android_kernel_xiaomi_sm8350/drivers/infiniband/hw/ipath/ipath_pe800.c
Bryan O'Sullivan c71c30dcba IB/ipath: prevent hardware from being accessed during reset
The reset code now turns off the PRESENT flag during a reset, so that
other code won't attempt to access a device that's in mid-reset.

Signed-off-by: Bryan O'Sullivan <bos@pathscale.com>
Signed-off-by: Roland Dreier <rolandd@cisco.com>
2006-05-01 12:14:16 -07:00

1252 lines
43 KiB
C

/*
* Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/*
* This file contains all of the code that is specific to the
* InfiniPath PE-800 chip.
*/
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include "ipath_kernel.h"
#include "ipath_registers.h"
/*
* This file contains all the chip-specific register information and
* access functions for the PathScale PE800, the PCI-Express chip.
*
* This lists the InfiniPath PE800 registers, in the actual chip layout.
* This structure should never be directly accessed.
*/
struct _infinipath_do_not_use_kernel_regs {
unsigned long long Revision;
unsigned long long Control;
unsigned long long PageAlign;
unsigned long long PortCnt;
unsigned long long DebugPortSelect;
unsigned long long Reserved0;
unsigned long long SendRegBase;
unsigned long long UserRegBase;
unsigned long long CounterRegBase;
unsigned long long Scratch;
unsigned long long Reserved1;
unsigned long long Reserved2;
unsigned long long IntBlocked;
unsigned long long IntMask;
unsigned long long IntStatus;
unsigned long long IntClear;
unsigned long long ErrorMask;
unsigned long long ErrorStatus;
unsigned long long ErrorClear;
unsigned long long HwErrMask;
unsigned long long HwErrStatus;
unsigned long long HwErrClear;
unsigned long long HwDiagCtrl;
unsigned long long MDIO;
unsigned long long IBCStatus;
unsigned long long IBCCtrl;
unsigned long long ExtStatus;
unsigned long long ExtCtrl;
unsigned long long GPIOOut;
unsigned long long GPIOMask;
unsigned long long GPIOStatus;
unsigned long long GPIOClear;
unsigned long long RcvCtrl;
unsigned long long RcvBTHQP;
unsigned long long RcvHdrSize;
unsigned long long RcvHdrCnt;
unsigned long long RcvHdrEntSize;
unsigned long long RcvTIDBase;
unsigned long long RcvTIDCnt;
unsigned long long RcvEgrBase;
unsigned long long RcvEgrCnt;
unsigned long long RcvBufBase;
unsigned long long RcvBufSize;
unsigned long long RxIntMemBase;
unsigned long long RxIntMemSize;
unsigned long long RcvPartitionKey;
unsigned long long Reserved3;
unsigned long long RcvPktLEDCnt;
unsigned long long Reserved4[8];
unsigned long long SendCtrl;
unsigned long long SendPIOBufBase;
unsigned long long SendPIOSize;
unsigned long long SendPIOBufCnt;
unsigned long long SendPIOAvailAddr;
unsigned long long TxIntMemBase;
unsigned long long TxIntMemSize;
unsigned long long Reserved5;
unsigned long long PCIeRBufTestReg0;
unsigned long long PCIeRBufTestReg1;
unsigned long long Reserved51[6];
unsigned long long SendBufferError;
unsigned long long SendBufferErrorCONT1;
unsigned long long Reserved6SBE[6];
unsigned long long RcvHdrAddr0;
unsigned long long RcvHdrAddr1;
unsigned long long RcvHdrAddr2;
unsigned long long RcvHdrAddr3;
unsigned long long RcvHdrAddr4;
unsigned long long Reserved7RHA[11];
unsigned long long RcvHdrTailAddr0;
unsigned long long RcvHdrTailAddr1;
unsigned long long RcvHdrTailAddr2;
unsigned long long RcvHdrTailAddr3;
unsigned long long RcvHdrTailAddr4;
unsigned long long Reserved8RHTA[11];
unsigned long long Reserved9SW[8];
unsigned long long SerdesConfig0;
unsigned long long SerdesConfig1;
unsigned long long SerdesStatus;
unsigned long long XGXSConfig;
unsigned long long IBPLLCfg;
unsigned long long Reserved10SW2[3];
unsigned long long PCIEQ0SerdesConfig0;
unsigned long long PCIEQ0SerdesConfig1;
unsigned long long PCIEQ0SerdesStatus;
unsigned long long Reserved11;
unsigned long long PCIEQ1SerdesConfig0;
unsigned long long PCIEQ1SerdesConfig1;
unsigned long long PCIEQ1SerdesStatus;
unsigned long long Reserved12;
};
#define IPATH_KREG_OFFSET(field) (offsetof(struct \
_infinipath_do_not_use_kernel_regs, field) / sizeof(u64))
#define IPATH_CREG_OFFSET(field) (offsetof( \
struct infinipath_counters, field) / sizeof(u64))
static const struct ipath_kregs ipath_pe_kregs = {
.kr_control = IPATH_KREG_OFFSET(Control),
.kr_counterregbase = IPATH_KREG_OFFSET(CounterRegBase),
.kr_debugportselect = IPATH_KREG_OFFSET(DebugPortSelect),
.kr_errorclear = IPATH_KREG_OFFSET(ErrorClear),
.kr_errormask = IPATH_KREG_OFFSET(ErrorMask),
.kr_errorstatus = IPATH_KREG_OFFSET(ErrorStatus),
