android_kernel_xiaomi_sm8350/fs/ubifs/orphan.c
Artem Bityutskiy 1e51764a3c UBIFS: add new flash file system
This is a new flash file system. See
http://www.linux-mtd.infradead.org/doc/ubifs.html

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: Adrian Hunter <ext-adrian.hunter@nokia.com>
2008-07-15 17:35:15 +03:00

959 lines
25 KiB
C

/*
* This file is part of UBIFS.
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Author: Adrian Hunter
*/
#include "ubifs.h"
/*
* An orphan is an inode number whose inode node has been committed to the index
* with a link count of zero. That happens when an open file is deleted
* (unlinked) and then a commit is run. In the normal course of events the inode
* would be deleted when the file is closed. However in the case of an unclean
* unmount, orphans need to be accounted for. After an unclean unmount, the
* orphans' inodes must be deleted which means either scanning the entire index
* looking for them, or keeping a list on flash somewhere. This unit implements
* the latter approach.
*
* The orphan area is a fixed number of LEBs situated between the LPT area and
* the main area. The number of orphan area LEBs is specified when the file
* system is created. The minimum number is 1. The size of the orphan area
* should be so that it can hold the maximum number of orphans that are expected
* to ever exist at one time.
*
* The number of orphans that can fit in a LEB is:
*
* (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
*
* For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
*
* Orphans are accumulated in a rb-tree. When an inode's link count drops to
* zero, the inode number is added to the rb-tree. It is removed from the tree
* when the inode is deleted. Any new orphans that are in the orphan tree when
* the commit is run, are written to the orphan area in 1 or more orph nodes.
* If the orphan area is full, it is consolidated to make space. There is
* always enough space because validation prevents the user from creating more
* than the maximum number of orphans allowed.
*/
#ifdef CONFIG_UBIFS_FS_DEBUG
static int dbg_check_orphans(struct ubifs_info *c);
#else
#define dbg_check_orphans(c) 0
#endif
/**
* ubifs_add_orphan - add an orphan.
* @c: UBIFS file-system description object
* @inum: orphan inode number
*
* Add an orphan. This function is called when an inodes link count drops to
* zero.
*/
int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
{
struct ubifs_orphan *orphan, *o;
struct rb_node **p, *parent = NULL;
orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
if (!orphan)
return -ENOMEM;
orphan->inum = inum;
orphan->new = 1;
spin_lock(&c->orphan_lock);
if (c->tot_orphans >= c->max_orphans) {
spin_unlock(&c->orphan_lock);
kfree(orphan);
return -ENFILE;
}
p = &c->orph_tree.rb_node;
while (*p) {
parent = *p;
o = rb_entry(parent, struct ubifs_orphan, rb);
if (inum < o->inum)
p = &(*p)->rb_left;
else if (inum > o->inum)
p = &(*p)->rb_right;
else {
dbg_err("orphaned twice");
spin_unlock(&c->orphan_lock);
kfree(orphan);
return 0;
}
}
c->tot_orphans += 1;
c->new_orphans += 1;
rb_link_node(&orphan->rb, parent, p);
rb_insert_color(&orphan->rb, &c->orph_tree);
list_add_tail(&orphan->list, &c->orph_list);
list_add_tail(&orphan->new_list, &c->orph_new);
spin_unlock(&c->orphan_lock);
dbg_gen("ino %lu", inum);
return 0;
}
/**
* ubifs_delete_orphan - delete an orphan.
* @c: UBIFS file-system description object
* @inum: orphan inode number
*
* Delete an orphan. This function is called when an inode is deleted.
*/
void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
{
struct ubifs_orphan *o;
struct rb_node *p;
spin_lock(&c->orphan_lock);
p = c->orph_tree.rb_node;
while (p) {
o = rb_entry(p, struct ubifs_orphan, rb);
if (inum < o->inum)
p = p->rb_left;
else if (inum > o->inum)
p = p->rb_right;
else {
if (o->dnext) {
spin_unlock(&c->orphan_lock);
dbg_gen("deleted twice ino %lu", inum);
return;
}
if (o->cnext) {
o->dnext = c->orph_dnext;
c->orph_dnext = o;
spin_unlock(&c->orphan_lock);
dbg_gen("delete later ino %lu", inum);
return;
}
rb_erase(p, &c->orph_tree);
list_del(&o->list);
c->tot_orphans -= 1;
if (o->new) {
list_del(&o->new_list);
c->new_orphans -= 1;
}
spin_unlock(&c->orphan_lock);
kfree(o);
dbg_gen("inum %lu", inum);
return;
}
}
spin_unlock(&c->orphan_lock);
dbg_err("missing orphan ino %lu", inum);
dbg_dump_stack();
}
/**
* ubifs_orphan_start_commit - start commit of orphans.
