90f9d70a58
As is pointed out in http://www.gelato.org/community/view_linear.php?id=1_1036&from=authors&value=Ian%20Wienand#1_1039, if single step on break instruction, the break fault has higher priority than the single-step trap. When the break fault handler is entered, it advances the IP by 1 instruction so break instruction single-stepping is skipped, actually it is next instruction which is single stepped. This patch modifies this, it adds TIF_SINGLESTEP bit for thread flags, and generate a fake sigtrap when single stepping break instruction. Test case in attachment can verify this. Any comments is welcome. Signed-off-by: bibo, mao <bibo.mao@intel.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
1671 lines
44 KiB
C
1671 lines
44 KiB
C
/*
|
|
* Kernel support for the ptrace() and syscall tracing interfaces.
|
|
*
|
|
* Copyright (C) 1999-2005 Hewlett-Packard Co
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
*
|
|
* Derived from the x86 and Alpha versions.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/user.h>
|
|
#include <linux/security.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/signal.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/ptrace_offsets.h>
|
|
#include <asm/rse.h>
|
|
#include <asm/system.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/unwind.h>
|
|
#ifdef CONFIG_PERFMON
|
|
#include <asm/perfmon.h>
|
|
#endif
|
|
|
|
#include "entry.h"
|
|
|
|
/*
|
|
* Bits in the PSR that we allow ptrace() to change:
|
|
* be, up, ac, mfl, mfh (the user mask; five bits total)
|
|
* db (debug breakpoint fault; one bit)
|
|
* id (instruction debug fault disable; one bit)
|
|
* dd (data debug fault disable; one bit)
|
|
* ri (restart instruction; two bits)
|
|
* is (instruction set; one bit)
|
|
*/
|
|
#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
|
|
| IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
|
|
|
|
#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
|
|
#define PFM_MASK MASK(38)
|
|
|
|
#define PTRACE_DEBUG 0
|
|
|
|
#if PTRACE_DEBUG
|
|
# define dprintk(format...) printk(format)
|
|
# define inline
|
|
#else
|
|
# define dprintk(format...)
|
|
#endif
|
|
|
|
/* Return TRUE if PT was created due to kernel-entry via a system-call. */
|
|
|
|
static inline int
|
|
in_syscall (struct pt_regs *pt)
|
|
{
|
|
return (long) pt->cr_ifs >= 0;
|
|
}
|
|
|
|
/*
|
|
* Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
|
|
* bitset where bit i is set iff the NaT bit of register i is set.
|
|
*/
|
|
unsigned long
|
|
ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
|
|
{
|
|
# define GET_BITS(first, last, unat) \
|
|
({ \
|
|
unsigned long bit = ia64_unat_pos(&pt->r##first); \
|
|
unsigned long nbits = (last - first + 1); \
|
|
unsigned long mask = MASK(nbits) << first; \
|
|
unsigned long dist; \
|
|
if (bit < first) \
|
|
dist = 64 + bit - first; \
|
|
else \
|
|
dist = bit - first; \
|
|
ia64_rotr(unat, dist) & mask; \
|
|
})
|
|
unsigned long val;
|
|
|
|
/*
|
|
* Registers that are stored consecutively in struct pt_regs
|
|
* can be handled in parallel. If the register order in
|
|
* struct_pt_regs changes, this code MUST be updated.
|
|
*/
|
|
val = GET_BITS( 1, 1, scratch_unat);
|
|
val |= GET_BITS( 2, 3, scratch_unat);
|
|
val |= GET_BITS(12, 13, scratch_unat);
|
|
val |= GET_BITS(14, 14, scratch_unat);
|
|
val |= GET_BITS(15, 15, scratch_unat);
|
|
val |= GET_BITS( 8, 11, scratch_unat);
|
|
val |= GET_BITS(16, 31, scratch_unat);
|
|
return val;
|
|
|
|
# undef GET_BITS
|
|
}
|
|
|
|
/*
|
|
* Set the NaT bits for the scratch registers according to NAT and
|
|
* return the resulting unat (assuming the scratch registers are
|
|
* stored in PT).
|
|
*/
|
|
unsigned long
|
|
ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
|
|
{
|
|
# define PUT_BITS(first, last, nat) \
|
|
({ \
|
|
unsigned long bit = ia64_unat_pos(&pt->r##first); \
|
|
unsigned long nbits = (last - first + 1); \
|
|
unsigned long mask = MASK(nbits) << first; \
|
|
long dist; \
|
|
if (bit < first) \
|
|
dist = 64 + bit - first; \
|
|
else \
|
|
dist = bit - first; \
|
|
ia64_rotl(nat & mask, dist); \
|
|
})
|
|
unsigned long scratch_unat;
|
|
|
|
/*
|
|
* Registers that are stored consecutively in struct pt_regs
|
|
* can be handled in parallel. If the register order in
|
|
* struct_pt_regs changes, this code MUST be updated.
|
|
*/
|
|
scratch_unat = PUT_BITS( 1, 1, nat);
|
|
scratch_unat |= PUT_BITS( 2, 3, nat);
|
|
scratch_unat |= PUT_BITS(12, 13, nat);
|
|
scratch_unat |= PUT_BITS(14, 14, nat);
|
|
scratch_unat |= PUT_BITS(15, 15, nat);
|
|
scratch_unat |= PUT_BITS( 8, 11, nat);
|
|
scratch_unat |= PUT_BITS(16, 31, nat);
|
|
|
|
return scratch_unat;
|
|
|
|
# undef PUT_BITS
|
|
}
|
|
|
|
#define IA64_MLX_TEMPLATE 0x2
|
|
#define IA64_MOVL_OPCODE 6
|
|
|
|
void
|
|
ia64_increment_ip (struct pt_regs *regs)
|
|
{
|
|
unsigned long w0, ri = ia64_psr(regs)->ri + 1;
|
|
|
|
if (ri > 2) {
|
|
ri = 0;
|
|
regs->cr_iip += 16;
|
|
} else if (ri == 2) {
|
|
get_user(w0, (char __user *) regs->cr_iip + 0);
|
|
if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
|
|
/*
|
|
* rfi'ing to slot 2 of an MLX bundle causes
|
|
* an illegal operation fault. We don't want
|
|
* that to happen...
|
|
*/
|
|
ri = 0;
|
|
regs->cr_iip += 16;
|
|
}
|
|
}
|
|
ia64_psr(regs)->ri = ri;
|
|
}
|
|
|
|
void
|
|
ia64_decrement_ip (struct pt_regs *regs)
|
|
{
|
|
unsigned long w0, ri = ia64_psr(regs)->ri - 1;
|
|
|
|
if (ia64_psr(regs)->ri == 0) {
|
|
regs->cr_iip -= 16;
|
|
ri = 2;
|
|
get_user(w0, (char __user *) regs->cr_iip + 0);
|
|
if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
|
|
/*
|
|
* rfi'ing to slot 2 of an MLX bundle causes
|
|
* an illegal operation fault. We don't want
|
|
* that to happen...
|
|
*/
|
|
ri = 1;
|
|
}
|
|
}
|
|
ia64_psr(regs)->ri = ri;
|
|
}
|
|
|
|
/*
|
|
* This routine is used to read an rnat bits that are stored on the
|
|
* kernel backing store. Since, in general, the alignment of the user
|
|
* and kernel are different, this is not completely trivial. In
|
|
* essence, we need to construct the user RNAT based on up to two
|
|
* kernel RNAT values and/or the RNAT value saved in the child's
|
|
* pt_regs.
