android_kernel_xiaomi_sm8350/fs/proc/proc_misc.c
Christoph Lameter a10aa57987 vmalloc: show vmalloced areas via /proc/vmallocinfo
Implement a new proc file that allows the display of the currently allocated
vmalloc memory.

It allows to see the users of vmalloc.  That is important if vmalloc space is
scarce (i386 for example).

And it's going to be important for the compound page fallback to vmalloc.
Many of the current users can be switched to use compound pages with fallback.
 This means that the number of users of vmalloc is reduced and page tables no
longer necessary to access the memory.  /proc/vmallocinfo allows to review how
that reduction occurs.

If memory becomes fragmented and larger order allocations are no longer
possible then /proc/vmallocinfo allows to see which compound page allocations
fell back to virtual compound pages.  That is important for new users of
virtual compound pages.  Such as order 1 stack allocation etc that may
fallback to virtual compound pages in the future.

/proc/vmallocinfo permissions are made readable-only-by-root to avoid possible
information leakage.

[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: CONFIG_MMU=n build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:21 -07:00

928 lines
24 KiB
C

/*
* linux/fs/proc/proc_misc.c
*
* linux/fs/proc/array.c
* Copyright (C) 1992 by Linus Torvalds
* based on ideas by Darren Senn
*
* This used to be the part of array.c. See the rest of history and credits
* there. I took this into a separate file and switched the thing to generic
* proc_file_inode_operations, leaving in array.c only per-process stuff.
* Inumbers allocation made dynamic (via create_proc_entry()). AV, May 1999.
*
* Changes:
* Fulton Green : Encapsulated position metric calculations.
* <kernel@FultonGreen.com>
*/
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/time.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/fs.h>
#include <linux/tty.h>
#include <linux/string.h>
#include <linux/mman.h>
#include <linux/proc_fs.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/pagemap.h>
#include <linux/interrupt.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/genhd.h>
#include <linux/smp.h>
#include <linux/signal.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/seq_file.h>
#include <linux/times.h>
#include <linux/profile.h>
#include <linux/utsname.h>
#include <linux/blkdev.h>
#include <linux/hugetlb.h>
#include <linux/jiffies.h>
#include <linux/sysrq.h>
#include <linux/vmalloc.h>
#include <linux/crash_dump.h>
#include <linux/pid_namespace.h>
#include <linux/bootmem.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/tlb.h>
#include <asm/div64.h>
#include "internal.h"
#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
/*
* Warning: stuff below (imported functions) assumes that its output will fit
* into one page. For some of those functions it may be wrong. Moreover, we
* have a way to deal with that gracefully. Right now I used straightforward
* wrappers, but this needs further analysis wrt potential overflows.
*/
extern int get_hardware_list(char *);
extern int get_stram_list(char *);
extern int get_exec_domain_list(char *);
extern int get_dma_list(char *);
static int proc_calc_metrics(char *page, char **start, off_t off,
int count, int *eof, int len)
{
if (len <= off+count) *eof = 1;
*start = page + off;
len -= off;
if (len>count) len = count;
if (len<0) len = 0;
return len;
}
static int loadavg_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int a, b, c;
int len;
unsigned long seq;
do {
seq = read_seqbegin(&xtime_lock);
a = avenrun[0] + (FIXED_1/200);
b = avenrun[1] + (FIXED_1/200);
c = avenrun[2] + (FIXED_1/200);
} while (read_seqretry(&xtime_lock, seq));
len = sprintf(page,"%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
LOAD_INT(a), LOAD_FRAC(a),
LOAD_INT(b), LOAD_FRAC(b),
LOAD_INT(c), LOAD_FRAC(c),
nr_running(), nr_threads,
task_active_pid_ns(current)->last_pid);
return proc_calc_metrics(page, start, off, count, eof, len);
}
static int uptime_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
struct timespec uptime;
struct timespec idle;
int len;
cputime_t idletime = cputime_add(init_task.utime, init_task.stime);
do_posix_clock_monotonic_gettime(&uptime);
monotonic_to_bootbased(&uptime);
cputime_to_timespec(idletime, &idle);
len = sprintf(page,"%lu.%02lu %lu.%02lu\n",
(unsigned long) uptime.tv_sec,
(uptime.tv_nsec / (NSEC_PER_SEC / 100)),
(unsigned long) idle.tv_sec,
(idle.tv_nsec / (NSEC_PER_SEC / 100)));
return proc_calc_metrics(page, start, off, count, eof, len);
}
static int meminfo_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
struct sysinfo i;
int len;
unsigned long committed;
unsigned long allowed;
struct vmalloc_info vmi;
long cached;
/*
* display in kilobytes.