.kr_extctrl = IPATH_KREG_OFFSET(ExtCtrl),
.kr_extstatus = IPATH_KREG_OFFSET(ExtStatus),
.kr_gpio_clear = IPATH_KREG_OFFSET(GPIOClear),
.kr_gpio_mask = IPATH_KREG_OFFSET(GPIOMask),
.kr_gpio_out = IPATH_KREG_OFFSET(GPIOOut),
.kr_gpio_status = IPATH_KREG_OFFSET(GPIOStatus),
.kr_hwdiagctrl = IPATH_KREG_OFFSET(HwDiagCtrl),
.kr_hwerrclear = IPATH_KREG_OFFSET(HwErrClear),
.kr_hwerrmask = IPATH_KREG_OFFSET(HwErrMask),
.kr_hwerrstatus = IPATH_KREG_OFFSET(HwErrStatus),
.kr_ibcctrl = IPATH_KREG_OFFSET(IBCCtrl),
.kr_ibcstatus = IPATH_KREG_OFFSET(IBCStatus),
.kr_intblocked = IPATH_KREG_OFFSET(IntBlocked),
.kr_intclear = IPATH_KREG_OFFSET(IntClear),
.kr_intmask = IPATH_KREG_OFFSET(IntMask),
.kr_intstatus = IPATH_KREG_OFFSET(IntStatus),
.kr_mdio = IPATH_KREG_OFFSET(MDIO),
.kr_pagealign = IPATH_KREG_OFFSET(PageAlign),
.kr_partitionkey = IPATH_KREG_OFFSET(RcvPartitionKey),
.kr_portcnt = IPATH_KREG_OFFSET(PortCnt),
.kr_rcvbthqp = IPATH_KREG_OFFSET(RcvBTHQP),
.kr_rcvbufbase = IPATH_KREG_OFFSET(RcvBufBase),
.kr_rcvbufsize = IPATH_KREG_OFFSET(RcvBufSize),
.kr_rcvctrl = IPATH_KREG_OFFSET(RcvCtrl),
.kr_rcvegrbase = IPATH_KREG_OFFSET(RcvEgrBase),
.kr_rcvegrcnt = IPATH_KREG_OFFSET(RcvEgrCnt),
.kr_rcvhdrcnt = IPATH_KREG_OFFSET(RcvHdrCnt),
.kr_rcvhdrentsize = IPATH_KREG_OFFSET(RcvHdrEntSize),
.kr_rcvhdrsize = IPATH_KREG_OFFSET(RcvHdrSize),
.kr_rcvintmembase = IPATH_KREG_OFFSET(RxIntMemBase),
.kr_rcvintmemsize = IPATH_KREG_OFFSET(RxIntMemSize),
.kr_rcvtidbase = IPATH_KREG_OFFSET(RcvTIDBase),
.kr_rcvtidcnt = IPATH_KREG_OFFSET(RcvTIDCnt),
.kr_revision = IPATH_KREG_OFFSET(Revision),
.kr_scratch = IPATH_KREG_OFFSET(Scratch),
.kr_sendbuffererror = IPATH_KREG_OFFSET(SendBufferError),
.kr_sendctrl = IPATH_KREG_OFFSET(SendCtrl),
.kr_sendpioavailaddr = IPATH_KREG_OFFSET(SendPIOAvailAddr),
.kr_sendpiobufbase = IPATH_KREG_OFFSET(SendPIOBufBase),
.kr_sendpiobufcnt = IPATH_KREG_OFFSET(SendPIOBufCnt),
.kr_sendpiosize = IPATH_KREG_OFFSET(SendPIOSize),
.kr_sendregbase = IPATH_KREG_OFFSET(SendRegBase),
.kr_txintmembase = IPATH_KREG_OFFSET(TxIntMemBase),
.kr_txintmemsize = IPATH_KREG_OFFSET(TxIntMemSize),
.kr_userregbase = IPATH_KREG_OFFSET(UserRegBase),
.kr_serdesconfig0 = IPATH_KREG_OFFSET(SerdesConfig0),
.kr_serdesconfig1 = IPATH_KREG_OFFSET(SerdesConfig1),
.kr_serdesstatus = IPATH_KREG_OFFSET(SerdesStatus),
.kr_xgxsconfig = IPATH_KREG_OFFSET(XGXSConfig),
.kr_ibpllcfg = IPATH_KREG_OFFSET(IBPLLCfg),
/*
* These should not be used directly via ipath_read_kreg64(),
* use them with ipath_read_kreg64_port()
*/
.kr_rcvhdraddr = IPATH_KREG_OFFSET(RcvHdrAddr0),
.kr_rcvhdrtailaddr = IPATH_KREG_OFFSET(RcvHdrTailAddr0),
/* This group is pe-800-specific; and used only in this file */
/* The rcvpktled register controls one of the debug port signals, so
* a packet activity LED can be connected to it. */
.kr_rcvpktledcnt = IPATH_KREG_OFFSET(RcvPktLEDCnt),
.kr_pcierbuftestreg0 = IPATH_KREG_OFFSET(PCIeRBufTestReg0),
.kr_pcierbuftestreg1 = IPATH_KREG_OFFSET(PCIeRBufTestReg1),
.kr_pcieq0serdesconfig0 = IPATH_KREG_OFFSET(PCIEQ0SerdesConfig0),
.kr_pcieq0serdesconfig1 = IPATH_KREG_OFFSET(PCIEQ0SerdesConfig1),
.kr_pcieq0serdesstatus = IPATH_KREG_OFFSET(PCIEQ0SerdesStatus),
.kr_pcieq1serdesconfig0 = IPATH_KREG_OFFSET(PCIEQ1SerdesConfig0),
.kr_pcieq1serdesconfig1 = IPATH_KREG_OFFSET(PCIEQ1SerdesConfig1),
.kr_pcieq1serdesstatus = IPATH_KREG_OFFSET(PCIEQ1SerdesStatus)
};
static const struct ipath_cregs ipath_pe_cregs = {
.cr_badformatcnt = IPATH_CREG_OFFSET(RxBadFormatCnt),
.cr_erricrccnt = IPATH_CREG_OFFSET(RxICRCErrCnt),
.cr_errlinkcnt = IPATH_CREG_OFFSET(RxLinkProblemCnt),
.cr_errlpcrccnt = IPATH_CREG_OFFSET(RxLPCRCErrCnt),
.cr_errpkey = IPATH_CREG_OFFSET(RxPKeyMismatchCnt),
.cr_errrcvflowctrlcnt = IPATH_CREG_OFFSET(RxFlowCtrlErrCnt),
.cr_err_rlencnt = IPATH_CREG_OFFSET(RxLenErrCnt),
.cr_errslencnt = IPATH_CREG_OFFSET(TxLenErrCnt),
.cr_errtidfull = IPATH_CREG_OFFSET(RxTIDFullErrCnt),
.cr_errtidvalid = IPATH_CREG_OFFSET(RxTIDValidErrCnt),
.cr_errvcrccnt = IPATH_CREG_OFFSET(RxVCRCErrCnt),
.cr_ibstatuschange = IPATH_CREG_OFFSET(IBStatusChangeCnt),
.cr_intcnt = IPATH_CREG_OFFSET(LBIntCnt),
.cr_invalidrlencnt = IPATH_CREG_OFFSET(RxMaxMinLenErrCnt),
.cr_invalidslencnt = IPATH_CREG_OFFSET(TxMaxMinLenErrCnt),
.cr_lbflowstallcnt = IPATH_CREG_OFFSET(LBFlowStallCnt),
.cr_pktrcvcnt = IPATH_CREG_OFFSET(RxDataPktCnt),
.cr_pktrcvflowctrlcnt = IPATH_CREG_OFFSET(RxFlowPktCnt),
.cr_pktsendcnt = IPATH_CREG_OFFSET(TxDataPktCnt),
.cr_pktsendflowcnt = IPATH_CREG_OFFSET(TxFlowPktCnt),