|
|
*
|
|
* user rbs
|
|
*
|
|
* +--------+ <-- lowest address
|
|
* | slot62 |
|
|
* +--------+
|
|
* | rnat | 0x....1f8
|
|
* +--------+
|
|
* | slot00 | \
|
|
* +--------+ |
|
|
* | slot01 | > child_regs->ar_rnat
|
|
* +--------+ |
|
|
* | slot02 | / kernel rbs
|
|
* +--------+ +--------+
|
|
* <- child_regs->ar_bspstore | slot61 | <-- krbs
|
|
* +- - - - + +--------+
|
|
* | slot62 |
|
|
* +- - - - + +--------+
|
|
* | rnat |
|
|
* +- - - - + +--------+
|
|
* vrnat | slot00 |
|
|
* +- - - - + +--------+
|
|
* = =
|
|
* +--------+
|
|
* | slot00 | \
|
|
* +--------+ |
|
|
* | slot01 | > child_stack->ar_rnat
|
|
* +--------+ |
|
|
* | slot02 | /
|
|
* +--------+
|
|
* <--- child_stack->ar_bspstore
|
|
*
|
|
* The way to think of this code is as follows: bit 0 in the user rnat
|
|
* corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
|
|
* value. The kernel rnat value holding this bit is stored in
|
|
* variable rnat0. rnat1 is loaded with the kernel rnat value that
|
|
* form the upper bits of the user rnat value.
|
|
*
|
|
* Boundary cases:
|
|
*
|
|
* o when reading the rnat "below" the first rnat slot on the kernel
|
|
* backing store, rnat0/rnat1 are set to 0 and the low order bits are
|
|
* merged in from pt->ar_rnat.
|
|
*
|
|
* o when reading the rnat "above" the last rnat slot on the kernel
|
|
* backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
|
|
*/
|
|
static unsigned long
|
|
get_rnat (struct task_struct *task, struct switch_stack *sw,
|
|
unsigned long *krbs, unsigned long *urnat_addr,
|
|
unsigned long *urbs_end)
|
|
{
|
|
unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
|
|
unsigned long umask = 0, mask, m;
|
|
unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
|
|
long num_regs, nbits;
|
|
struct pt_regs *pt;
|
|
|
|
pt = task_pt_regs(task);
|
|
kbsp = (unsigned long *) sw->ar_bspstore;
|
|
ubspstore = (unsigned long *) pt->ar_bspstore;
|
|
|
|
if (urbs_end < urnat_addr)
|
|
nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
|
|
else
|
|
nbits = 63;
|
|
mask = MASK(nbits);
|
|
/*
|
|
* First, figure out which bit number slot 0 in user-land maps
|
|
* to in the kernel rnat. Do this by figuring out how many
|
|
* register slots we're beyond the user's backingstore and
|
|
* then computing the equivalent address in kernel space.
|
|
*/
|
|
num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
|
|
slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
|
|
shift = ia64_rse_slot_num(slot0_kaddr);
|
|
rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
|
|
rnat0_kaddr = rnat1_kaddr - 64;
|
|
|
|
if (ubspstore + 63 > urnat_addr) {
|
|
/* some bits need to be merged in from pt->ar_rnat */
|
|
umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
|
|
urnat = (pt->ar_rnat & umask);
|
|
mask &= ~umask;
|
|
if (!mask)
|
|
return urnat;
|
|
}
|
|
|
|
m = mask << shift;
|
|
if (rnat0_kaddr >= kbsp)
|
|
rnat0 = sw->ar_rnat;
|
|
else if (rnat0_kaddr > krbs)
|
|
rnat0 = *rnat0_kaddr;
|
|
urnat |= (rnat0 & m) >> shift;
|
|
|
|
m = mask >> (63 - shift);
|
|
if (rnat1_kaddr >= kbsp)
|
|
rnat1 = sw->ar_rnat;
|
|
else if (rnat1_kaddr > krbs)
|
|
rnat1 = *rnat1_kaddr;
|
|
urnat |= (rnat1 & m) << (63 - shift);
|
|
return urnat;
|
|
}
|
|
|
|
/*
|
|
* The reverse of get_rnat.
|
|
*/
|
|
static void
|
|
put_rnat (struct task_struct *task, struct switch_stack *sw,
|
|
unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
|
|
unsigned long *urbs_end)
|
|
{
|
|
unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
|
|
unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
|
|
long num_regs, nbits;
|
|
struct pt_regs *pt;
|
|
unsigned long cfm, *urbs_kargs;
|
|
|
|
pt = task_pt_regs(task);
|
|
kbsp = (unsigned long *) sw->ar_bspstore;
|
|
ubspstore = (unsigned long *) pt->ar_bspstore;
|
|
|
|
urbs_kargs = urbs_end;
|
|
if (in_syscall(pt)) {
|
|
/*
|
|
* If entered via syscall, don't allow user to set rnat bits
|
|
* for syscall args.
|
|
*/
|
|
cfm = pt->cr_ifs;
|
|
urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
|
|
}
|
|
|
|
if (urbs_kargs >= urnat_addr)
|
|
nbits = 63;
|
|
else {
|
|
if ((urnat_addr - 63) >= urbs_kargs)
|
|
return;
|
|
nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
|
|
}
|
|
mask = MASK(nbits);
|
|
|
|
/*
|
|
* First, figure out which bit number slot 0 in user-land maps
|
|
* to in the kernel rnat. Do this by figuring out how many
|
|
* register slots we're beyond the user's backingstore and
|
|
* then computing the equivalent address in kernel space.
|
|
*/
|
|
num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
|
|
slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
|
|
shift = ia64_rse_slot_num(slot0_kaddr);
|
|
rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
|
|
rnat0_kaddr = rnat1_kaddr - 64;
|
|
|
|
if (ubspstore + 63 > urnat_addr) {
|
|
/* some bits need to be place in pt->ar_rnat: */
|
|
umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
|
|
pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
|
|
mask &= ~umask;
|
|
if (!mask)
|
|
return;
|
|
}
|
|
/*
|
|
* Note: Section 11.1 of the EAS guarantees that bit 63 of an
|
|
* rnat slot is ignored. so we don't have to clear it here.
|
|
*/
|
|
rnat0 = (urnat << shift);
|
|
m = mask << shift;
|
|
if (rnat0_kaddr >= kbsp)
|
|
sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
|
|
else if (rnat0_kaddr > krbs)
|
|
*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
|
|
|
|
rnat1 = (urnat >> (63 - shift));
|
|
m = mask >> (63 - shift);
|
|
if (rnat1_kaddr >= kbsp)
|
|
sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
|
|
else if (rnat1_kaddr > krbs)
|
|
*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
|
|
}
|
|
|
|
static inline int
|
|
on_kernel_rbs (unsigned long addr, unsigned long bspstore,
|
|
unsigned long urbs_end)
|
|
{
|
|
unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
|
|
urbs_end);
|
|
return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
|
|
}
|
|
|
|
/*
|
|
* Read a word from the user-level backing store of task CHILD. ADDR
|
|
* is the user-level address to read the word from, VAL a pointer to
|
|
* the return value, and USER_BSP gives the end of the user-level
|
|
* backing store (i.e., it's the address that would be in ar.bsp after
|
|
* the user executed a "cover" instruction).