* @c: UBIFS file-system description object
*
* Start commit of orphans.
*/
int ubifs_orphan_start_commit(struct ubifs_info *c)
{
struct ubifs_orphan *orphan, **last;
spin_lock(&c->orphan_lock);
last = &c->orph_cnext;
list_for_each_entry(orphan, &c->orph_new, new_list) {
ubifs_assert(orphan->new);
orphan->new = 0;
*last = orphan;
last = &orphan->cnext;
}
*last = orphan->cnext;
c->cmt_orphans = c->new_orphans;
c->new_orphans = 0;
dbg_cmt("%d orphans to commit", c->cmt_orphans);
INIT_LIST_HEAD(&c->orph_new);
if (c->tot_orphans == 0)
c->no_orphs = 1;
else
c->no_orphs = 0;
spin_unlock(&c->orphan_lock);
return 0;
}
/**
* avail_orphs - calculate available space.
* @c: UBIFS file-system description object
*
* This function returns the number of orphans that can be written in the
* available space.
*/
static int avail_orphs(struct ubifs_info *c)
{
int avail_lebs, avail, gap;
avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
avail = avail_lebs *
((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
gap = c->leb_size - c->ohead_offs;
if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
return avail;
}
/**
* tot_avail_orphs - calculate total space.
* @c: UBIFS file-system description object
*
* This function returns the number of orphans that can be written in half
* the total space. That leaves half the space for adding new orphans.
*/
static int tot_avail_orphs(struct ubifs_info *c)
{
int avail_lebs, avail;
avail_lebs = c->orph_lebs;
avail = avail_lebs *
((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
return avail / 2;
}
/**
* do_write_orph_node - write a node
* @c: UBIFS file-system description object
* @len: length of node
* @atomic: write atomically
*
* This function writes a node to the orphan head from the orphan buffer. If
* %atomic is not zero, then the write is done atomically. On success, %0 is
* returned, otherwise a negative error code is returned.
*/
static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
{
int err = 0;
if (atomic) {
ubifs_assert(c->ohead_offs == 0);
ubifs_prepare_node(c, c->orph_buf, len, 1);
len = ALIGN(len, c->min_io_size);
err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len,
UBI_SHORTTERM);
} else {
if (c->ohead_offs == 0) {
/* Ensure LEB has been unmapped */
err = ubifs_leb_unmap(c, c->ohead_lnum);
if (err)
return err;
}
err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
c->ohead_offs, UBI_SHORTTERM);
}
return err;
}
/**
* write_orph_node - write an orph node
* @c: UBIFS file-system description object
* @atomic: write atomically
*
* This function builds an orph node from the cnext list and writes it to the
* orphan head. On success, %0 is returned, otherwise a negative error code
* is returned.
*/
static int write_orph_node(struct ubifs_info *c, int atomic)
{
struct ubifs_orphan *orphan, *cnext;
struct ubifs_orph_node *orph;
int gap, err, len, cnt, i;
ubifs_assert(c->cmt_orphans > 0);
gap = c->leb_size - c->ohead_offs;
if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
c->ohead_lnum += 1;
c->ohead_offs = 0;
gap = c->leb_size;
if (c->ohead_lnum > c->orph_last) {
/*
* We limit the number of orphans so that this should
* never happen.