.cr_portovflcnt = IPATH_CREG_OFFSET(RxP0HdrEgrOvflCnt),
.cr_rcvebpcnt = IPATH_CREG_OFFSET(RxEBPCnt),
.cr_rcvovflcnt = IPATH_CREG_OFFSET(RxBufOvflCnt),
.cr_senddropped = IPATH_CREG_OFFSET(TxDroppedPktCnt),
.cr_sendstallcnt = IPATH_CREG_OFFSET(TxFlowStallCnt),
.cr_sendunderruncnt = IPATH_CREG_OFFSET(TxUnderrunCnt),
.cr_wordrcvcnt = IPATH_CREG_OFFSET(RxDwordCnt),
.cr_wordsendcnt = IPATH_CREG_OFFSET(TxDwordCnt),
.cr_unsupvlcnt = IPATH_CREG_OFFSET(TxUnsupVLErrCnt),
.cr_rxdroppktcnt = IPATH_CREG_OFFSET(RxDroppedPktCnt),
.cr_iblinkerrrecovcnt = IPATH_CREG_OFFSET(IBLinkErrRecoveryCnt),
.cr_iblinkdowncnt = IPATH_CREG_OFFSET(IBLinkDownedCnt),
.cr_ibsymbolerrcnt = IPATH_CREG_OFFSET(IBSymbolErrCnt)
};
/* kr_intstatus, kr_intclear, kr_intmask bits */
#define INFINIPATH_I_RCVURG_MASK 0x1F
#define INFINIPATH_I_RCVAVAIL_MASK 0x1F
/* kr_hwerrclear, kr_hwerrmask, kr_hwerrstatus, bits */
#define INFINIPATH_HWE_PCIEMEMPARITYERR_MASK 0x000000000000003fULL
#define INFINIPATH_HWE_PCIEMEMPARITYERR_SHIFT 0
#define INFINIPATH_HWE_PCIEPOISONEDTLP 0x0000000010000000ULL
#define INFINIPATH_HWE_PCIECPLTIMEOUT 0x0000000020000000ULL
#define INFINIPATH_HWE_PCIEBUSPARITYXTLH 0x0000000040000000ULL
#define INFINIPATH_HWE_PCIEBUSPARITYXADM 0x0000000080000000ULL
#define INFINIPATH_HWE_PCIEBUSPARITYRADM 0x0000000100000000ULL
#define INFINIPATH_HWE_COREPLL_FBSLIP 0x0080000000000000ULL
#define INFINIPATH_HWE_COREPLL_RFSLIP 0x0100000000000000ULL
#define INFINIPATH_HWE_PCIE1PLLFAILED 0x0400000000000000ULL
#define INFINIPATH_HWE_PCIE0PLLFAILED 0x0800000000000000ULL
#define INFINIPATH_HWE_SERDESPLLFAILED 0x1000000000000000ULL
/* kr_extstatus bits */
#define INFINIPATH_EXTS_FREQSEL 0x2
#define INFINIPATH_EXTS_SERDESSEL 0x4
#define INFINIPATH_EXTS_MEMBIST_ENDTEST 0x0000000000004000
#define INFINIPATH_EXTS_MEMBIST_FOUND 0x0000000000008000
#define _IPATH_GPIO_SDA_NUM 1
#define _IPATH_GPIO_SCL_NUM 0
#define IPATH_GPIO_SDA (1ULL << \
(_IPATH_GPIO_SDA_NUM+INFINIPATH_EXTC_GPIOOE_SHIFT))
#define IPATH_GPIO_SCL (1ULL << \
(_IPATH_GPIO_SCL_NUM+INFINIPATH_EXTC_GPIOOE_SHIFT))
/**
* ipath_pe_handle_hwerrors - display hardware errors.
* @dd: the infinipath device
* @msg: the output buffer
* @msgl: the size of the output buffer
*
* Use same msg buffer as regular errors to avoid excessive stack
* use. Most hardware errors are catastrophic, but for right now,
* we'll print them and continue. We reuse the same message buffer as
* ipath_handle_errors() to avoid excessive stack usage.
*/
static void ipath_pe_handle_hwerrors(struct ipath_devdata *dd, char *msg,
size_t msgl)
{
ipath_err_t hwerrs;
u32 bits, ctrl;
int isfatal = 0;
char bitsmsg[64];
hwerrs = ipath_read_kreg64(dd, dd->ipath_kregs->kr_hwerrstatus);
if (!hwerrs) {
/*
* better than printing cofusing messages
* This seems to be related to clearing the crc error, or
* the pll error during init.
*/
ipath_cdbg(VERBOSE, "Called but no hardware errors set\n");
return;
} else if (hwerrs == ~0ULL) {
ipath_dev_err(dd, "Read of hardware error status failed "
"(all bits set); ignoring\n");
return;
}
ipath_stats.sps_hwerrs++;
/* Always clear the error status register, except MEMBISTFAIL,
* regardless of whether we continue or stop using the chip.
* We want that set so we know it failed, even across driver reload.
* We'll still ignore it in the hwerrmask. We do this partly for
* diagnostics, but also for support */
ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear,
hwerrs&~INFINIPATH_HWE_MEMBISTFAILED);
hwerrs &= dd->ipath_hwerrmask;
/*
* make sure we get this much out, unless told to be quiet,
* or it's occurred within the last 5 seconds
*/
if ((hwerrs & ~dd->ipath_lasthwerror) ||
(ipath_debug & __IPATH_VERBDBG))
dev_info(&dd->pcidev->dev, "Hardware error: hwerr=0x%llx "
"(cleared)\n", (unsigned long long) hwerrs);
dd->ipath_lasthwerror |= hwerrs;
if (hwerrs & ~infinipath_hwe_bitsextant)
ipath_dev_err(dd, "hwerror interrupt with unknown errors "
"%llx set\n", (unsigned long long)
(hwerrs & ~infinipath_hwe_bitsextant));
ctrl = ipath_read_kreg32(dd, dd->ipath_kregs->kr_control);
if (ctrl & INFINIPATH_C_FREEZEMODE) {
if (hwerrs) {
/*
* if any set that we aren't ignoring only make the
* complaint once, in case it's stuck or recurring,
* and we get here multiple times
*/
if (dd->ipath_flags & IPATH_INITTED) {
ipath_dev_err(dd, "Fatal Error (freeze "
"mode), no longer usable\n");
isfatal = 1;
}
/*
* Mark as having had an error for driver, and also
* for /sys and status word mapped to user programs.