|
|
*
|
|
* This routine takes care of accessing the kernel register backing
|
|
* store for those registers that got spilled there. It also takes
|
|
* care of calculating the appropriate RNaT collection words.
|
|
*/
|
|
long
|
|
ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
|
|
unsigned long user_rbs_end, unsigned long addr, long *val)
|
|
{
|
|
unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
|
|
struct pt_regs *child_regs;
|
|
size_t copied;
|
|
long ret;
|
|
|
|
urbs_end = (long *) user_rbs_end;
|
|
laddr = (unsigned long *) addr;
|
|
child_regs = task_pt_regs(child);
|
|
bspstore = (unsigned long *) child_regs->ar_bspstore;
|
|
krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
|
|
if (on_kernel_rbs(addr, (unsigned long) bspstore,
|
|
(unsigned long) urbs_end))
|
|
{
|
|
/*
|
|
* Attempt to read the RBS in an area that's actually
|
|
* on the kernel RBS => read the corresponding bits in
|
|
* the kernel RBS.
|
|
*/
|
|
rnat_addr = ia64_rse_rnat_addr(laddr);
|
|
ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
|
|
|
|
if (laddr == rnat_addr) {
|
|
/* return NaT collection word itself */
|
|
*val = ret;
|
|
return 0;
|
|
}
|
|
|
|
if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
|
|
/*
|
|
* It is implementation dependent whether the
|
|
* data portion of a NaT value gets saved on a
|
|
* st8.spill or RSE spill (e.g., see EAS 2.6,
|
|
* 4.4.4.6 Register Spill and Fill). To get
|
|
* consistent behavior across all possible
|
|
* IA-64 implementations, we return zero in
|
|
* this case.
|
|
*/
|
|
*val = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (laddr < urbs_end) {
|
|
/*
|
|
* The desired word is on the kernel RBS and
|
|
* is not a NaT.
|
|
*/
|
|
regnum = ia64_rse_num_regs(bspstore, laddr);
|
|
*val = *ia64_rse_skip_regs(krbs, regnum);
|
|
return 0;
|
|
}
|
|
}
|
|
copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
|
|
if (copied != sizeof(ret))
|
|
return -EIO;
|
|
*val = ret;
|
|
return 0;
|
|
}
|
|
|
|
long
|
|
ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
|
|
unsigned long user_rbs_end, unsigned long addr, long val)
|
|
{
|
|
unsigned long *bspstore, *krbs, regnum, *laddr;
|
|
unsigned long *urbs_end = (long *) user_rbs_end;
|
|
struct pt_regs *child_regs;
|
|
|
|
laddr = (unsigned long *) addr;
|
|
child_regs = task_pt_regs(child);
|
|
bspstore = (unsigned long *) child_regs->ar_bspstore;
|
|
krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
|
|
if (on_kernel_rbs(addr, (unsigned long) bspstore,
|
|
(unsigned long) urbs_end))
|
|
{
|
|
/*
|
|
* Attempt to write the RBS in an area that's actually
|
|
* on the kernel RBS => write the corresponding bits
|
|
* in the kernel RBS.
|
|
*/
|
|
if (ia64_rse_is_rnat_slot(laddr))
|
|
put_rnat(child, child_stack, krbs, laddr, val,
|
|
urbs_end);
|
|
else {
|
|
if (laddr < urbs_end) {
|
|
regnum = ia64_rse_num_regs(bspstore, laddr);
|
|
*ia64_rse_skip_regs(krbs, regnum) = val;
|
|
}
|
|
}
|
|
} else if (access_process_vm(child, addr, &val, sizeof(val), 1)
|
|
!= sizeof(val))
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Calculate the address of the end of the user-level register backing
|
|
* store. This is the address that would have been stored in ar.bsp
|
|
* if the user had executed a "cover" instruction right before
|
|
* entering the kernel. If CFMP is not NULL, it is used to return the
|
|
* "current frame mask" that was active at the time the kernel was
|
|
* entered.
|
|
*/
|
|
unsigned long
|
|
ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
|
|
unsigned long *cfmp)
|
|
{
|
|
unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
|
|
long ndirty;
|
|
|
|
krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
|
|
bspstore = (unsigned long *) pt->ar_bspstore;
|
|
ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
|
|
|
|
if (in_syscall(pt))
|
|
ndirty += (cfm & 0x7f);
|
|
else
|
|
cfm &= ~(1UL << 63); /* clear valid bit */
|
|
|
|
if (cfmp)
|
|
*cfmp = cfm;
|
|
return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
|
|
}
|
|
|
|
/*
|
|
* Synchronize (i.e, write) the RSE backing store living in kernel
|
|
* space to the VM of the CHILD task. SW and PT are the pointers to
|
|
* the switch_stack and pt_regs structures, respectively.
|
|
* USER_RBS_END is the user-level address at which the backing store
|
|
* ends.
|
|
*/
|
|
long
|
|
ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
|
|
unsigned long user_rbs_start, unsigned long user_rbs_end)
|
|
{
|
|
unsigned long addr, val;
|
|
long ret;
|
|
|
|
/* now copy word for word from kernel rbs to user rbs: */
|
|
for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
|
|
ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (access_process_vm(child, addr, &val, sizeof(val), 1)
|
|
!= sizeof(val))
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
thread_matches (struct task_struct *thread, unsigned long addr)
|
|
{
|
|
unsigned long thread_rbs_end;
|
|
struct pt_regs *thread_regs;
|
|
|
|
if (ptrace_check_attach(thread, 0) < 0)
|
|
/*
|
|
* If the thread is not in an attachable state, we'll
|
|
* ignore it. The net effect is that if ADDR happens
|
|
* to overlap with the portion of the thread's
|
|
* register backing store that is currently residing
|
|
* on the thread's kernel stack, then ptrace() may end
|
|
* up accessing a stale value. But if the thread
|
|
* isn't stopped, that's a problem anyhow, so we're
|
|
* doing as well as we can...
|
|
*/
|
|
return 0;
|
|
|
|
thread_regs = task_pt_regs(thread);
|
|
thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
|
|
if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
|
|
return 0;
|
|
|
|
return 1; /* looks like we've got a winner */
|
|
}
|
|
|
|
/*
|
|
* GDB apparently wants to be able to read the register-backing store
|
|
* of any thread when attached to a given process. If we are peeking
|
|
* or poking an address that happens to reside in the kernel-backing
|
|
* store of another thread, we need to attach to that thread, because
|
|
* otherwise we end up accessing stale data.
|
|
*
|
|
* task_list_lock must be read-locked before calling this routine!
|
|
*/
|
|
static struct task_struct *
|
|
find_thread_for_addr (struct task_struct *child, unsigned long addr)
|
|
{
|
|
struct task_struct *p;
|
|
struct mm_struct *mm;
|
|
struct list_head *this, *next;
|
|
int mm_users;
|
|
|
|
if (!(mm = get_task_mm(child)))
|
|
return child;
|
|
|
|
/* -1 because of our get_task_mm(): */
|
|
mm_users = atomic_read(&mm->mm_users) - 1;
|
|
if (mm_users <= 1)
|
|
goto out; /* not multi-threaded */
|
|
|
|
/*
|
|
* Traverse the current process' children list. Every task that
|
|
* one attaches to becomes a child. And it is only attached children
|
|
* of the debugger that are of interest (ptrace_check_attach checks
|
|
* for this).