*/
#define K(x) ((x) << (PAGE_SHIFT - 10))
si_meminfo(&i);
si_swapinfo(&i);
committed = atomic_read(&vm_committed_space);
allowed = ((totalram_pages - hugetlb_total_pages())
* sysctl_overcommit_ratio / 100) + total_swap_pages;
cached = global_page_state(NR_FILE_PAGES) -
total_swapcache_pages - i.bufferram;
if (cached < 0)
cached = 0;
get_vmalloc_info(&vmi);
/*
* Tagged format, for easy grepping and expansion.
*/
len = sprintf(page,
"MemTotal: %8lu kB\n"
"MemFree: %8lu kB\n"
"Buffers: %8lu kB\n"
"Cached: %8lu kB\n"
"SwapCached: %8lu kB\n"
"Active: %8lu kB\n"
"Inactive: %8lu kB\n"
#ifdef CONFIG_HIGHMEM
"HighTotal: %8lu kB\n"
"HighFree: %8lu kB\n"
"LowTotal: %8lu kB\n"
"LowFree: %8lu kB\n"
#endif
"SwapTotal: %8lu kB\n"
"SwapFree: %8lu kB\n"
"Dirty: %8lu kB\n"
"Writeback: %8lu kB\n"
"AnonPages: %8lu kB\n"
"Mapped: %8lu kB\n"
"Slab: %8lu kB\n"
"SReclaimable: %8lu kB\n"
"SUnreclaim: %8lu kB\n"
"PageTables: %8lu kB\n"
"NFS_Unstable: %8lu kB\n"
"Bounce: %8lu kB\n"
"CommitLimit: %8lu kB\n"
"Committed_AS: %8lu kB\n"
"VmallocTotal: %8lu kB\n"
"VmallocUsed: %8lu kB\n"
"VmallocChunk: %8lu kB\n",
K(i.totalram),
K(i.freeram),
K(i.bufferram),
K(cached),
K(total_swapcache_pages),
K(global_page_state(NR_ACTIVE)),
K(global_page_state(NR_INACTIVE)),
#ifdef CONFIG_HIGHMEM
K(i.totalhigh),
K(i.freehigh),
K(i.totalram-i.totalhigh),
K(i.freeram-i.freehigh),
#endif
K(i.totalswap),
K(i.freeswap),
K(global_page_state(NR_FILE_DIRTY)),
K(global_page_state(NR_WRITEBACK)),
K(global_page_state(NR_ANON_PAGES)),
K(global_page_state(NR_FILE_MAPPED)),
K(global_page_state(NR_SLAB_RECLAIMABLE) +
global_page_state(NR_SLAB_UNRECLAIMABLE)),
K(global_page_state(NR_SLAB_RECLAIMABLE)),
K(global_page_state(NR_SLAB_UNRECLAIMABLE)),
K(global_page_state(NR_PAGETABLE)),
K(global_page_state(NR_UNSTABLE_NFS)),
K(global_page_state(NR_BOUNCE)),
K(allowed),
K(committed),
(unsigned long)VMALLOC_TOTAL >> 10,
vmi.used >> 10,
vmi.largest_chunk >> 10
);
len += hugetlb_report_meminfo(page + len);
return proc_calc_metrics(page, start, off, count, eof, len);
#undef K
}
extern const struct seq_operations fragmentation_op;
static int fragmentation_open(struct inode *inode, struct file *file)
{
(void)inode;
return seq_open(file, &fragmentation_op);
}
static const struct file_operations fragmentation_file_operations = {
.open = fragmentation_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
extern const struct seq_operations pagetypeinfo_op;
static int pagetypeinfo_open(struct inode *inode, struct file *file)
{
return seq_open(file, &pagetypeinfo_op);
}
static const struct file_operations pagetypeinfo_file_ops = {
.open = pagetypeinfo_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
extern const struct seq_operations zoneinfo_op;
static int zoneinfo_open(struct inode *inode, struct file *file)
{
return seq_open(file, &zoneinfo_op);
}
static const struct file_operations proc_zoneinfo_file_operations = {
.open = zoneinfo_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static int version_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len;
len = snprintf(page, PAGE_SIZE, linux_proc_banner,
utsname()->sysname,
utsname()->release,
utsname()->version);
return proc_calc_metrics(page, start, off, count, eof, len);
}
extern const struct seq_operations cpuinfo_op;