* This marks unit as not usable, until reset
*/
*dd->ipath_statusp &= ~IPATH_STATUS_IB_READY;
*dd->ipath_statusp |= IPATH_STATUS_HWERROR;
dd->ipath_flags &= ~IPATH_INITTED;
} else {
ipath_dbg("Clearing freezemode on ignored hardware "
"error\n");
ctrl &= ~INFINIPATH_C_FREEZEMODE;
ipath_write_kreg(dd, dd->ipath_kregs->kr_control,
ctrl);
}
}
*msg = '\0';
if (hwerrs & INFINIPATH_HWE_MEMBISTFAILED) {
strlcat(msg, "[Memory BIST test failed, PE-800 unusable]",
msgl);
/* ignore from now on, so disable until driver reloaded */
*dd->ipath_statusp |= IPATH_STATUS_HWERROR;
dd->ipath_hwerrmask &= ~INFINIPATH_HWE_MEMBISTFAILED;
ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrmask,
dd->ipath_hwerrmask);
}
if (hwerrs & (INFINIPATH_HWE_RXEMEMPARITYERR_MASK
<< INFINIPATH_HWE_RXEMEMPARITYERR_SHIFT)) {
bits = (u32) ((hwerrs >>
INFINIPATH_HWE_RXEMEMPARITYERR_SHIFT) &
INFINIPATH_HWE_RXEMEMPARITYERR_MASK);
snprintf(bitsmsg, sizeof bitsmsg, "[RXE Parity Errs %x] ",
bits);
strlcat(msg, bitsmsg, msgl);
}
if (hwerrs & (INFINIPATH_HWE_TXEMEMPARITYERR_MASK
<< INFINIPATH_HWE_TXEMEMPARITYERR_SHIFT)) {
bits = (u32) ((hwerrs >>
INFINIPATH_HWE_TXEMEMPARITYERR_SHIFT) &
INFINIPATH_HWE_TXEMEMPARITYERR_MASK);
snprintf(bitsmsg, sizeof bitsmsg, "[TXE Parity Errs %x] ",
bits);
strlcat(msg, bitsmsg, msgl);
}
if (hwerrs & (INFINIPATH_HWE_PCIEMEMPARITYERR_MASK
<< INFINIPATH_HWE_PCIEMEMPARITYERR_SHIFT)) {
bits = (u32) ((hwerrs >>
INFINIPATH_HWE_PCIEMEMPARITYERR_SHIFT) &
INFINIPATH_HWE_PCIEMEMPARITYERR_MASK);
snprintf(bitsmsg, sizeof bitsmsg,
"[PCIe Mem Parity Errs %x] ", bits);
strlcat(msg, bitsmsg, msgl);
}
if (hwerrs & INFINIPATH_HWE_IBCBUSTOSPCPARITYERR)
strlcat(msg, "[IB2IPATH Parity]", msgl);
if (hwerrs & INFINIPATH_HWE_IBCBUSFRSPCPARITYERR)
strlcat(msg, "[IPATH2IB Parity]", msgl);
#define _IPATH_PLL_FAIL (INFINIPATH_HWE_COREPLL_FBSLIP | \
INFINIPATH_HWE_COREPLL_RFSLIP )
if (hwerrs & _IPATH_PLL_FAIL) {
snprintf(bitsmsg, sizeof bitsmsg,
"[PLL failed (%llx), PE-800 unusable]",
(unsigned long long) hwerrs & _IPATH_PLL_FAIL);
strlcat(msg, bitsmsg, msgl);
/* ignore from now on, so disable until driver reloaded */
dd->ipath_hwerrmask &= ~(hwerrs & _IPATH_PLL_FAIL);
ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrmask,
dd->ipath_hwerrmask);
}
if (hwerrs & INFINIPATH_HWE_SERDESPLLFAILED) {
/*
* If it occurs, it is left masked since the eternal
* interface is unused
*/
dd->ipath_hwerrmask &= ~INFINIPATH_HWE_SERDESPLLFAILED;
ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrmask,
dd->ipath_hwerrmask);
}
if (hwerrs & INFINIPATH_HWE_PCIEPOISONEDTLP)
strlcat(msg, "[PCIe Poisoned TLP]", msgl);
if (hwerrs & INFINIPATH_HWE_PCIECPLTIMEOUT)
strlcat(msg, "[PCIe completion timeout]", msgl);
/*
* In practice, it's unlikely wthat we'll see PCIe PLL, or bus
* parity or memory parity error failures, because most likely we
* won't be able to talk to the core of the chip. Nonetheless, we
* might see them, if they are in parts of the PCIe core that aren't
* essential.
*/
if (hwerrs & INFINIPATH_HWE_PCIE1PLLFAILED)
strlcat(msg, "[PCIePLL1]", msgl);
if (hwerrs & INFINIPATH_HWE_PCIE0PLLFAILED)
strlcat(msg, "[PCIePLL0]", msgl);
if (hwerrs & INFINIPATH_HWE_PCIEBUSPARITYXTLH)
strlcat(msg, "[PCIe XTLH core parity]", msgl);
if (hwerrs & INFINIPATH_HWE_PCIEBUSPARITYXADM)
strlcat(msg, "[PCIe ADM TX core parity]", msgl);
if (hwerrs & INFINIPATH_HWE_PCIEBUSPARITYRADM)
strlcat(msg, "[PCIe ADM RX core parity]", msgl);
if (hwerrs & INFINIPATH_HWE_RXDSYNCMEMPARITYERR)
strlcat(msg, "[Rx Dsync]", msgl);
if (hwerrs & INFINIPATH_HWE_SERDESPLLFAILED)
strlcat(msg, "[SerDes PLL]", msgl);
ipath_dev_err(dd, "%s hardware error\n", msg);
if (isfatal && !ipath_diag_inuse && dd->ipath_freezemsg) {
/*
* for /sys status file ; if no trailing } is copied, we'll
* know it was truncated.
*/
snprintf(dd->ipath_freezemsg, dd->ipath_freezelen,
"{%s}", msg);
}
}
/**
* ipath_pe_boardname - fill in the board name
* @dd: the infinipath device
* @name: the output buffer
* @namelen: the size of the output buffer
*
* info is based on the board revision register
*/
static int ipath_pe_boardname(struct ipath_devdata *dd, char *name,
size_t namelen)
{
char *n = NULL;
u8 boardrev = dd->ipath_boardrev;
int ret;
switch (boardrev) {
case 0:
n = "InfiniPath_Emulation";
break;
case 1:
n = "InfiniPath_PE-800-Bringup";
break;
case 2:
n = "InfiniPath_PE-880";
break;
case 3:
n = "InfiniPath_PE-850";
break;
case 4:
n = "InfiniPath_PE-860";
break;
default:
ipath_dev_err(dd,
"Don't yet know about board with ID %u\n",
boardrev);
snprintf(name, namelen, "Unknown_InfiniPath_PE-8xx_%u",
boardrev);
break;
}
if (n)
snprintf(name, namelen, "%s", n);
if (dd->ipath_majrev != 4 || dd->ipath_minrev != 1) {
ipath_dev_err(dd, "Unsupported PE-800 revision %u.%u!\n",
dd->ipath_majrev, dd->ipath_minrev);
ret = 1;
} else
ret = 0;
return ret;
}
/**
* ipath_pe_init_hwerrors - enable hardware errors
* @dd: the infinipath device
*
* now that we have finished initializing everything that might reasonably
* cause a hardware error, and cleared those errors bits as they occur,
* we can enable hardware errors in the mask (potentially enabling
* freeze mode), and enable hardware errors as errors (along with
* everything else) in errormask
*/
static void ipath_pe_init_hwerrors(struct ipath_devdata *dd)
{
ipath_err_t val;
u64 extsval;
extsval = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extstatus);
if (!(extsval & INFINIPATH_EXTS_MEMBIST_ENDTEST))
ipath_dev_err(dd, "MemBIST did not complete!\n");
val = ~0ULL; /* barring bugs, all hwerrors become interrupts, */
if (!dd->ipath_boardrev) // no PLL for Emulator
val &= ~INFINIPATH_HWE_SERDESPLLFAILED;
/* workaround bug 9460 in internal interface bus parity checking */
val &= ~INFINIPATH_HWE_PCIEBUSPARITYRADM;
dd->ipath_hwerrmask = val;
}
/**
* ipath_pe_bringup_serdes - bring up the serdes
* @dd: the infinipath device
*/
static int ipath_pe_bringup_serdes(struct ipath_devdata *dd)
{
u64 val, tmp, config1;
int ret = 0, change = 0;
ipath_dbg("Trying to bringup serdes\n");
if (ipath_read_kreg64(dd, dd->ipath_kregs->kr_hwerrstatus) &
INFINIPATH_HWE_SERDESPLLFAILED) {
ipath_dbg("At start, serdes PLL failed bit set "
"in hwerrstatus, clearing and continuing\n");
ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear,
INFINIPATH_HWE_SERDESPLLFAILED);
}
val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_serdesconfig0);
config1 = ipath_read_kreg64(dd, dd->ipath_kregs->kr_serdesconfig1);
ipath_cdbg(VERBOSE, "SerDes status config0=%llx config1=%llx, "
"xgxsconfig %llx\n", (unsigned long long) val,
(unsigned long long) config1, (unsigned long long)
ipath_read_kreg64(dd, dd->ipath_kregs->kr_xgxsconfig));
/*
* Force reset on, also set rxdetect enable. Must do before reading
* serdesstatus at least for simulation, or some of the bits in
* serdes status will come back as undefined and cause simulation
* failures
*/
val |= INFINIPATH_SERDC0_RESET_PLL | INFINIPATH_SERDC0_RXDETECT_EN
| INFINIPATH_SERDC0_L1PWR_DN;
ipath_write_kreg(dd, dd->ipath_kregs->kr_serdesconfig0, val);
/* be sure chip saw it */
tmp = ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
udelay(5); /* need pll reset set at least for a bit */
/*
* after PLL is reset, set the per-lane Resets and TxIdle and
* clear the PLL reset and rxdetect (to get falling edge).