|
|
*/
|
|
list_for_each_safe(this, next, ¤t->children) {
|
|
p = list_entry(this, struct task_struct, sibling);
|
|
if (p->mm != mm)
|
|
continue;
|
|
if (thread_matches(p, addr)) {
|
|
child = p;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
mmput(mm);
|
|
return child;
|
|
}
|
|
|
|
/*
|
|
* Write f32-f127 back to task->thread.fph if it has been modified.
|
|
*/
|
|
inline void
|
|
ia64_flush_fph (struct task_struct *task)
|
|
{
|
|
struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
|
|
|
|
/*
|
|
* Prevent migrating this task while
|
|
* we're fiddling with the FPU state
|
|
*/
|
|
preempt_disable();
|
|
if (ia64_is_local_fpu_owner(task) && psr->mfh) {
|
|
psr->mfh = 0;
|
|
task->thread.flags |= IA64_THREAD_FPH_VALID;
|
|
ia64_save_fpu(&task->thread.fph[0]);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* Sync the fph state of the task so that it can be manipulated
|
|
* through thread.fph. If necessary, f32-f127 are written back to
|
|
* thread.fph or, if the fph state hasn't been used before, thread.fph
|
|
* is cleared to zeroes. Also, access to f32-f127 is disabled to
|
|
* ensure that the task picks up the state from thread.fph when it
|
|
* executes again.
|
|
*/
|
|
void
|
|
ia64_sync_fph (struct task_struct *task)
|
|
{
|
|
struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
|
|
|
|
ia64_flush_fph(task);
|
|
if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
|
|
task->thread.flags |= IA64_THREAD_FPH_VALID;
|
|
memset(&task->thread.fph, 0, sizeof(task->thread.fph));
|
|
}
|
|
ia64_drop_fpu(task);
|
|
psr->dfh = 1;
|
|
}
|
|
|
|
static int
|
|
access_fr (struct unw_frame_info *info, int regnum, int hi,
|
|
unsigned long *data, int write_access)
|
|
{
|
|
struct ia64_fpreg fpval;
|
|
int ret;
|
|
|
|
ret = unw_get_fr(info, regnum, &fpval);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (write_access) {
|
|
fpval.u.bits[hi] = *data;
|
|
ret = unw_set_fr(info, regnum, fpval);
|
|
} else
|
|
*data = fpval.u.bits[hi];
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Change the machine-state of CHILD such that it will return via the normal
|
|
* kernel exit-path, rather than the syscall-exit path.
|
|
*/
|
|
static void
|
|
convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
|
|
unsigned long cfm)
|
|
{
|
|
struct unw_frame_info info, prev_info;
|
|
unsigned long ip, sp, pr;
|
|
|
|
unw_init_from_blocked_task(&info, child);
|
|
while (1) {
|
|
prev_info = info;
|
|
if (unw_unwind(&info) < 0)
|
|
return;
|
|
|
|
unw_get_sp(&info, &sp);
|
|
if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
|
|
< IA64_PT_REGS_SIZE) {
|
|
dprintk("ptrace.%s: ran off the top of the kernel "
|
|
"stack\n", __FUNCTION__);
|
|
return;
|
|
}
|
|
if (unw_get_pr (&prev_info, &pr) < 0) {
|
|
unw_get_rp(&prev_info, &ip);
|
|
dprintk("ptrace.%s: failed to read "
|
|
"predicate register (ip=0x%lx)\n",
|
|
__FUNCTION__, ip);
|
|
return;
|
|
}
|
|
if (unw_is_intr_frame(&info)
|
|
&& (pr & (1UL << PRED_USER_STACK)))
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Note: at the time of this call, the target task is blocked
|
|
* in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
|
|
* (aka, "pLvSys") we redirect execution from
|
|
* .work_pending_syscall_end to .work_processed_kernel.
|
|
*/
|
|
unw_get_pr(&prev_info, &pr);
|
|
pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
|
|
pr |= (1UL << PRED_NON_SYSCALL);
|
|
unw_set_pr(&prev_info, pr);
|
|
|
|
pt->cr_ifs = (1UL << 63) | cfm;
|
|
/*
|
|
* Clear the memory that is NOT written on syscall-entry to
|
|
* ensure we do not leak kernel-state to user when execution
|
|
* resumes.
|
|
*/
|
|
pt->r2 = 0;
|
|
pt->r3 = 0;
|
|
pt->r14 = 0;
|
|
memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
|
|
memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
|
|
pt->b7 = 0;
|
|
pt->ar_ccv = 0;
|
|
pt->ar_csd = 0;
|
|
pt->ar_ssd = 0;
|
|
}
|
|
|
|
static int
|
|
access_nat_bits (struct task_struct *child, struct pt_regs *pt,
|
|
struct unw_frame_info *info,
|
|
unsigned long *data, int write_access)
|
|
{
|
|
unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
|
|
char nat = 0;
|
|
|
|
if (write_access) {
|
|
nat_bits = *data;
|
|
scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
|
|
if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
|
|
dprintk("ptrace: failed to set ar.unat\n");
|
|
return -1;
|
|
}
|
|
for (regnum = 4; regnum <= 7; ++regnum) {
|
|
unw_get_gr(info, regnum, &dummy, &nat);
|
|
unw_set_gr(info, regnum, dummy,
|
|
(nat_bits >> regnum) & 1);
|
|
}
|
|
} else {
|
|
if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
|
|
dprintk("ptrace: failed to read ar.unat\n");
|
|
return -1;
|
|
}
|
|
nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
|
|
for (regnum = 4; regnum <= 7; ++regnum) {
|
|
unw_get_gr(info, regnum, &dummy, &nat);
|
|
nat_bits |= (nat != 0) << regnum;
|
|
}
|
|
*data = nat_bits;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
access_uarea (struct task_struct *child, unsigned long addr,
|
|
unsigned long *data, int write_access)
|
|
{
|
|
unsigned long *ptr, regnum, urbs_end, rnat_addr, cfm;
|
|
struct switch_stack *sw;
|
|
struct pt_regs *pt;
|
|
# define pt_reg_addr(pt, reg) ((void *) \
|
|
((unsigned long) (pt) \
|
|
+ offsetof(struct pt_regs, reg)))
|
|
|
|
|
|
pt = task_pt_regs(child);
|
|
sw = (struct switch_stack *) (child->thread.ksp + 16);
|
|
|
|
if ((addr & 0x7) != 0) {
|
|
dprintk("ptrace: unaligned register address 0x%lx\n", addr);
|
|
return -1;
|
|
}
|
|
|
|
if (addr < PT_F127 + 16) {
|
|
/* accessing fph */
|
|
if (write_access)
|
|
ia64_sync_fph(child);
|
|
else
|
|
ia64_flush_fph(child);
|
|
ptr = (unsigned long *)
|
|
((unsigned long) &child->thread.fph + addr);
|
|
} else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) {
|
|
/* scratch registers untouched by kernel (saved in pt_regs) */
|
|
ptr = pt_reg_addr(pt, f10) + (addr - PT_F10);
|
|
} else if (addr >= PT_F12 && addr < PT_F15 + 16) {
|
|
/*
|
|
* Scratch registers untouched by kernel (saved in
|
|
* switch_stack).