static int cpuinfo_open(struct inode *inode, struct file *file)
{
return seq_open(file, &cpuinfo_op);
}
static const struct file_operations proc_cpuinfo_operations = {
.open = cpuinfo_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static int devinfo_show(struct seq_file *f, void *v)
{
int i = *(loff_t *) v;
if (i < CHRDEV_MAJOR_HASH_SIZE) {
if (i == 0)
seq_printf(f, "Character devices:\n");
chrdev_show(f, i);
}
#ifdef CONFIG_BLOCK
else {
i -= CHRDEV_MAJOR_HASH_SIZE;
if (i == 0)
seq_printf(f, "\nBlock devices:\n");
blkdev_show(f, i);
}
#endif
return 0;
}
static void *devinfo_start(struct seq_file *f, loff_t *pos)
{
if (*pos < (BLKDEV_MAJOR_HASH_SIZE + CHRDEV_MAJOR_HASH_SIZE))
return pos;
return NULL;
}
static void *devinfo_next(struct seq_file *f, void *v, loff_t *pos)
{
(*pos)++;
if (*pos >= (BLKDEV_MAJOR_HASH_SIZE + CHRDEV_MAJOR_HASH_SIZE))
return NULL;
return pos;
}
static void devinfo_stop(struct seq_file *f, void *v)
{
/* Nothing to do */
}
static const struct seq_operations devinfo_ops = {
.start = devinfo_start,
.next = devinfo_next,
.stop = devinfo_stop,
.show = devinfo_show
};
static int devinfo_open(struct inode *inode, struct file *filp)
{
return seq_open(filp, &devinfo_ops);
}
static const struct file_operations proc_devinfo_operations = {
.open = devinfo_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
extern const struct seq_operations vmstat_op;
static int vmstat_open(struct inode *inode, struct file *file)
{
return seq_open(file, &vmstat_op);
}
static const struct file_operations proc_vmstat_file_operations = {
.open = vmstat_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
#ifdef CONFIG_PROC_HARDWARE
static int hardware_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len = get_hardware_list(page);
return proc_calc_metrics(page, start, off, count, eof, len);
}
#endif
#ifdef CONFIG_STRAM_PROC
static int stram_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len = get_stram_list(page);
return proc_calc_metrics(page, start, off, count, eof, len);
}
#endif
#ifdef CONFIG_BLOCK
static int partitions_open(struct inode *inode, struct file *file)
{
return seq_open(file, &partitions_op);
}
static const struct file_operations proc_partitions_operations = {
.open = partitions_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static int diskstats_open(struct inode *inode, struct file *file)
{
return seq_open(file, &diskstats_op);
}
static const struct file_operations proc_diskstats_operations = {
.open = diskstats_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
#endif
#ifdef CONFIG_MODULES
extern const struct seq_operations modules_op;
static int modules_open(struct inode *inode, struct file *file)
{
return seq_open(file, &modules_op);
}
static const struct file_operations proc_modules_operations = {
.open = modules_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
#endif
#ifdef CONFIG_SLABINFO
static int slabinfo_open(struct inode *inode, struct file *file)
{
return seq_open(file, &slabinfo_op);
}
static const struct file_operations proc_slabinfo_operations = {
.open = slabinfo_open,
.read = seq_read,
.write = slabinfo_write,
.llseek = seq_lseek,
.release = seq_release,
};
#ifdef CONFIG_DEBUG_SLAB_LEAK
extern const struct seq_operations slabstats_op;
static int slabstats_open(struct inode *inode, struct file *file)
