx->tail_descriptor;
|
|
last = ctx->tail_descriptor_last;
|
|
|
|
while (last->branch_address != 0 && last->transfer_status != 0) {
|
|
address = le32_to_cpu(last->branch_address);
|
|
z = address & 0xf;
|
|
d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
|
|
|
|
if (z == 2)
|
|
last = d;
|
|
else
|
|
last = d + z - 1;
|
|
|
|
if (le16_to_cpu(last->control) & descriptor_irq_always)
|
|
ctx->base.callback(&ctx->base,
|
|
0, le16_to_cpu(last->res_count),
|
|
ctx->base.callback_data);
|
|
}
|
|
|
|
ctx->tail_descriptor = d;
|
|
ctx->tail_descriptor_last = last;
|
|
}
|
|
|
|
static void it_context_tasklet(unsigned long data)
|
|
{
|
|
struct iso_context *ctx = (struct iso_context *)data;
|
|
|
|
flush_iso_context(ctx);
|
|
}
|
|
|
|
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
|
|
int type)
|
|
{
|
|
struct fw_ohci *ohci = fw_ohci(card);
|
|
struct iso_context *ctx, *list;
|
|
void (*tasklet) (unsigned long data);
|
|
u32 *mask;
|
|
unsigned long flags;
|
|
int index;
|
|
|
|
if (type == FW_ISO_CONTEXT_TRANSMIT) {
|
|
mask = &ohci->it_context_mask;
|
|
list = ohci->it_context_list;
|
|
tasklet = it_context_tasklet;
|
|
} else {
|
|
mask = &ohci->ir_context_mask;
|
|
list = ohci->ir_context_list;
|
|
tasklet = ir_context_tasklet;
|
|
}
|
|
|
|
spin_lock_irqsave(&ohci->lock, flags);
|
|
index = ffs(*mask) - 1;
|
|
if (index >= 0)
|
|
*mask &= ~(1 << index);
|
|
spin_unlock_irqrestore(&ohci->lock, flags);
|
|
|
|
if (index < 0)
|
|
return ERR_PTR(-EBUSY);
|
|
|
|
ctx = &list[index];
|
|
memset(ctx, 0, sizeof *ctx);
|
|
tasklet_init(&ctx->tasklet, tasklet, (unsigned long)ctx);
|
|
|
|
ctx->buffer = kmalloc(ISO_BUFFER_SIZE, GFP_KERNEL);
|
|
if (ctx->buffer == NULL) {
|
|
spin_lock_irqsave(&ohci->lock, flags);
|
|
*mask |= 1 << index;
|
|
spin_unlock_irqrestore(&ohci->lock, flags);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
ctx->buffer_bus =
|
|
dma_map_single(card->device, ctx->buffer,
|
|
ISO_BUFFER_SIZE, DMA_TO_DEVICE);
|
|
|
|
ctx->head_descriptor = ctx->buffer;
|
|
ctx->prev_descriptor = ctx->buffer;
|
|
ctx->tail_descriptor = ctx->buffer;
|
|
ctx->tail_descriptor_last = ctx->buffer;
|
|
|
|
/* We put a dummy descriptor in the buffer that has a NULL
|
|
* branch address and looks like it's been sent. That way we
|
|
* have a descriptor to append DMA programs to. Also, the
|
|
* ring buffer invariant is that it always has at least one
|
|
* element so that head == tail means buffer full. */
|
|
|
|
memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
|
|
ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
|
|
ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
|
|
ctx->head_descriptor++;
|
|
|
|
return &ctx->base;
|
|
}
|
|
|
|
static int ohci_send_iso(struct fw_iso_context *base, s32 cycle)
|
|
{
|
|
struct iso_context *ctx = (struct iso_context *)base;
|
|
struct fw_ohci *ohci = fw_ohci(ctx->base.card);
|
|
u32 cycle_match = 0;
|
|
int index;
|
|
|
|
index = ctx - ohci->it_context_list;
|
|
if (cycle > 0)
|
|
cycle_match = CONTEXT_CYCLE_MATCH_ENABLE |
|
|
(cycle & 0x7fff) << 16;
|
|
|
|
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
|
|
reg_write(ohci, OHCI1394_IsoXmitCommandPtr(index),
|
|
le32_to_cpu(ctx->tail_descriptor_last->branch_address));
|
|
reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
|
|
reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index),
|
|
CONTEXT_RUN | cycle_match);
|
|
flush_writes(ohci);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ohci_free_iso_context(struct fw_iso_context *base)
|
|
{
|
|
struct fw_ohci *ohci = fw_ohci(base->card);
|
|
struct iso_context *ctx = (struct iso_context *)base;
|
|
unsigned long flags;
|
|
int index;
|
|
|
|
flush_iso_context(ctx);
|
|
|
|
spin_lock_irqsave(&ohci->lock, flags);
|
|
|
|
if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
|
|
index = ctx - ohci->it_context_list;
|
|
reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
|
|
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
|
|
ohci->it_context_mask |= 1 << index;
|
|
} else {
|
|
index = ctx - ohci->ir_context_list;
|
|
reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0);
|
|
reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
|
|
ohci->ir_context_mask |= 1 << index;
|
|
}
|
|
flush_writes(ohci);
|
|
|
|
dma_unmap_single(ohci->card.device, ctx->buffer_bus,
|
|
ISO_BUFFER_SIZE, DMA_TO_DEVICE);
|
|
|
|
spin_unlock_irqrestore(&ohci->lock, flags);
|
|
}
|
|
|
|
static int
|
|
ohci_queue_iso(struct fw_iso_context *base,
|
|
struct fw_iso_packet *packet, void *payload)
|
|
{
|
|
struct iso_context *ctx = (struct iso_context *)base;
|
|
struct fw_ohci *ohci = fw_ohci(ctx->base.card);
|
|
struct descriptor *d, *end, *last, *tail, *pd;
|
|
struct fw_iso_packet *p;
|
|
__le32 *header;
|
|
dma_addr_t d_bus;
|
|
u32 z, header_z, payload_z, irq;
|
|
u32 payload_index, payload_end_index, next_page_index;
|
|
int index, page, end_page, i, length, offset;
|
|
|
|
/* FIXME: Cycle lost behavior should be configurable: lose
|
|
* packet, retransmit or terminate.. */
|
|
|
|
p = packet;
|
|
payload_index = payload - ctx->base.buffer;
|
|
d = ctx->head_descriptor;
|
|
tail = ctx->tail_descriptor;
|
|
end = ctx->buffer + ISO_BUFFER_SIZE / sizeof(struct descriptor);
|
|
|
|
if (p->skip)
|
|
z = 1;
|
|
else
|
|
z = 2;
|
|
if (p->header_length > 0)
|
|
z++;
|
|
|
|
/* Determine the first page the payload isn't contained in. */
|
|
end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
|
|
if (p->payload_length > 0)
|
|
payload_z = end_page - (payload_index >> PAGE_SHIFT);
|
|
else
|
|
payload_z = 0;
|
|
|
|
z += payload_z;
|
|
|
|
/* Get header size in number of descriptors. */
|
|
header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
|
|
|
|
if (d + z + header_z <= tail) {
|
|
goto has_space;
|
|
} else if (d > tail && d + z + header_z <= end) {
|
|
goto has_space;
|
|
} else if (d > tail && ctx->buffer + z + header_z <= tail) {
|
|
d = ctx->buffer;
|
|
goto has_space;
|
|
}
|
|
|
|
/* No space in buffer */
|
|
return -1;
|
|
|
|
has_space:
|
|
memset(d, 0, (z + header_z) * sizeof *d);
|
|
d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
|
|
|
|
if (!p->skip) {
|
|
d[0].control = cpu_to_le16(descriptor_key_immediate);
|
|
d[0].req_count = cpu_to_le16(8);
|
|
|
|
header = (__le32 *) &d[1];
|
|
header[0] = cpu_to_le32(it_header_sy(p->sy) |
|
|
it_header_tag(p->tag) |
|
|
it_header_tcode(TCODE_STREAM_DATA) |
|
|
it_header_channel(ctx->base.channel) |
|
|
it_header_speed(ctx->base.speed));
|
|
header[1] =
|
|
cpu_to_le32(it_header_data_length(p->header_length +
|
|
p->payload_length));
|
|
}
|
|
|
|
if (p->header_length > 0) {
|
|
d[2].req_count = cpu_to_le16(p->header_length);
|
|
d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
|
|
memcpy(&d[z], p->header, p->header_length);
|
|
}
|
|
|
|
pd = d + z - payload_z;
|
|
payload_end_index = payload_index + p->payload_length;
|
|
for (i = 0; i < payload_z; i++) {
|
|
page = payload_index >> PAGE_SHIFT;
|
|
offset = payload_index & ~PAGE_MASK;
|
|
next_page_index = (page + 1) << PAGE_SHIFT;
|
|
length =
|
|
min(next_page_index, payload_end_index) - payload_index;
|
|
pd[i].req_count = cpu_to_le16(length);
|
|
pd[i].data_address = cpu_to_le32(ctx->base.pages[page] + offset);
|
|
|
|
payload_index += length;
|
|
}
|
|
|
|
if (z == 2)
|
|
last = d;
|
|
else
|
|
last = d + z - 1;
|
|
|
|
if (p->interrupt)
|
|
irq = descriptor_irq_always;
|
|
else
|
|
irq = descriptor_no_irq;
|
|
|
|
last->control = cpu_to_le16(descriptor_output_last |
|
|
descriptor_status |
|
|
descriptor_branch_always |
|
|
irq);
|
|
|
|
dma_sync_single_for_device(ohci->card.device, ctx->buffer_bus,
|
|
ISO_BUFFER_SIZE, DMA_TO_DEVICE);
|
|
|
|
ctx->head_descriptor = d + z + header_z;
|
|
ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
|
|
ctx->prev_descriptor = last;
|
|
|
|
index = ctx - ohci->it_context_list;
|
|
reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), CONTEXT_WAKE);
|
|
flush_writes(ohci);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct fw_card_driver ohci_driver = {
|
|
.name = ohci_driver_name,
|
|
.enable = ohci_enable,
|
|
.update_phy_reg = ohci_update_phy_reg,
|
|
.set_config_rom = ohci_set_config_rom,
|
|
.send_request = ohci_send_request,
|
|
.send_response = ohci_send_response,
|
|
.enable_phys_dma = ohci_enable_phys_dma,
|
|
|
|
.allocate_iso_context = ohci_allocate_iso_context,
|
|
.free_iso_context = ohci_free_iso_context,
|
|
.queue_iso = ohci_queue_iso,
|
|
.send_iso = ohci_send_iso,
|
|
};
|
|
|
|
static int software_reset(struct fw_ohci *ohci)
|
|
{
|
|
int i;
|
|
|
|
reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
|
|
|
|
for (i = 0; i < OHCI_LOOP_COUNT; i++) {
|
|
if ((reg_read(ohci, OHCI1394_HCControlSet) &
|
|
OHCI1394_HCControl_softReset) == 0)
|
|
return 0;
|
|
msleep(1);
|
|
}
|
|
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* ---------- pci subsystem interface ---------- */
|
|
|
|
enum {
|
|
CLEANUP_SELF_ID,
|
|
CLEANUP_REGISTERS,
|
|
CLEANUP_IOMEM,
|
|
CLEANUP_DISABLE,
|
|
CLEANUP_PUT_CARD,
|
|
};
|
|
|
|
static int cleanup(struct fw_ohci *ohci, int stage, int code)
|
|
{
|
|
struct pci_dev *dev = to_pci_dev(ohci->card.device);
|
|
|
|
switch (stage) {
|
|
case CLEANUP_SELF_ID:
|
|
dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
|
|
ohci->self_id_cpu, ohci->self_id_bus);
|
|
case CLEANUP_REGISTERS:
|
|
kfree(ohci->it_context_list);
|
|
kfree(ohci->ir_context_list);
|
|
pci_iounmap(dev, ohci->registers);
|
|
case CLEANUP_IOMEM:
|
|
pci_release_region(dev, 0);
|
|
case CLEANUP_DISABLE:
|
|
pci_disable_device(dev);
|
|
case CLEANUP_PUT_CARD:
|
|
fw_card_put(&ohci->card);
|
|
}
|
|
|
|
return code;
|
|
}
|
|
|
|
static int __devinit
|
|
pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
|
|
{
|
|
struct fw_ohci *ohci;
|
|
u32 bus_options, max_receive, link_speed;
|
|
u64 guid;
|
|
int error_code;
|
|
size_t size;
|
|
|
|
ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
|
|
if (ohci == NULL) {
|
|
fw_error("Could not malloc fw_ohci data.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
|
|
|
|
if (pci_enable_device(dev)) {
|
|
fw_error("Failed to enable OHCI hardware.\n");
|
|
return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
|
|
}
|
|
|
|
pci_set_master(dev);
|
|
pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
|
|
pci_set_drvdata(dev, ohci);
|
|
|
|
spin_lock_init(&ohci->lock);
|
|
|
|
tasklet_init(&ohci->bus_reset_tasklet,
|
|
bus_reset_tasklet, (unsigned long)ohci);
|
|
|
|
if (pci_request_region(dev, 0, ohci_driver_name)) {
|
|
fw_error("MMIO resource unavailable\n");
|
|
return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
|
|
}
|
|
|
|
ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
|
|
if (ohci->registers == NULL) {
|
|
fw_error("Failed to remap registers\n");
|
|
return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
|
|
}
|
|
|
|
if (software_reset(ohci)) {
|
|
fw_error("Failed to reset ohci card.\n");
|
|
return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
|
|
}
|
|
|
|
/* Now enable LPS, which we need in order to start accessing
|
|
* most of the registers. In fact, on some cards (ALI M5251),
|
|
* accessing registers in the SClk domain without LPS enabled
|
|
* will lock up the machine. Wait 50msec to make sure we have
|
|
* full link enabled. */
|
|
reg_write(ohci, OHCI1394_HCControlSet,
|
|
OHCI1394_HCControl_LPS |
|
|
OHCI1394_HCControl_postedWriteEnable);
|
|
flush_writes(ohci);
|
|
msleep(50);
|
|
|
|
reg_write(ohci, OHCI1394_HCControlClear,
|
|
OHCI1394_HCControl_noByteSwapData);
|
|
|
|
reg_write(ohci, OHCI1394_LinkControlSet,
|
|
OHCI1394_LinkControl_rcvSelfID |