* Leave L1PWR bits set (permanently)
*/
val &= ~(INFINIPATH_SERDC0_RXDETECT_EN | INFINIPATH_SERDC0_RESET_PLL
| INFINIPATH_SERDC0_L1PWR_DN);
val |= INFINIPATH_SERDC0_RESET_MASK | INFINIPATH_SERDC0_TXIDLE;
ipath_cdbg(VERBOSE, "Clearing pll reset and setting lane resets "
"and txidle (%llx)\n", (unsigned long long) val);
ipath_write_kreg(dd, dd->ipath_kregs->kr_serdesconfig0, val);
/* be sure chip saw it */
tmp = ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
/* need PLL reset clear for at least 11 usec before lane
* resets cleared; give it a few more to be sure */
udelay(15);
val &= ~(INFINIPATH_SERDC0_RESET_MASK | INFINIPATH_SERDC0_TXIDLE);
ipath_cdbg(VERBOSE, "Clearing lane resets and txidle "
"(writing %llx)\n", (unsigned long long) val);
ipath_write_kreg(dd, dd->ipath_kregs->kr_serdesconfig0, val);
/* be sure chip saw it */
val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_xgxsconfig);
if (((val >> INFINIPATH_XGXS_MDIOADDR_SHIFT) &
INFINIPATH_XGXS_MDIOADDR_MASK) != 3) {
val &=
~(INFINIPATH_XGXS_MDIOADDR_MASK <<
INFINIPATH_XGXS_MDIOADDR_SHIFT);
/* MDIO address 3 */
val |= 3ULL << INFINIPATH_XGXS_MDIOADDR_SHIFT;
change = 1;
}
if (val & INFINIPATH_XGXS_RESET) {
val &= ~INFINIPATH_XGXS_RESET;
change = 1;
}
if (change)
ipath_write_kreg(dd, dd->ipath_kregs->kr_xgxsconfig, val);
val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_serdesconfig0);
/* clear current and de-emphasis bits */
config1 &= ~0x0ffffffff00ULL;
/* set current to 20ma */
config1 |= 0x00000000000ULL;
/* set de-emphasis to -5.68dB */
config1 |= 0x0cccc000000ULL;
ipath_write_kreg(dd, dd->ipath_kregs->kr_serdesconfig1, config1);
ipath_cdbg(VERBOSE, "done: SerDes status config0=%llx "
"config1=%llx, sstatus=%llx xgxs=%llx\n",
(unsigned long long) val, (unsigned long long) config1,
(unsigned long long)
ipath_read_kreg64(dd, dd->ipath_kregs->kr_serdesstatus),
(unsigned long long)
ipath_read_kreg64(dd, dd->ipath_kregs->kr_xgxsconfig));
if (!ipath_waitfor_mdio_cmdready(dd)) {
ipath_write_kreg(
dd, dd->ipath_kregs->kr_mdio,
ipath_mdio_req(IPATH_MDIO_CMD_READ, 31,
IPATH_MDIO_CTRL_XGXS_REG_8, 0));
if (ipath_waitfor_complete(dd, dd->ipath_kregs->kr_mdio,
IPATH_MDIO_DATAVALID, &val))
ipath_dbg("Never got MDIO data for XGXS "
"status read\n");
else
ipath_cdbg(VERBOSE, "MDIO Read reg8, "
"'bank' 31 %x\n", (u32) val);
} else
ipath_dbg("Never got MDIO cmdready for XGXS status read\n");
return ret;
}
/**
* ipath_pe_quiet_serdes - set serdes to txidle
* @dd: the infinipath device
* Called when driver is being unloaded
*/
static void ipath_pe_quiet_serdes(struct ipath_devdata *dd)
{
u64 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_serdesconfig0);
val |= INFINIPATH_SERDC0_TXIDLE;
ipath_dbg("Setting TxIdleEn on serdes (config0 = %llx)\n",
(unsigned long long) val);
ipath_write_kreg(dd, dd->ipath_kregs->kr_serdesconfig0, val);
}
/* this is not yet needed on the PE800, so just return 0. */
static int ipath_pe_intconfig(struct ipath_devdata *dd)
{
return 0;
}
/**
* ipath_setup_pe_setextled - set the state of the two external LEDs
* @dd: the infinipath device
* @lst: the L state
* @ltst: the LT state
* These LEDs indicate the physical and logical state of IB link.
* For this chip (at least with recommended board pinouts), LED1
* is Yellow (logical state) and LED2 is Green (physical state),
*
* Note: We try to match the Mellanox HCA LED behavior as best
* we can. Green indicates physical link state is OK (something is
* plugged in, and we can train).
* Amber indicates the link is logically up (ACTIVE).
* Mellanox further blinks the amber LED to indicate data packet
* activity, but we have no hardware support for that, so it would
* require waking up every 10-20 msecs and checking the counters
* on the chip, and then turning the LED off if appropriate. That's
* visible overhead, so not something we will do.
*
*/
static void ipath_setup_pe_setextled(struct ipath_devdata *dd, u64 lst,
u64 ltst)
{
u64 extctl;
/* the diags use the LED to indicate diag info, so we leave
* the external LED alone when the diags are running */
if (ipath_diag_inuse)
return;
extctl = dd->ipath_extctrl & ~(INFINIPATH_EXTC_LED1PRIPORT_ON |
INFINIPATH_EXTC_LED2PRIPORT_ON);
if (ltst & INFINIPATH_IBCS_LT_STATE_LINKUP)
extctl |= INFINIPATH_EXTC_LED2PRIPORT_ON;
if (lst == INFINIPATH_IBCS_L_STATE_ACTIVE)
extctl |= INFINIPATH_EXTC_LED1PRIPORT_ON;
dd->ipath_extctrl = extctl;
ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, extctl);
}
/**
* ipath_setup_pe_cleanup - clean up any per-chip chip-specific stuff
* @dd: the infinipath device
*
* This is called during driver unload.