*/
ubifs_err("out of space in orphan area");
return -EINVAL;
}
}
cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
if (cnt > c->cmt_orphans)
cnt = c->cmt_orphans;
len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
ubifs_assert(c->orph_buf);
orph = c->orph_buf;
orph->ch.node_type = UBIFS_ORPH_NODE;
spin_lock(&c->orphan_lock);
cnext = c->orph_cnext;
for (i = 0; i < cnt; i++) {
orphan = cnext;
orph->inos[i] = cpu_to_le64(orphan->inum);
cnext = orphan->cnext;
orphan->cnext = NULL;
}
c->orph_cnext = cnext;
c->cmt_orphans -= cnt;
spin_unlock(&c->orphan_lock);
if (c->cmt_orphans)
orph->cmt_no = cpu_to_le64(c->cmt_no + 1);
else
/* Mark the last node of the commit */
orph->cmt_no = cpu_to_le64((c->cmt_no + 1) | (1ULL << 63));
ubifs_assert(c->ohead_offs + len <= c->leb_size);
ubifs_assert(c->ohead_lnum >= c->orph_first);
ubifs_assert(c->ohead_lnum <= c->orph_last);
err = do_write_orph_node(c, len, atomic);
c->ohead_offs += ALIGN(len, c->min_io_size);
c->ohead_offs = ALIGN(c->ohead_offs, 8);
return err;
}
/**
* write_orph_nodes - write orph nodes until there are no more to commit
* @c: UBIFS file-system description object
* @atomic: write atomically
*
* This function writes orph nodes for all the orphans to commit. On success,
* %0 is returned, otherwise a negative error code is returned.
*/
static int write_orph_nodes(struct ubifs_info *c, int atomic)
{
int err;
while (c->cmt_orphans > 0) {
err = write_orph_node(c, atomic);
if (err)
return err;
}
if (atomic) {
int lnum;
/* Unmap any unused LEBs after consolidation */
lnum = c->ohead_lnum + 1;
for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
err = ubifs_leb_unmap(c, lnum);
if (err)
return err;
}
}
return 0;
}
/**
* consolidate - consolidate the orphan area.
* @c: UBIFS file-system description object
*
* This function enables consolidation by putting all the orphans into the list
* to commit. The list is in the order that the orphans were added, and the
* LEBs are written atomically in order, so at no time can orphans be lost by
* an unclean unmount.
*
* This function returns %0 on success and a negative error code on failure.
*/
static int consolidate(struct ubifs_info *c)
{
int tot_avail = tot_avail_orphs(c), err = 0;
spin_lock(&c->orphan_lock);
dbg_cmt("there is space for %d orphans and there are %d",
tot_avail, c->tot_orphans);
if (c->tot_orphans - c->new_orphans <= tot_avail) {
struct ubifs_orphan *orphan, **last;
int cnt = 0;
/* Change the cnext list to include all non-new orphans */
last = &c->orph_cnext;
list_for_each_entry(orphan, &c->orph_list, list) {
if (orphan->new)
continue;
*last = orphan;
last = &orphan->cnext;
cnt += 1;
}
*last = orphan->cnext;
ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
c->cmt_orphans = cnt;
c->ohead_lnum = c->orph_first;
c->ohead_offs = 0;
} else {
/*
* We limit the number of orphans so that this should
* never happen.
*/
ubifs_err("out of space in orphan area");
err = -EINVAL;
}
spin_unlock(&c->orphan_lock);
return err;
}
/**
* commit_orphans - commit orphans.
* @c: UBIFS file-system description object
*
* This function commits orphans to flash. On success, %0 is returned,
* otherwise a negative error code is returned.
*/
static int commit_orphans(struct ubifs_info *c)
{
int avail, atomic = 0, err;
ubifs_assert(c->cmt_orphans > 0);
avail = avail_orphs(c);
if (avail < c->cmt_orphans) {
/* Not enough space to write new orphans, so consolidate */
err = consolidate(c);
if (err)
return err;
atomic = 1;
}
err = write_orph_nodes(c, atomic);
return err;
}
/**
* erase_deleted - erase the orphans marked for deletion.
* @c: UBIFS file-system description object
*
* During commit, the orphans being committed cannot be deleted, so they are
* marked for deletion and deleted by this function. Also, the recovery
* adds killed orphans to the deletion list, and therefore they are deleted
* here too.
*/
static void erase_deleted(struct ubifs_info *c)
{
struct ubifs_orphan *orphan, *dnext;
spin_lock(&c->orphan_lock);
dnext = c->orph_dnext;
while (dnext) {
orphan = dnext;
dnext = orphan->dnext;
ubifs_assert(!orphan->new);
rb_erase(&orphan->rb, &c->orph_tree);
list_del(&orphan->list);
c->tot_orphans -= 1;
dbg_gen("deleting orphan ino %lu", orphan->inum);
kfree(orphan);
}
c->orph_dnext = NULL;
spin_unlock(&c->orphan_lock);
}
/**
* ubifs_orphan_end_commit - end commit of orphans.