|
|
*/
|
|
ptr = (unsigned long *) ((long) sw
|
|
+ (addr - PT_NAT_BITS - 32));
|
|
} else if (addr < PT_AR_LC + 8) {
|
|
/* preserved state: */
|
|
struct unw_frame_info info;
|
|
char nat = 0;
|
|
int ret;
|
|
|
|
unw_init_from_blocked_task(&info, child);
|
|
if (unw_unwind_to_user(&info) < 0)
|
|
return -1;
|
|
|
|
switch (addr) {
|
|
case PT_NAT_BITS:
|
|
return access_nat_bits(child, pt, &info,
|
|
data, write_access);
|
|
|
|
case PT_R4: case PT_R5: case PT_R6: case PT_R7:
|
|
if (write_access) {
|
|
/* read NaT bit first: */
|
|
unsigned long dummy;
|
|
|
|
ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4,
|
|
&dummy, &nat);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data,
|
|
&nat, write_access);
|
|
|
|
case PT_B1: case PT_B2: case PT_B3:
|
|
case PT_B4: case PT_B5:
|
|
return unw_access_br(&info, (addr - PT_B1)/8 + 1, data,
|
|
write_access);
|
|
|
|
case PT_AR_EC:
|
|
return unw_access_ar(&info, UNW_AR_EC, data,
|
|
write_access);
|
|
|
|
case PT_AR_LC:
|
|
return unw_access_ar(&info, UNW_AR_LC, data,
|
|
write_access);
|
|
|
|
default:
|
|
if (addr >= PT_F2 && addr < PT_F5 + 16)
|
|
return access_fr(&info, (addr - PT_F2)/16 + 2,
|
|
(addr & 8) != 0, data,
|
|
write_access);
|
|
else if (addr >= PT_F16 && addr < PT_F31 + 16)
|
|
return access_fr(&info,
|
|
(addr - PT_F16)/16 + 16,
|
|
(addr & 8) != 0,
|
|
data, write_access);
|
|
else {
|
|
dprintk("ptrace: rejecting access to register "
|
|
"address 0x%lx\n", addr);
|
|
return -1;
|
|
}
|
|
}
|
|
} else if (addr < PT_F9+16) {
|
|
/* scratch state */
|
|
switch (addr) {
|
|
case PT_AR_BSP:
|
|
/*
|
|
* By convention, we use PT_AR_BSP to refer to
|
|
* the end of the user-level backing store.
|
|
* Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
|
|
* to get the real value of ar.bsp at the time
|
|
* the kernel was entered.
|
|
*
|
|
* Furthermore, when changing the contents of
|
|
* PT_AR_BSP (or PT_CFM) we MUST copy any
|
|
* users-level stacked registers that are
|
|
* stored on the kernel stack back to
|
|
* user-space because otherwise, we might end
|
|
* up clobbering kernel stacked registers.
|
|
* Also, if this happens while the task is
|
|
* blocked in a system call, which convert the
|
|
* state such that the non-system-call exit
|
|
* path is used. This ensures that the proper
|
|
* state will be picked up when resuming
|
|
* execution. However, it *also* means that
|
|
* once we write PT_AR_BSP/PT_CFM, it won't be
|
|
* possible to modify the syscall arguments of
|
|
* the pending system call any longer. This
|
|
* shouldn't be an issue because modifying
|
|
* PT_AR_BSP/PT_CFM generally implies that
|
|
* we're either abandoning the pending system
|
|
* call or that we defer it's re-execution
|
|
* (e.g., due to GDB doing an inferior
|
|
* function call).
|
|
*/
|
|
urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
|
|
if (write_access) {
|
|
if (*data != urbs_end) {
|
|
if (ia64_sync_user_rbs(child, sw,
|
|
pt->ar_bspstore,
|
|
urbs_end) < 0)
|
|
return -1;
|
|
if (in_syscall(pt))
|
|
convert_to_non_syscall(child,
|
|
pt,
|
|
cfm);
|
|
/*
|
|
* Simulate user-level write
|
|
* of ar.bsp:
|
|
*/
|
|
pt->loadrs = 0;
|
|
pt->ar_bspstore = *data;
|
|
}
|
|
} else
|
|
*data = urbs_end;
|
|
return 0;
|
|
|
|
case PT_CFM:
|
|
urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
|
|
if (write_access) {
|
|
if (((cfm ^ *data) & PFM_MASK) != 0) {
|
|
if (ia64_sync_user_rbs(child, sw,
|
|
pt->ar_bspstore,
|
|
urbs_end) < 0)
|
|
return -1;
|
|
if (in_syscall(pt))
|
|
convert_to_non_syscall(child,
|
|
pt,
|
|
cfm);
|
|
pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
|
|
| (*data & PFM_MASK));
|
|
}
|
|
} else
|
|
*data = cfm;
|
|
return 0;
|
|
|
|
case PT_CR_IPSR:
|
|
if (write_access)
|
|
pt->cr_ipsr = ((*data & IPSR_MASK)
|
|
| (pt->cr_ipsr & ~IPSR_MASK));
|
|
else
|
|
*data = (pt->cr_ipsr & IPSR_MASK);
|
|
return 0;
|
|
|
|
case PT_AR_RSC:
|
|
if (write_access)
|
|
pt->ar_rsc = *data | (3 << 2); /* force PL3 */
|
|
else
|
|
*data = pt->ar_rsc;
|
|
return 0;
|
|
|
|
case PT_AR_RNAT:
|
|
urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
|
|
rnat_addr = (long) ia64_rse_rnat_addr((long *)
|
|
urbs_end);
|
|
if (write_access)
|
|
return ia64_poke(child, sw, urbs_end,
|
|
rnat_addr, *data);
|
|
else
|
|
return ia64_peek(child, sw, urbs_end,
|
|
rnat_addr, data);
|
|
|
|
case PT_R1:
|
|
ptr = pt_reg_addr(pt, r1);
|
|
break;
|
|
case PT_R2: case PT_R3:
|
|
ptr = pt_reg_addr(pt, r2) + (addr - PT_R2);
|
|
break;
|
|
case PT_R8: case PT_R9: case PT_R10: case PT_R11:
|
|
ptr = pt_reg_addr(pt, r8) + (addr - PT_R8);
|
|
break;
|
|
case PT_R12: case PT_R13:
|
|
ptr = pt_reg_addr(pt, r12) + (addr - PT_R12);
|
|
break;
|
|
case PT_R14:
|
|
ptr = pt_reg_addr(pt, r14);
|
|
break;
|
|
case PT_R15:
|
|
ptr = pt_reg_addr(pt, r15);
|
|
break;
|
|
case PT_R16: case PT_R17: case PT_R18: case PT_R19:
|
|
case PT_R20: case PT_R21: case PT_R22: case PT_R23:
|
|
case PT_R24: case PT_R25: case PT_R26: case PT_R27:
|
|
case PT_R28: case PT_R29: case PT_R30: case PT_R31:
|
|
ptr = pt_reg_addr(pt, r16) + (addr - PT_R16);
|
|
break;
|
|
case PT_B0:
|
|
ptr = pt_reg_addr(pt, b0);
|
|
break;
|
|
case PT_B6:
|
|
ptr = pt_reg_addr(pt, b6);
|
|
break;
|
|
case PT_B7:
|
|
ptr = pt_reg_addr(pt, b7);
|
|
break;
|
|
case PT_F6: case PT_F6+8: case PT_F7: case PT_F7+8:
|
|