|
|
OHCI1394_LinkControl_cycleTimerEnable |
|
|
OHCI1394_LinkControl_cycleMaster);
|
|
|
|
ar_context_init(&ohci->ar_request_ctx, ohci,
|
|
OHCI1394_AsReqRcvContextControlSet);
|
|
|
|
ar_context_init(&ohci->ar_response_ctx, ohci,
|
|
OHCI1394_AsRspRcvContextControlSet);
|
|
|
|
at_context_init(&ohci->at_request_ctx, ohci,
|
|
OHCI1394_AsReqTrContextControlSet);
|
|
|
|
at_context_init(&ohci->at_response_ctx, ohci,
|
|
OHCI1394_AsRspTrContextControlSet);
|
|
|
|
reg_write(ohci, OHCI1394_ATRetries,
|
|
OHCI1394_MAX_AT_REQ_RETRIES |
|
|
(OHCI1394_MAX_AT_RESP_RETRIES << 4) |
|
|
(OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
|
|
|
|
reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
|
|
ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
|
|
reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
|
|
size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
|
|
ohci->it_context_list = kzalloc(size, GFP_KERNEL);
|
|
|
|
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
|
|
ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
|
|
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
|
|
size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
|
|
ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
|
|
|
|
if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
|
|
fw_error("Out of memory for it/ir contexts.\n");
|
|
return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
|
|
}
|
|
|
|
/* self-id dma buffer allocation */
|
|
ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
|
|
SELF_ID_BUF_SIZE,
|
|
&ohci->self_id_bus,
|
|
GFP_KERNEL);
|
|
if (ohci->self_id_cpu == NULL) {
|
|
fw_error("Out of memory for self ID buffer.\n");
|
|
return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
|
|
}
|
|
|
|
reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
|
|
reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
|
|
reg_write(ohci, OHCI1394_IntEventClear, ~0);
|
|
reg_write(ohci, OHCI1394_IntMaskClear, ~0);
|
|
reg_write(ohci, OHCI1394_IntMaskSet,
|
|
OHCI1394_selfIDComplete |
|
|
OHCI1394_RQPkt | OHCI1394_RSPkt |
|
|
OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
|
|
OHCI1394_isochRx | OHCI1394_isochTx |
|
|
OHCI1394_masterIntEnable);
|
|
|
|
bus_options = reg_read(ohci, OHCI1394_BusOptions);
|
|
max_receive = (bus_options >> 12) & 0xf;
|
|
link_speed = bus_options & 0x7;
|
|
guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
|
|
reg_read(ohci, OHCI1394_GUIDLo);
|
|
|
|
error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
|
|
if (error_code < 0)
|
|
return cleanup(ohci, CLEANUP_SELF_ID, error_code);
|
|
|
|
fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pci_remove(struct pci_dev *dev)
|
|
{
|
|
struct fw_ohci *ohci;
|
|
|
|
ohci = pci_get_drvdata(dev);
|
|
reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
|
|
fw_core_remove_card(&ohci->card);
|
|
|
|
/* FIXME: Fail all pending packets here, now that the upper
|
|
* layers can't queue any more. */
|
|
|
|
software_reset(ohci);
|
|
free_irq(dev->irq, ohci);
|
|
cleanup(ohci, CLEANUP_SELF_ID, 0);
|
|
|
|
fw_notify("Removed fw-ohci device.\n");
|
|
}
|
|
|
|
static struct pci_device_id pci_table[] = {
|
|
{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
|
|
{ }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, pci_table);
|
|
|
|
static struct pci_driver fw_ohci_pci_driver = {
|
|
.name = ohci_driver_name,
|
|
.id_table = pci_table,
|
|
.probe = pci_probe,
|
|
.remove = pci_remove,
|
|
};
|
|
|
|
MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
|
|
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static int __init fw_ohci_init(void)
|
|
{
|
|
return pci_register_driver(&fw_ohci_pci_driver);
|
|
}
|
|
|
|
static void __exit fw_ohci_cleanup(void)
|
|
{
|
|
pci_unregister_driver(&fw_ohci_pci_driver);
|
|
}
|
|
|
|
module_init(fw_ohci_init);
|
|
module_exit(fw_ohci_cleanup);
|