* We do the pci_disable_msi here, not in generic code, because it
* isn't used for the HT-400. If we do end up needing pci_enable_msi
* at some point in the future for HT-400, we'll move the call back
* into the main init_one code.
*/
static void ipath_setup_pe_cleanup(struct ipath_devdata *dd)
{
dd->ipath_msi_lo = 0; /* just in case unload fails */
pci_disable_msi(dd->pcidev);
}
/**
* ipath_setup_pe_config - setup PCIe config related stuff
* @dd: the infinipath device
* @pdev: the PCI device
*
* The pci_enable_msi() call will fail on systems with MSI quirks
* such as those with AMD8131, even if the device of interest is not
* attached to that device, (in the 2.6.13 - 2.6.15 kernels, at least, fixed
* late in 2.6.16).
* All that can be done is to edit the kernel source to remove the quirk
* check until that is fixed.
* We do not need to call enable_msi() for our HyperTransport chip (HT-400),
* even those it uses MSI, and we want to avoid the quirk warning, so
* So we call enable_msi only for the PE-800. If we do end up needing
* pci_enable_msi at some point in the future for HT-400, we'll move the
* call back into the main init_one code.
* We save the msi lo and hi values, so we can restore them after
* chip reset (the kernel PCI infrastructure doesn't yet handle that
* correctly).
*/
static int ipath_setup_pe_config(struct ipath_devdata *dd,
struct pci_dev *pdev)
{
int pos, ret;
dd->ipath_msi_lo = 0; /* used as a flag during reset processing */
ret = pci_enable_msi(dd->pcidev);
if (ret)
ipath_dev_err(dd, "pci_enable_msi failed: %d, "
"interrupts may not work\n", ret);
/* continue even if it fails, we may still be OK... */
if ((pos = pci_find_capability(dd->pcidev, PCI_CAP_ID_MSI))) {
u16 control;
pci_read_config_dword(dd->pcidev, pos + PCI_MSI_ADDRESS_LO,
&dd->ipath_msi_lo);
pci_read_config_dword(dd->pcidev, pos + PCI_MSI_ADDRESS_HI,
&dd->ipath_msi_hi);
pci_read_config_word(dd->pcidev, pos + PCI_MSI_FLAGS,
&control);
/* now save the data (vector) info */
pci_read_config_word(dd->pcidev,
pos + ((control & PCI_MSI_FLAGS_64BIT)
? 12 : 8),
&dd->ipath_msi_data);
ipath_cdbg(VERBOSE, "Read msi data 0x%x from config offset "
"0x%x, control=0x%x\n", dd->ipath_msi_data,
pos + ((control & PCI_MSI_FLAGS_64BIT) ? 12 : 8),
control);
/* we save the cachelinesize also, although it doesn't
* really matter */
pci_read_config_byte(dd->pcidev, PCI_CACHE_LINE_SIZE,
&dd->ipath_pci_cacheline);
} else
ipath_dev_err(dd, "Can't find MSI capability, "
"can't save MSI settings for reset\n");
if ((pos = pci_find_capability(dd->pcidev, PCI_CAP_ID_EXP))) {
u16 linkstat;
pci_read_config_word(dd->pcidev, pos + PCI_EXP_LNKSTA,
&linkstat);
linkstat >>= 4;
linkstat &= 0x1f;
if (linkstat != 8)
ipath_dev_err(dd, "PCIe width %u, "
"performance reduced\n", linkstat);
}
else
ipath_dev_err(dd, "Can't find PCI Express "
"capability!\n");
return 0;
}
static void ipath_init_pe_variables(void)
{
/*
* bits for selecting i2c direction and values,
* used for I2C serial flash
*/
ipath_gpio_sda_num = _IPATH_GPIO_SDA_NUM;
ipath_gpio_scl_num = _IPATH_GPIO_SCL_NUM;
ipath_gpio_sda = IPATH_GPIO_SDA;
ipath_gpio_scl = IPATH_GPIO_SCL;
/* variables for sanity checking interrupt and errors */
infinipath_hwe_bitsextant =
(INFINIPATH_HWE_RXEMEMPARITYERR_MASK <<
INFINIPATH_HWE_RXEMEMPARITYERR_SHIFT) |
(INFINIPATH_HWE_PCIEMEMPARITYERR_MASK <<
INFINIPATH_HWE_PCIEMEMPARITYERR_SHIFT) |
INFINIPATH_HWE_PCIE1PLLFAILED |
INFINIPATH_HWE_PCIE0PLLFAILED |
INFINIPATH_HWE_PCIEPOISONEDTLP |
INFINIPATH_HWE_PCIECPLTIMEOUT |
INFINIPATH_HWE_PCIEBUSPARITYXTLH |
INFINIPATH_HWE_PCIEBUSPARITYXADM |
INFINIPATH_HWE_PCIEBUSPARITYRADM |
INFINIPATH_HWE_MEMBISTFAILED |
INFINIPATH_HWE_COREPLL_FBSLIP |
INFINIPATH_HWE_COREPLL_RFSLIP |
INFINIPATH_HWE_SERDESPLLFAILED |
INFINIPATH_HWE_IBCBUSTOSPCPARITYERR |
INFINIPATH_HWE_IBCBUSFRSPCPARITYERR;
infinipath_i_bitsextant =
(INFINIPATH_I_RCVURG_MASK << INFINIPATH_I_RCVURG_SHIFT) |
(INFINIPATH_I_RCVAVAIL_MASK <<
INFINIPATH_I_RCVAVAIL_SHIFT) |
INFINIPATH_I_ERROR | INFINIPATH_I_SPIOSENT |
INFINIPATH_I_SPIOBUFAVAIL | INFINIPATH_I_GPIO;
infinipath_e_bitsextant =
INFINIPATH_E_RFORMATERR | INFINIPATH_E_RVCRC |
INFINIPATH_E_RICRC | INFINIPATH_E_RMINPKTLEN |
INFINIPATH_E_RMAXPKTLEN | INFINIPATH_E_RLONGPKTLEN |
INFINIPATH_E_RSHORTPKTLEN | INFINIPATH_E_RUNEXPCHAR |
INFINIPATH_E_RUNSUPVL | INFINIPATH_E_REBP |
INFINIPATH_E_RIBFLOW | INFINIPATH_E_RBADVERSION |
INFINIPATH_E_RRCVEGRFULL | INFINIPATH_E_RRCVHDRFULL |
INFINIPATH_E_RBADTID | INFINIPATH_E_RHDRLEN |
INFINIPATH_E_RHDR | INFINIPATH_E_RIBLOSTLINK |
INFINIPATH_E_SMINPKTLEN | INFINIPATH_E_SMAXPKTLEN |
INFINIPATH_E_SUNDERRUN | INFINIPATH_E_SPKTLEN |
INFINIPATH_E_SDROPPEDSMPPKT | INFINIPATH_E_SDROPPEDDATAPKT |
INFINIPATH_E_SPIOARMLAUNCH | INFINIPATH_E_SUNEXPERRPKTNUM |
INFINIPATH_E_SUNSUPVL | INFINIPATH_E_IBSTATUSCHANGED |
INFINIPATH_E_INVALIDADDR | INFINIPATH_E_RESET |
INFINIPATH_E_HARDWARE;
infinipath_i_rcvavail_mask = INFINIPATH_I_RCVAVAIL_MASK;
infinipath_i_rcvurg_mask = INFINIPATH_I_RCVURG_MASK;
}
/* setup the MSI stuff again after a reset. I'd like to just call
* pci_enable_msi() and request_irq() again, but when I do that,
* the MSI enable bit doesn't get set in the command word, and
* we switch to to a different interrupt vector, which is confusing,
* so I instead just do it all inline. Perhaps somehow can tie this
* into the PCIe hotplug support at some point
* Note, because I'm doing it all here, I don't call pci_disable_msi()
* or free_irq() at the start of ipath_setup_pe_reset().