case PT_F8: case PT_F8+8: case PT_F9: case PT_F9+8:
|
|
ptr = pt_reg_addr(pt, f6) + (addr - PT_F6);
|
|
break;
|
|
case PT_AR_BSPSTORE:
|
|
ptr = pt_reg_addr(pt, ar_bspstore);
|
|
break;
|
|
case PT_AR_UNAT:
|
|
ptr = pt_reg_addr(pt, ar_unat);
|
|
break;
|
|
case PT_AR_PFS:
|
|
ptr = pt_reg_addr(pt, ar_pfs);
|
|
break;
|
|
case PT_AR_CCV:
|
|
ptr = pt_reg_addr(pt, ar_ccv);
|
|
break;
|
|
case PT_AR_FPSR:
|
|
ptr = pt_reg_addr(pt, ar_fpsr);
|
|
break;
|
|
case PT_CR_IIP:
|
|
ptr = pt_reg_addr(pt, cr_iip);
|
|
break;
|
|
case PT_PR:
|
|
ptr = pt_reg_addr(pt, pr);
|
|
break;
|
|
/* scratch register */
|
|
|
|
default:
|
|
/* disallow accessing anything else... */
|
|
dprintk("ptrace: rejecting access to register "
|
|
"address 0x%lx\n", addr);
|
|
return -1;
|
|
}
|
|
} else if (addr <= PT_AR_SSD) {
|
|
ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD);
|
|
} else {
|
|
/* access debug registers */
|
|
|
|
if (addr >= PT_IBR) {
|
|
regnum = (addr - PT_IBR) >> 3;
|
|
ptr = &child->thread.ibr[0];
|
|
} else {
|
|
regnum = (addr - PT_DBR) >> 3;
|
|
ptr = &child->thread.dbr[0];
|
|
}
|
|
|
|
if (regnum >= 8) {
|
|
dprintk("ptrace: rejecting access to register "
|
|
"address 0x%lx\n", addr);
|
|
return -1;
|
|
}
|
|
#ifdef CONFIG_PERFMON
|
|
/*
|
|
* Check if debug registers are used by perfmon. This
|
|
* test must be done once we know that we can do the
|
|
* operation, i.e. the arguments are all valid, but
|
|
* before we start modifying the state.
|
|
*
|
|
* Perfmon needs to keep a count of how many processes
|
|
* are trying to modify the debug registers for system
|
|
* wide monitoring sessions.
|
|
*
|
|
* We also include read access here, because they may
|
|
* cause the PMU-installed debug register state
|
|
* (dbr[], ibr[]) to be reset. The two arrays are also
|
|
* used by perfmon, but we do not use
|
|
* IA64_THREAD_DBG_VALID. The registers are restored
|
|
* by the PMU context switch code.
|
|
*/
|
|
if (pfm_use_debug_registers(child)) return -1;
|
|
#endif
|
|
|
|
if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
|
|
child->thread.flags |= IA64_THREAD_DBG_VALID;
|
|
memset(child->thread.dbr, 0,
|
|
sizeof(child->thread.dbr));
|
|
memset(child->thread.ibr, 0,
|
|
sizeof(child->thread.ibr));
|
|
}
|
|
|
|
ptr += regnum;
|
|
|
|
if ((regnum & 1) && write_access) {
|
|
/* don't let the user set kernel-level breakpoints: */
|
|
*ptr = *data & ~(7UL << 56);
|
|
return 0;
|
|
}
|
|
}
|
|
if (write_access)
|
|
*ptr = *data;
|
|
else
|
|
*data = *ptr;
|
|
return 0;
|
|
}
|
|
|
|
static long
|
|
ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
|
|
{
|
|
unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
|
|
struct unw_frame_info info;
|
|
struct ia64_fpreg fpval;
|
|
struct switch_stack *sw;
|
|
struct pt_regs *pt;
|
|
long ret, retval = 0;
|
|
char nat = 0;
|
|
int i;
|
|
|
|
if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
|
|
return -EIO;
|
|
|
|
pt = task_pt_regs(child);
|
|
sw = (struct switch_stack *) (child->thread.ksp + 16);
|
|
unw_init_from_blocked_task(&info, child);
|
|
if (unw_unwind_to_user(&info) < 0) {
|
|
return -EIO;
|
|
}
|
|
|
|
if (((unsigned long) ppr & 0x7) != 0) {
|
|
dprintk("ptrace:unaligned register address %p\n", ppr);
|
|
return -EIO;
|
|
}
|
|
|
|
if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
|
|
|| access_uarea(child, PT_AR_EC, &ec, 0) < 0
|
|
|| access_uarea(child, PT_AR_LC, &lc, 0) < 0
|
|
|| access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
|
|
|| access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
|
|
|| access_uarea(child, PT_CFM, &cfm, 0)
|
|
|| access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
|
|
return -EIO;
|
|
|
|
/* control regs */
|
|
|
|
retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
|
|
retval |= __put_user(psr, &ppr->cr_ipsr);
|
|
|
|
/* app regs */
|
|
|
|
retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
|
|
retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
|
|
retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
|
|
retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
|
|
retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
|
|
retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
|
|
|
|
retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
|
|
retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
|
|
retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
|
|
retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
|
|
retval |= __put_user(cfm, &ppr->cfm);
|
|
|
|
/* gr1-gr3 */
|
|
|
|
retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
|
|
retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
|
|
|
|
/* gr4-gr7 */
|
|
|
|
for (i = 4; i < 8; i++) {
|
|
if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
|
|
return -EIO;
|
|
retval |= __put_user(val, &ppr->gr[i]);
|
|
}
|
|
|
|
/* gr8-gr11 */
|
|
|
|
retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
|
|
|
|
/* gr12-gr15 */
|
|
|
|
retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
|
|
retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
|
|
retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
|
|
|
|
/* gr16-gr31 */
|
|
|
|
retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
|
|
|
|
/* b0 */
|
|
|
|
retval |= __put_user(pt->b0, &ppr->br[0]);
|
|
|
|
/* b1-b5 */
|
|
|
|
for (i = 1; i < 6; i++) {
|
|
if (unw_access_br(&info, i, &val, 0) < 0)