{
unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
int ret = -ENOMEM;
if (n) {
ret = seq_open(file, &slabstats_op);
if (!ret) {
struct seq_file *m = file->private_data;
*n = PAGE_SIZE / (2 * sizeof(unsigned long));
m->private = n;
n = NULL;
}
kfree(n);
}
return ret;
}
static const struct file_operations proc_slabstats_operations = {
.open = slabstats_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private,
};
#endif
#endif
#ifdef CONFIG_MMU
static int vmalloc_open(struct inode *inode, struct file *file)
{
return seq_open(file, &vmalloc_op);
}
static const struct file_operations proc_vmalloc_operations = {
.open = vmalloc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
#endif
static int show_stat(struct seq_file *p, void *v)
{
int i;
unsigned long jif;
cputime64_t user, nice, system, idle, iowait, irq, softirq, steal;
cputime64_t guest;
u64 sum = 0;
struct timespec boottime;
unsigned int *per_irq_sum;
per_irq_sum = kzalloc(sizeof(unsigned int)*NR_IRQS, GFP_KERNEL);
if (!per_irq_sum)
return -ENOMEM;
user = nice = system = idle = iowait =
irq = softirq = steal = cputime64_zero;
guest = cputime64_zero;
getboottime(&boottime);
jif = boottime.tv_sec;
for_each_possible_cpu(i) {
int j;
user = cputime64_add(user, kstat_cpu(i).cpustat.user);
nice = cputime64_add(nice, kstat_cpu(i).cpustat.nice);
system = cputime64_add(system, kstat_cpu(i).cpustat.system);
idle = cputime64_add(idle, kstat_cpu(i).cpustat.idle);
iowait = cputime64_add(iowait, kstat_cpu(i).cpustat.iowait);
irq = cputime64_add(irq, kstat_cpu(i).cpustat.irq);
softirq = cputime64_add(softirq, kstat_cpu(i).cpustat.softirq);
steal = cputime64_add(steal, kstat_cpu(i).cpustat.steal);
guest = cputime64_add(guest, kstat_cpu(i).cpustat.guest);
for (j = 0; j < NR_IRQS; j++) {
unsigned int temp = kstat_cpu(i).irqs[j];
sum += temp;
per_irq_sum[j] += temp;
}
}
seq_printf(p, "cpu %llu %llu %llu %llu %llu %llu %llu %llu %llu\n",
(unsigned long long)cputime64_to_clock_t(user),
(unsigned long long)cputime64_to_clock_t(nice),
(unsigned long long)cputime64_to_clock_t(system),
(unsigned long long)cputime64_to_clock_t(idle),
(unsigned long long)cputime64_to_clock_t(iowait),
(unsigned long long)cputime64_to_clock_t(irq),
(unsigned long long)cputime64_to_clock_t(softirq),
(unsigned long long)cputime64_to_clock_t(steal),
(unsigned long long)cputime64_to_clock_t(guest));
for_each_online_cpu(i) {
/* Copy values here to work around gcc-2.95.3, gcc-2.96 */
user = kstat_cpu(i).cpustat.user;
nice = kstat_cpu(i).cpustat.nice;
system = kstat_cpu(i).cpustat.system;
idle = kstat_cpu(i).cpustat.idle;
iowait = kstat_cpu(i).cpustat.iowait;
irq = kstat_cpu(i).cpustat.irq;
softirq = kstat_cpu(i).cpustat.softirq;
steal = kstat_cpu(i).cpustat.steal;
guest = kstat_cpu(i).cpustat.guest;
seq_printf(p,
"cpu%d %llu %llu %llu %llu %llu %llu %llu %llu %llu\n",
i,
(unsigned long long)cputime64_to_clock_t(user),
(unsigned long long)cputime64_to_clock_t(nice),
(unsigned long long)cputime64_to_clock_t(system),
(unsigned long long)cputime64_to_clock_t(idle),
(unsigned long long)cputime64_to_clock_t(iowait),
(unsigned long long)cputime64_to_clock_t(irq),
(unsigned long long)cputime64_to_clock_t(softirq),
(unsigned long long)cputime64_to_clock_t(steal),
(unsigned long long)cputime64_to_clock_t(guest));