* @c: UBIFS file-system description object
*
* End commit of orphans.
*/
int ubifs_orphan_end_commit(struct ubifs_info *c)
{
int err;
if (c->cmt_orphans != 0) {
err = commit_orphans(c);
if (err)
return err;
}
erase_deleted(c);
err = dbg_check_orphans(c);
return err;
}
/**
* clear_orphans - erase all LEBs used for orphans.
* @c: UBIFS file-system description object
*
* If recovery is not required, then the orphans from the previous session
* are not needed. This function locates the LEBs used to record
* orphans, and un-maps them.
*/
static int clear_orphans(struct ubifs_info *c)
{
int lnum, err;
for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
err = ubifs_leb_unmap(c, lnum);
if (err)
return err;
}
c->ohead_lnum = c->orph_first;
c->ohead_offs = 0;
return 0;
}
/**
* insert_dead_orphan - insert an orphan.
* @c: UBIFS file-system description object
* @inum: orphan inode number
*
* This function is a helper to the 'do_kill_orphans()' function. The orphan
* must be kept until the next commit, so it is added to the rb-tree and the
* deletion list.
*/
static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
{
struct ubifs_orphan *orphan, *o;
struct rb_node **p, *parent = NULL;
orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
if (!orphan)
return -ENOMEM;
orphan->inum = inum;
p = &c->orph_tree.rb_node;
while (*p) {
parent = *p;
o = rb_entry(parent, struct ubifs_orphan, rb);
if (inum < o->inum)
p = &(*p)->rb_left;
else if (inum > o->inum)
p = &(*p)->rb_right;
else {
/* Already added - no problem */
kfree(orphan);
return 0;
}
}
c->tot_orphans += 1;
rb_link_node(&orphan->rb, parent, p);
rb_insert_color(&orphan->rb, &c->orph_tree);
list_add_tail(&orphan->list, &c->orph_list);
orphan->dnext = c->orph_dnext;
c->orph_dnext = orphan;
dbg_mnt("ino %lu, new %d, tot %d",
inum, c->new_orphans, c->tot_orphans);
return 0;
}
/**
* do_kill_orphans - remove orphan inodes from the index.
* @c: UBIFS file-system description object
* @sleb: scanned LEB
* @last_cmt_no: cmt_no of last orph node read is passed and returned here
* @outofdate: whether the LEB is out of date is returned here
* @last_flagged: whether the end orph node is encountered
*
* This function is a helper to the 'kill_orphans()' function. It goes through
* every orphan node in a LEB and for every inode number recorded, removes
* all keys for that inode from the TNC.
*/
static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
unsigned long long *last_cmt_no, int *outofdate,
int *last_flagged)
{
struct ubifs_scan_node *snod;
struct ubifs_orph_node *orph;
unsigned long long cmt_no;
ino_t inum;
int i, n, err, first = 1;
list_for_each_entry(snod, &sleb->nodes, list) {
if (snod->type != UBIFS_ORPH_NODE) {
ubifs_err("invalid node type %d in orphan area at "
"%d:%d", snod->type, sleb->lnum, snod->offs);
dbg_dump_node(c, snod->node);
return -EINVAL;
}
orph = snod->node;
/* Check commit number */
cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
/*
* The commit number on the master node may be less, because
* of a failed commit. If there are several failed commits in a
* row, the commit number written on orph nodes will continue to
* increase (because the commit number is adjusted here) even
* though the commit number on the master node stays the same
* because the master node has not been re-written.
*/
if (cmt_no > c->cmt_no)
c->cmt_no = cmt_no;
if (cmt_no < *last_cmt_no && *last_flagged) {
/*
* The last orph node had a higher commit number and was
* flagged as the last written for that commit number.
* That makes this orph node, out of date.