*/
static int ipath_reinit_msi(struct ipath_devdata *dd)
{
int pos;
u16 control;
int ret;
if (!dd->ipath_msi_lo) {
dev_info(&dd->pcidev->dev, "Can't restore MSI config, "
"initial setup failed?\n");
ret = 0;
goto bail;
}
if (!(pos = pci_find_capability(dd->pcidev, PCI_CAP_ID_MSI))) {
ipath_dev_err(dd, "Can't find MSI capability, "
"can't restore MSI settings\n");
ret = 0;
goto bail;
}
ipath_cdbg(VERBOSE, "Writing msi_lo 0x%x to config offset 0x%x\n",
dd->ipath_msi_lo, pos + PCI_MSI_ADDRESS_LO);
pci_write_config_dword(dd->pcidev, pos + PCI_MSI_ADDRESS_LO,
dd->ipath_msi_lo);
ipath_cdbg(VERBOSE, "Writing msi_lo 0x%x to config offset 0x%x\n",
dd->ipath_msi_hi, pos + PCI_MSI_ADDRESS_HI);
pci_write_config_dword(dd->pcidev, pos + PCI_MSI_ADDRESS_HI,
dd->ipath_msi_hi);
pci_read_config_word(dd->pcidev, pos + PCI_MSI_FLAGS, &control);
if (!(control & PCI_MSI_FLAGS_ENABLE)) {
ipath_cdbg(VERBOSE, "MSI control at off %x was %x, "
"setting MSI enable (%x)\n", pos + PCI_MSI_FLAGS,
control, control | PCI_MSI_FLAGS_ENABLE);
control |= PCI_MSI_FLAGS_ENABLE;
pci_write_config_word(dd->pcidev, pos + PCI_MSI_FLAGS,
control);
}
/* now rewrite the data (vector) info */
pci_write_config_word(dd->pcidev, pos +
((control & PCI_MSI_FLAGS_64BIT) ? 12 : 8),
dd->ipath_msi_data);
/* we restore the cachelinesize also, although it doesn't really
* matter */
pci_write_config_byte(dd->pcidev, PCI_CACHE_LINE_SIZE,
dd->ipath_pci_cacheline);
/* and now set the pci master bit again */
pci_set_master(dd->pcidev);
ret = 1;
bail:
return ret;
}
/* This routine sleeps, so it can only be called from user context, not
* from interrupt context. If we need interrupt context, we can split
* it into two routines.
*/
static int ipath_setup_pe_reset(struct ipath_devdata *dd)
{
u64 val;
int i;
int ret;
/* Use ERROR so it shows up in logs, etc. */
ipath_dev_err(dd, "Resetting PE-800 unit %u\n",
dd->ipath_unit);
/* keep chip from being accessed in a few places */
dd->ipath_flags &= ~(IPATH_INITTED|IPATH_PRESENT);
val = dd->ipath_control | INFINIPATH_C_RESET;
ipath_write_kreg(dd, dd->ipath_kregs->kr_control, val);
mb();
for (i = 1; i <= 5; i++) {
int r;
/* allow MBIST, etc. to complete; longer on each retry.
* We sometimes get machine checks from bus timeout if no
* response, so for now, make it *really* long.
*/
msleep(1000 + (1 + i) * 2000);
if ((r =
pci_write_config_dword(dd->pcidev, PCI_BASE_ADDRESS_0,
dd->ipath_pcibar0)))
ipath_dev_err(dd, "rewrite of BAR0 failed: %d\n",
r);
if ((r =
pci_write_config_dword(dd->pcidev, PCI_BASE_ADDRESS_1,
dd->ipath_pcibar1)))
ipath_dev_err(dd, "rewrite of BAR1 failed: %d\n",
r);
/* now re-enable memory access */
if ((r = pci_enable_device(dd->pcidev)))
ipath_dev_err(dd, "pci_enable_device failed after "
"reset: %d\n", r);
/* whether it worked or not, mark as present, again */
dd->ipath_flags |= IPATH_PRESENT;
val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_revision);
if (val == dd->ipath_revision) {
ipath_cdbg(VERBOSE, "Got matching revision "
"register %llx on try %d\n",
(unsigned long long) val, i);
ret = ipath_reinit_msi(dd);
goto bail;
}
/* Probably getting -1 back */
ipath_dbg("Didn't get expected revision register, "
"got %llx, try %d\n", (unsigned long long) val,
i + 1);
}
ret = 0; /* failed */
bail:
return ret;
}
/**
* ipath_pe_put_tid - write a TID in chip
* @dd: the infinipath device
* @tidptr: pointer to the expected TID (in chip) to udpate
* @tidtype: 0 for eager, 1 for expected
* @pa: physical address of in memory buffer; ipath_tidinvalid if freeing
*
* This exists as a separate routine to allow for special locking etc.
* It's used for both the full cleanup on exit, as well as the normal
* setup and teardown.
*/
static void ipath_pe_put_tid(struct ipath_devdata *dd, u64 __iomem *tidptr,
u32 type, unsigned long pa)
{
u32 __iomem *tidp32 = (u32 __iomem *)tidptr;
unsigned long flags = 0; /* keep gcc quiet */
if (pa != dd->ipath_tidinvalid) {
if (pa & ((1U << 11) - 1)) {
dev_info(&dd->pcidev->dev, "BUG: physaddr %lx "
"not 4KB aligned!\n", pa);
return;
}
pa >>= 11;
/* paranoia check */
if (pa & (7<<29))
ipath_dev_err(dd,
"BUG: Physical page address 0x%lx "
"has bits set in 31-29\n", pa);
if (type == 0)
pa |= dd->ipath_tidtemplate;
else /* for now, always full 4KB page */
pa |= 2 << 29;
}
/* workaround chip bug 9437 by writing each TID twice
* and holding a spinlock around the writes, so they don't
* intermix with other TID (eager or expected) writes
* Unfortunately, this call can be done from interrupt level
* for the port 0 eager TIDs, so we have to use irqsave
*/
spin_lock_irqsave(&dd->ipath_tid_lock, flags);
ipath_write_kreg(dd, dd->ipath_kregs->kr_scratch, 0xfeeddeaf);
if (dd->ipath_kregbase)
writel(pa, tidp32);
ipath_write_kreg(dd, dd->ipath_kregs->kr_scratch, 0xdeadbeef);
mmiowb();
spin_unlock_irqrestore(&dd->ipath_tid_lock, flags);
}
/**
* ipath_pe_clear_tid - clear all TID entries for a port, expected and eager
* @dd: the infinipath device
* @port: the port
*
* clear all TID entries for a port, expected and eager.