|
|
return -EIO;
|
|
__put_user(val, &ppr->br[i]);
|
|
}
|
|
|
|
/* b6-b7 */
|
|
|
|
retval |= __put_user(pt->b6, &ppr->br[6]);
|
|
retval |= __put_user(pt->b7, &ppr->br[7]);
|
|
|
|
/* fr2-fr5 */
|
|
|
|
for (i = 2; i < 6; i++) {
|
|
if (unw_get_fr(&info, i, &fpval) < 0)
|
|
return -EIO;
|
|
retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
|
|
}
|
|
|
|
/* fr6-fr11 */
|
|
|
|
retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
|
|
sizeof(struct ia64_fpreg) * 6);
|
|
|
|
/* fp scratch regs(12-15) */
|
|
|
|
retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
|
|
sizeof(struct ia64_fpreg) * 4);
|
|
|
|
/* fr16-fr31 */
|
|
|
|
for (i = 16; i < 32; i++) {
|
|
if (unw_get_fr(&info, i, &fpval) < 0)
|
|
return -EIO;
|
|
retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
|
|
}
|
|
|
|
/* fph */
|
|
|
|
ia64_flush_fph(child);
|
|
retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
|
|
sizeof(ppr->fr[32]) * 96);
|
|
|
|
/* preds */
|
|
|
|
retval |= __put_user(pt->pr, &ppr->pr);
|
|
|
|
/* nat bits */
|
|
|
|
retval |= __put_user(nat_bits, &ppr->nat);
|
|
|
|
ret = retval ? -EIO : 0;
|
|
return ret;
|
|
}
|
|
|
|
static long
|
|
ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
|
|
{
|
|
unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
|
|
struct unw_frame_info info;
|
|
struct switch_stack *sw;
|
|
struct ia64_fpreg fpval;
|
|
struct pt_regs *pt;
|
|
long ret, retval = 0;
|
|
int i;
|
|
|
|
memset(&fpval, 0, sizeof(fpval));
|
|
|
|
if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
|
|
return -EIO;
|
|
|
|
pt = task_pt_regs(child);
|
|
sw = (struct switch_stack *) (child->thread.ksp + 16);
|
|
unw_init_from_blocked_task(&info, child);
|
|
if (unw_unwind_to_user(&info) < 0) {
|
|
return -EIO;
|
|
}
|
|
|
|
if (((unsigned long) ppr & 0x7) != 0) {
|
|
dprintk("ptrace:unaligned register address %p\n", ppr);
|
|
return -EIO;
|
|
}
|
|
|
|
/* control regs */
|
|
|
|
retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
|
|
retval |= __get_user(psr, &ppr->cr_ipsr);
|
|
|
|
/* app regs */
|
|
|
|
retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
|
|
retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
|
|
retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
|
|
retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
|
|
retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
|
|
retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
|
|
|
|
retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
|
|
retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
|
|
retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
|
|
retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
|
|
retval |= __get_user(cfm, &ppr->cfm);
|
|
|
|
/* gr1-gr3 */
|
|
|
|
retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
|
|
retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
|
|
|
|
/* gr4-gr7 */
|
|
|
|
for (i = 4; i < 8; i++) {
|
|
retval |= __get_user(val, &ppr->gr[i]);
|
|
/* NaT bit will be set via PT_NAT_BITS: */
|
|
if (unw_set_gr(&info, i, val, 0) < 0)
|
|
return -EIO;
|
|
}
|
|
|
|
/* gr8-gr11 */
|
|
|
|
retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
|
|
|
|
/* gr12-gr15 */
|
|
|
|
retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
|
|
retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
|
|
retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
|
|
|
|
/* gr16-gr31 */
|
|
|
|
retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
|
|
|
|
/* b0 */
|
|
|
|
retval |= __get_user(pt->b0, &ppr->br[0]);
|
|
|
|
/* b1-b5 */
|
|
|
|
for (i = 1; i < 6; i++) {
|
|
retval |= __get_user(val, &ppr->br[i]);
|
|
unw_set_br(&info, i, val);
|
|
}
|
|
|
|
/* b6-b7 */
|
|
|
|
retval |= __get_user(pt->b6, &ppr->br[6]);
|
|
retval |= __get_user(pt->b7, &ppr->br[7]);
|
|
|
|
/* fr2-fr5 */
|
|
|
|
for (i = 2; i < 6; i++) {
|
|
retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
|
|
if (unw_set_fr(&info, i, fpval) < 0)
|
|
return -EIO;
|
|
}
|
|
|
|
/* fr6-fr11 */
|
|
|
|
retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
|
|
sizeof(ppr->fr[6]) * 6);
|
|
|
|
/* fp scratch regs(12-15) */
|
|
|
|
retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
|
|
sizeof(ppr->fr[12]) * 4);
|
|
|
|
/* fr16-fr31 */
|
|
|
|
for (i = 16; i < 32; i++) {
|
|
retval |= __copy_from_user(&fpval, &ppr->fr[i],
|
|
sizeof(fpval));
|
|
if (unw_set_fr(&info, i, fpval) < 0)
|
|
return -EIO;
|
|
}
|
|
|
|
/* fph */
|
|
|
|
ia64_sync_fph(child);
|
|
retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
|
|
sizeof(ppr->fr[32]) * 96);
|
|
|
|
/* preds */
|
|
|
|
retval |= __get_user(pt->pr, &ppr->pr);
|
|
|
|
/* nat bits */
|
|
|
|
retval |= __get_user(nat_bits, &ppr->nat);
|
|
|
|
retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
|
|
retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
|
|
retval |= access_uarea(child, PT_AR_EC, &ec, 1);
|
|
retval |= access_uarea(child, PT_AR_LC, &lc, 1);
|
|
retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
|
|
retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
|
|
retval |= access_uarea(child, PT_CFM, &cfm, 1);
|
|
retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
|
|
|
|
ret = retval ? -EIO : 0;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Called by kernel/ptrace.c when detaching..
|
|
*
|
|
* Make sure the single step bit is not set.