*/
if (!first) {
ubifs_err("out of order commit number %llu in "
"orphan node at %d:%d",
cmt_no, sleb->lnum, snod->offs);
dbg_dump_node(c, snod->node);
return -EINVAL;
}
dbg_rcvry("out of date LEB %d", sleb->lnum);
*outofdate = 1;
return 0;
}
if (first)
first = 0;
n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
for (i = 0; i < n; i++) {
inum = le64_to_cpu(orph->inos[i]);
dbg_rcvry("deleting orphaned inode %lu", inum);
err = ubifs_tnc_remove_ino(c, inum);
if (err)
return err;
err = insert_dead_orphan(c, inum);
if (err)
return err;
}
*last_cmt_no = cmt_no;
if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
dbg_rcvry("last orph node for commit %llu at %d:%d",
cmt_no, sleb->lnum, snod->offs);
*last_flagged = 1;
} else
*last_flagged = 0;
}
return 0;
}
/**
* kill_orphans - remove all orphan inodes from the index.
* @c: UBIFS file-system description object
*
* If recovery is required, then orphan inodes recorded during the previous
* session (which ended with an unclean unmount) must be deleted from the index.
* This is done by updating the TNC, but since the index is not updated until
* the next commit, the LEBs where the orphan information is recorded are not
* erased until the next commit.
*/
static int kill_orphans(struct ubifs_info *c)
{
unsigned long long last_cmt_no = 0;
int lnum, err = 0, outofdate = 0, last_flagged = 0;
c->ohead_lnum = c->orph_first;
c->ohead_offs = 0;
/* Check no-orphans flag and skip this if no orphans */
if (c->no_orphs) {
dbg_rcvry("no orphans");
return 0;
}
/*
* Orph nodes always start at c->orph_first and are written to each
* successive LEB in turn. Generally unused LEBs will have been unmapped
* but may contain out of date orph nodes if the unmap didn't go
* through. In addition, the last orph node written for each commit is
* marked (top bit of orph->cmt_no is set to 1). It is possible that
* there are orph nodes from the next commit (i.e. the commit did not
* complete successfully). In that case, no orphans will have been lost
* due to the way that orphans are written, and any orphans added will
* be valid orphans anyway and so can be deleted.
*/
for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
struct ubifs_scan_leb *sleb;
dbg_rcvry("LEB %d", lnum);
sleb = ubifs_scan(c, lnum, 0, c->sbuf);
if (IS_ERR(sleb)) {
sleb = ubifs_recover_leb(c, lnum, 0, c->sbuf, 0);
if (IS_ERR(sleb)) {
err = PTR_ERR(sleb);
break;
}
}
err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
&last_flagged);
if (err || outofdate) {
ubifs_scan_destroy(sleb);
break;
}
if (sleb->endpt) {
c->ohead_lnum = lnum;
c->ohead_offs = sleb->endpt;
}
ubifs_scan_destroy(sleb);
}
return err;
}
/**
* ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
* @c: UBIFS file-system description object
* @unclean: indicates recovery from unclean unmount
* @read_only: indicates read only mount
*
* This function is called when mounting to erase orphans from the previous
* session. If UBIFS was not unmounted cleanly, then the inodes recorded as
* orphans are deleted.