* Used from ipath_close(). On PE800, TIDs are only 32 bits,
* not 64, but they are still on 64 bit boundaries, so tidbase
* is declared as u64 * for the pointer math, even though we write 32 bits
*/
static void ipath_pe_clear_tids(struct ipath_devdata *dd, unsigned port)
{
u64 __iomem *tidbase;
unsigned long tidinv;
int i;
if (!dd->ipath_kregbase)
return;
ipath_cdbg(VERBOSE, "Invalidate TIDs for port %u\n", port);
tidinv = dd->ipath_tidinvalid;
tidbase = (u64 __iomem *)
((char __iomem *)(dd->ipath_kregbase) +
dd->ipath_rcvtidbase +
port * dd->ipath_rcvtidcnt * sizeof(*tidbase));
for (i = 0; i < dd->ipath_rcvtidcnt; i++)
ipath_pe_put_tid(dd, &tidbase[i], 0, tidinv);
tidbase = (u64 __iomem *)
((char __iomem *)(dd->ipath_kregbase) +
dd->ipath_rcvegrbase +
port * dd->ipath_rcvegrcnt * sizeof(*tidbase));
for (i = 0; i < dd->ipath_rcvegrcnt; i++)
ipath_pe_put_tid(dd, &tidbase[i], 1, tidinv);
}
/**
* ipath_pe_tidtemplate - setup constants for TID updates
* @dd: the infinipath device
*
* We setup stuff that we use a lot, to avoid calculating each time
*/
static void ipath_pe_tidtemplate(struct ipath_devdata *dd)
{
u32 egrsize = dd->ipath_rcvegrbufsize;
/* For now, we always allocate 4KB buffers (at init) so we can
* receive max size packets. We may want a module parameter to
* specify 2KB or 4KB and/or make be per port instead of per device
* for those who want to reduce memory footprint. Note that the
* ipath_rcvhdrentsize size must be large enough to hold the largest
* IB header (currently 96 bytes) that we expect to handle (plus of
* course the 2 dwords of RHF).
*/
if (egrsize == 2048)
dd->ipath_tidtemplate = 1U << 29;
else if (egrsize == 4096)
dd->ipath_tidtemplate = 2U << 29;
else {
egrsize = 4096;
dev_info(&dd->pcidev->dev, "BUG: unsupported egrbufsize "
"%u, using %u\n", dd->ipath_rcvegrbufsize,
egrsize);
dd->ipath_tidtemplate = 2U << 29;
}
dd->ipath_tidinvalid = 0;
}
static int ipath_pe_early_init(struct ipath_devdata *dd)
{
dd->ipath_flags |= IPATH_4BYTE_TID;
/*
* For openib, we need to be able to handle an IB header of 96 bytes
* or 24 dwords. HT-400 has arbitrary sized receive buffers, so we
* made them the same size as the PIO buffers. The PE-800 does not
* handle arbitrary size buffers, so we need the header large enough
* to handle largest IB header, but still have room for a 2KB MTU
* standard IB packet.
*/
dd->ipath_rcvhdrentsize = 24;
dd->ipath_rcvhdrsize = IPATH_DFLT_RCVHDRSIZE;
/* For HT-400, we allocate a somewhat overly large eager buffer,
* such that we can guarantee that we can receive the largest packet
* that we can send out. To truly support a 4KB MTU, we need to
* bump this to a larger value. We'll do this when I get around to
* testing 4KB sends on the PE-800, which I have not yet done.
*/
dd->ipath_rcvegrbufsize = 2048;
/*
* the min() check here is currently a nop, but it may not always
* be, depending on just how we do ipath_rcvegrbufsize
*/
dd->ipath_ibmaxlen = min(dd->ipath_piosize2k,
dd->ipath_rcvegrbufsize +
(dd->ipath_rcvhdrentsize << 2));
dd->ipath_init_ibmaxlen = dd->ipath_ibmaxlen;
/*
* For PE-800, we can request a receive interrupt for 1 or
* more packets from current offset. For now, we set this
* up for a single packet, to match the HT-400 behavior.
*/
dd->ipath_rhdrhead_intr_off = 1ULL<<32;
return 0;
}
int __attribute__((weak)) ipath_unordered_wc(void)
{
return 0;
}
/**
* ipath_init_pe_get_base_info - set chip-specific flags for user code
* @dd: the infinipath device
* @kbase: ipath_base_info pointer
*
* We set the PCIE flag because the lower bandwidth on PCIe vs
* HyperTransport can affect some user packet algorithims.
*/
static int ipath_pe_get_base_info(struct ipath_portdata *pd, void *kbase)
{
struct ipath_base_info *kinfo = kbase;
if (ipath_unordered_wc()) {
kinfo->spi_runtime_flags |= IPATH_RUNTIME_FORCE_WC_ORDER;
ipath_cdbg(PROC, "Intel processor, forcing WC order\n");
}
else
ipath_cdbg(PROC, "Not Intel processor, WC ordered\n");
kinfo->spi_runtime_flags |= IPATH_RUNTIME_PCIE;
return 0;
}
/**
* ipath_init_pe800_funcs - set up the chip-specific function pointers
* @dd: the infinipath device
*
* This is global, and is called directly at init to set up the
* chip-specific function pointers for later use.
*/
void ipath_init_pe800_funcs(struct ipath_devdata *dd)
{
dd->ipath_f_intrsetup = ipath_pe_intconfig;
dd->ipath_f_bus = ipath_setup_pe_config;
dd->ipath_f_reset = ipath_setup_pe_reset;
dd->ipath_f_get_boardname = ipath_pe_boardname;
dd->ipath_f_init_hwerrors = ipath_pe_init_hwerrors;
dd->ipath_f_early_init = ipath_pe_early_init;
dd->ipath_f_handle_hwerrors = ipath_pe_handle_hwerrors;
dd->ipath_f_quiet_serdes = ipath_pe_quiet_serdes;
dd->ipath_f_bringup_serdes = ipath_pe_bringup_serdes;
dd->ipath_f_clear_tids = ipath_pe_clear_tids;
dd->ipath_f_put_tid = ipath_pe_put_tid;
dd->ipath_f_cleanup = ipath_setup_pe_cleanup;
dd->ipath_f_setextled = ipath_setup_pe_setextled;
dd->ipath_f_get_base_info = ipath_pe_get_base_info;
/* initialize chip-specific variables */
dd->ipath_f_tidtemplate = ipath_pe_tidtemplate;
/*
* setup the register offsets, since they are different for each
* chip
*/
dd->ipath_kregs = &ipath_pe_kregs;
dd->ipath_cregs = &ipath_pe_cregs;
ipath_init_pe_variables();
}