|
|
*/
|
|
void
|
|
ptrace_disable (struct task_struct *child)
|
|
{
|
|
struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
|
|
|
|
/* make sure the single step/taken-branch trap bits are not set: */
|
|
clear_tsk_thread_flag(child, TIF_SINGLESTEP);
|
|
child_psr->ss = 0;
|
|
child_psr->tb = 0;
|
|
}
|
|
|
|
asmlinkage long
|
|
sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data)
|
|
{
|
|
struct pt_regs *pt;
|
|
unsigned long urbs_end, peek_or_poke;
|
|
struct task_struct *child;
|
|
struct switch_stack *sw;
|
|
long ret;
|
|
|
|
lock_kernel();
|
|
ret = -EPERM;
|
|
if (request == PTRACE_TRACEME) {
|
|
ret = ptrace_traceme();
|
|
goto out;
|
|
}
|
|
|
|
peek_or_poke = (request == PTRACE_PEEKTEXT
|
|
|| request == PTRACE_PEEKDATA
|
|
|| request == PTRACE_POKETEXT
|
|
|| request == PTRACE_POKEDATA);
|
|
ret = -ESRCH;
|
|
read_lock(&tasklist_lock);
|
|
{
|
|
child = find_task_by_pid(pid);
|
|
if (child) {
|
|
if (peek_or_poke)
|
|
child = find_thread_for_addr(child, addr);
|
|
get_task_struct(child);
|
|
}
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
if (!child)
|
|
goto out;
|
|
ret = -EPERM;
|
|
if (pid == 1) /* no messing around with init! */
|
|
goto out_tsk;
|
|
|
|
if (request == PTRACE_ATTACH) {
|
|
ret = ptrace_attach(child);
|
|
goto out_tsk;
|
|
}
|
|
|
|
ret = ptrace_check_attach(child, request == PTRACE_KILL);
|
|
if (ret < 0)
|
|
goto out_tsk;
|
|
|
|
pt = task_pt_regs(child);
|
|
sw = (struct switch_stack *) (child->thread.ksp + 16);
|
|
|
|
switch (request) {
|
|
case PTRACE_PEEKTEXT:
|
|
case PTRACE_PEEKDATA:
|
|
/* read word at location addr */
|
|
urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
|
|
ret = ia64_peek(child, sw, urbs_end, addr, &data);
|
|
if (ret == 0) {
|
|
ret = data;
|
|
/* ensure "ret" is not mistaken as an error code: */
|
|
force_successful_syscall_return();
|
|
}
|
|
goto out_tsk;
|
|
|
|
case PTRACE_POKETEXT:
|
|
case PTRACE_POKEDATA:
|
|
/* write the word at location addr */
|
|
urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
|
|
ret = ia64_poke(child, sw, urbs_end, addr, data);
|
|
goto out_tsk;
|
|
|
|
case PTRACE_PEEKUSR:
|
|
/* read the word at addr in the USER area */
|
|
if (access_uarea(child, addr, &data, 0) < 0) {
|
|
ret = -EIO;
|
|
goto out_tsk;
|
|
}
|
|
ret = data;
|
|
/* ensure "ret" is not mistaken as an error code */
|
|
force_successful_syscall_return();
|
|
goto out_tsk;
|
|
|
|
case PTRACE_POKEUSR:
|
|
/* write the word at addr in the USER area */
|
|
if (access_uarea(child, addr, &data, 1) < 0) {
|
|
ret = -EIO;
|
|
goto out_tsk;
|
|
}
|
|
ret = 0;
|
|
goto out_tsk;
|
|
|
|
case PTRACE_OLD_GETSIGINFO:
|
|
/* for backwards-compatibility */
|
|
ret = ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
|
|
goto out_tsk;
|
|
|
|
case PTRACE_OLD_SETSIGINFO:
|
|
/* for backwards-compatibility */
|
|
ret = ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
|
|
goto out_tsk;
|
|
|
|
case PTRACE_SYSCALL:
|
|
/* continue and stop at next (return from) syscall */
|
|
case PTRACE_CONT:
|
|
/* restart after signal. */
|
|
ret = -EIO;
|
|
if (!valid_signal(data))
|
|
goto out_tsk;
|
|
if (request == PTRACE_SYSCALL)
|
|
set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
|
|
else
|
|
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
|
|
child->exit_code = data;
|
|
|
|
/*
|
|
* Make sure the single step/taken-branch trap bits
|
|
* are not set:
|
|
*/
|
|
clear_tsk_thread_flag(child, TIF_SINGLESTEP);
|
|
ia64_psr(pt)->ss = 0;
|
|
ia64_psr(pt)->tb = 0;
|
|
|
|
wake_up_process(child);
|
|
ret = 0;
|
|
goto out_tsk;
|
|
|
|
case PTRACE_KILL:
|
|
/*
|
|
* Make the child exit. Best I can do is send it a
|
|
* sigkill. Perhaps it should be put in the status
|
|
* that it wants to exit.
|
|
*/
|
|
if (child->exit_state == EXIT_ZOMBIE)
|
|
/* already dead */
|
|
goto out_tsk;
|
|
child->exit_code = SIGKILL;
|
|
|
|
ptrace_disable(child);
|
|
wake_up_process(child);
|
|
ret = 0;
|
|
goto out_tsk;
|
|
|
|
case PTRACE_SINGLESTEP:
|
|
/* let child execute for one instruction */
|
|
case PTRACE_SINGLEBLOCK:
|
|
ret = -EIO;
|
|
if (!valid_signal(data))
|
|
goto out_tsk;
|
|
|
|
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
|
|
set_tsk_thread_flag(child, TIF_SINGLESTEP);
|
|
if (request == PTRACE_SINGLESTEP) {
|
|
ia64_psr(pt)->ss = 1;
|
|
} else {
|
|
ia64_psr(pt)->tb = 1;
|
|
}
|
|
child->exit_code = data;
|
|
|
|
/* give it a chance to run. */
|
|
wake_up_process(child);
|
|
ret = 0;
|
|
goto out_tsk;
|
|
|
|
case PTRACE_DETACH:
|
|
/* detach a process that was attached. */
|
|
ret = ptrace_detach(child, data);
|
|
goto out_tsk;
|
|
|
|
case PTRACE_GETREGS:
|
|
ret = ptrace_getregs(child,
|
|
(struct pt_all_user_regs __user *) data);
|
|
goto out_tsk;
|
|
|
|
case PTRACE_SETREGS:
|
|
ret = ptrace_setregs(child,
|
|
(struct pt_all_user_regs __user *) data);
|
|
goto out_tsk;
|
|
|
|
default:
|
|
ret = ptrace_request(child, request, addr, data);
|
|
goto out_tsk;
|
|
}
|
|
out_tsk:
|
|
put_task_struct(child);
|
|
out:
|
|
unlock_kernel();
|
|
return ret;
|
|
}
|
|
|
|
|
|
static void
|
|
syscall_trace (void)
|
|
{
|
|
/*
|
|
* The 0x80 provides a way for the tracing parent to
|
|
* distinguish between a syscall stop and SIGTRAP delivery.
|
|
*/
|
|
ptrace_notify(SIGTRAP
|
|
| ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
|
|
|
|
/*
|
|
* This isn't the same as continuing with a signal, but it
|
|
* will do for normal use. strace only continues with a
|
|
* signal if the stopping signal is not SIGTRAP. -brl
|
|
*/
|
|
if (current->exit_code) {
|
|
send_sig(current->exit_code, current, 1);
|
|
current->exit_code = 0;
|
|
}
|
|
}
|
|
|
|
/* "asmlinkage" so the input arguments are preserved... */
|
|
|
|
asmlinkage void
|
|
syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
|
|
long arg4, long arg5, long arg6, long arg7,
|
|
struct pt_regs regs)
|
|
{
|
|
if (test_thread_flag(TIF_SYSCALL_TRACE)
|
|
&& (current->ptrace & PT_PTRACED))
|
|
syscall_trace();
|
|
|
|
if (unlikely(current->audit_context)) {
|
|
long syscall;
|
|
int arch;
|
|
|
|
if (IS_IA32_PROCESS(®s)) {
|
|
syscall = regs.r1;
|
|
arch = AUDIT_ARCH_I386;
|
|
} else {
|
|
syscall = regs.r15;
|
|
arch = AUDIT_ARCH_IA64;
|
|
}
|
|
|
|
audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
|
|
}
|
|
|
|
}
|
|
|
|
/* "asmlinkage" so the input arguments are preserved... */
|
|
|
|
asmlinkage void
|
|
syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
|
|
long arg4, long arg5, long arg6, long arg7,
|
|
struct pt_regs regs)
|
|
{
|
|
if (unlikely(current->audit_context)) {
|
|
int success = AUDITSC_RESULT(regs.r10);
|
|
long result = regs.r8;
|
|
|
|
if (success != AUDITSC_SUCCESS)
|
|
result = -result;
|
|
audit_syscall_exit(success, result);
|
|
}
|
|
|
|
if ((test_thread_flag(TIF_SYSCALL_TRACE)
|
|
|| test_thread_flag(TIF_SINGLESTEP))
|
|
&& (current->ptrace & PT_PTRACED))
|
|
syscall_trace();
|
|
}
|