*/
int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
{
int err = 0;
c->max_orphans = tot_avail_orphs(c);
if (!read_only) {
c->orph_buf = vmalloc(c->leb_size);
if (!c->orph_buf)
return -ENOMEM;
}
if (unclean)
err = kill_orphans(c);
else if (!read_only)
err = clear_orphans(c);
return err;
}
#ifdef CONFIG_UBIFS_FS_DEBUG
struct check_orphan {
struct rb_node rb;
ino_t inum;
};
struct check_info {
unsigned long last_ino;
unsigned long tot_inos;
unsigned long missing;
unsigned long long leaf_cnt;
struct ubifs_ino_node *node;
struct rb_root root;
};
static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
{
struct ubifs_orphan *o;
struct rb_node *p;
spin_lock(&c->orphan_lock);
p = c->orph_tree.rb_node;
while (p) {
o = rb_entry(p, struct ubifs_orphan, rb);
if (inum < o->inum)
p = p->rb_left;
else if (inum > o->inum)
p = p->rb_right;
else {
spin_unlock(&c->orphan_lock);
return 1;
}
}
spin_unlock(&c->orphan_lock);
return 0;
}
static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
{
struct check_orphan *orphan, *o;
struct rb_node **p, *parent = NULL;
orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
if (!orphan)
return -ENOMEM;
orphan->inum = inum;
p = &root->rb_node;
while (*p) {
parent = *p;
o = rb_entry(parent, struct check_orphan, rb);
if (inum < o->inum)
p = &(*p)->rb_left;
else if (inum > o->inum)
p = &(*p)->rb_right;
else {
kfree(orphan);
return 0;
}
}
rb_link_node(&orphan->rb, parent, p);
rb_insert_color(&orphan->rb, root);
return 0;
}
static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
{
struct check_orphan *o;
struct rb_node *p;
p = root->rb_node;
while (p) {
o = rb_entry(p, struct check_orphan, rb);
if (inum < o->inum)
p = p->rb_left;
else if (inum > o->inum)
p = p->rb_right;
else
return 1;
}
return 0;
}
static void dbg_free_check_tree(struct rb_root *root)
{
struct rb_node *this = root->rb_node;
struct check_orphan *o;
while (this) {
if (this->rb_left) {
this = this->rb_left;
continue;
} else if (this->rb_right) {
this = this->rb_right;
continue;
}
o = rb_entry(this, struct check_orphan, rb);
this = rb_parent(this);
if (this) {
if (this->rb_left == &o->rb)
this->rb_left = NULL;
else
this->rb_right = NULL;
}
kfree(o);
}
}
static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
void *priv)
{
struct check_info *ci = priv;
ino_t inum;
int err;
inum = key_inum(c, &zbr->key);
if (inum != ci->last_ino) {
/* Lowest node type is the inode node, so it comes first */
if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
ubifs_err("found orphan node ino %lu, type %d", inum,
key_type(c, &zbr->key));
ci->last_ino = inum;
ci->tot_inos += 1;
err = ubifs_tnc_read_node(c, zbr, ci->node);
if (err) {
ubifs_err("node read failed, error %d", err);
return err;
}
if (ci->node->nlink == 0)
/* Must be recorded as an orphan */
if (!dbg_find_check_orphan(&ci->root, inum) &&
!dbg_find_orphan(c, inum)) {
ubifs_err("missing orphan, ino %lu", inum);
ci->missing += 1;
}
}
ci->leaf_cnt += 1;
return 0;
}
static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
{
struct ubifs_scan_node *snod;
struct ubifs_orph_node *orph;
ino_t inum;
int i, n, err;
list_for_each_entry(snod, &sleb->nodes, list) {
cond_resched();
if (snod->type != UBIFS_ORPH_NODE)
continue;
orph = snod->node;
n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
for (i = 0; i < n; i++) {
inum = le64_to_cpu(orph->inos[i]);
err = dbg_ins_check_orphan(&ci->root, inum);
if (err)
return err;
}
}
return 0;
}
static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
{
int lnum, err = 0;
/* Check no-orphans flag and skip this if no orphans */
if (c->no_orphs)
return 0;
for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
struct ubifs_scan_leb *sleb;
sleb = ubifs_scan(c, lnum, 0, c->dbg_buf);
if (IS_ERR(sleb)) {
err = PTR_ERR(sleb);
break;
}
err = dbg_read_orphans(ci, sleb);
ubifs_scan_destroy(sleb);
if (err)
break;
}
return err;
}
static int dbg_check_orphans(struct ubifs_info *c)
{
struct check_info ci;
int err;
if (!(ubifs_chk_flags & UBIFS_CHK_ORPH))
return 0;
ci.last_ino = 0;
ci.tot_inos = 0;
ci.missing = 0;
ci.leaf_cnt = 0;
ci.root = RB_ROOT;
ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
if (!ci.node) {
ubifs_err("out of memory");
return -ENOMEM;
}
err = dbg_scan_orphans(c, &ci);
if (err)
goto out;
err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
if (err) {
ubifs_err("cannot scan TNC, error %d", err);
goto out;
}
if (ci.missing) {
ubifs_err("%lu missing orphan(s)", ci.missing);
err = -EINVAL;
goto out;
}
dbg_cmt("last inode number is %lu", ci.last_ino);
dbg_cmt("total number of inodes is %lu", ci.tot_inos);
dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
out:
dbg_free_check_tree(&ci.root);
kfree(ci.node);
return err;
}
#endif /* CONFIG_UBIFS_FS_DEBUG */