}
seq_printf(p, "intr %llu", (unsigned long long)sum);
for (i = 0; i < NR_IRQS; i++)
seq_printf(p, " %u", per_irq_sum[i]);
seq_printf(p,
"\nctxt %llu\n"
"btime %lu\n"
"processes %lu\n"
"procs_running %lu\n"
"procs_blocked %lu\n",
nr_context_switches(),
(unsigned long)jif,
total_forks,
nr_running(),
nr_iowait());
kfree(per_irq_sum);
return 0;
}
static int stat_open(struct inode *inode, struct file *file)
{
unsigned size = 4096 * (1 + num_possible_cpus() / 32);
char *buf;
struct seq_file *m;
int res;
/* don't ask for more than the kmalloc() max size, currently 128 KB */
if (size > 128 * 1024)
size = 128 * 1024;
buf = kmalloc(size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
res = single_open(file, show_stat, NULL);
if (!res) {
m = file->private_data;
m->buf = buf;
m->size = size;
} else
kfree(buf);
return res;
}
static const struct file_operations proc_stat_operations = {
.open = stat_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/*
* /proc/interrupts
*/
static void *int_seq_start(struct seq_file *f, loff_t *pos)
{
return (*pos <= NR_IRQS) ? pos : NULL;
}
static void *int_seq_next(struct seq_file *f, void *v, loff_t *pos)
{
(*pos)++;
if (*pos > NR_IRQS)
return NULL;
return pos;
}
static void int_seq_stop(struct seq_file *f, void *v)
{
/* Nothing to do */
}
static const struct seq_operations int_seq_ops = {
.start = int_seq_start,
.next = int_seq_next,
.stop = int_seq_stop,
.show = show_interrupts
};
static int interrupts_open(struct inode *inode, struct file *filp)
{
return seq_open(filp, &int_seq_ops);
}
static const struct file_operations proc_interrupts_operations = {
.open = interrupts_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static int filesystems_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len = get_filesystem_list(page);
return proc_calc_metrics(page, start, off, count, eof, len);
}
static int cmdline_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len;
len = sprintf(page, "%s\n", saved_command_line);
return proc_calc_metrics(page, start, off, count, eof, len);
}
static int locks_open(struct inode *inode, struct file *filp)
{
return seq_open(filp, &locks_seq_operations);
}
static const struct file_operations proc_locks_operations = {
.open = locks_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static int execdomains_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len = get_exec_domain_list(page);
return proc_calc_metrics(page, start, off, count, eof, len);
}
#ifdef CONFIG_MAGIC_SYSRQ
/*
* writing 'C' to /proc/sysrq-trigger is like sysrq-C
*/
static ssize_t write_sysrq_trigger(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
if (count) {
char c;
if (get_user(c, buf))
return -EFAULT;
__handle_sysrq(c, NULL, 0);
}
return count;
}
static const struct file_operations proc_sysrq_trigger_operations = {
.write = write_sysrq_trigger,
};
#endif
#ifdef CONFIG_PROC_PAGE_MONITOR
#define KPMSIZE sizeof(u64)
#define KPMMASK (KPMSIZE - 1)
/* /proc/kpagecount - an array exposing page counts
*
* Each entry is a u64 representing the corresponding
* physical page count.
*/
static ssize_t kpagecount_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
u64 __user *out = (u64 __user *)buf;
struct page *ppage;
unsigned long src = *ppos;
unsigned long pfn;
ssize_t ret = 0;
u64 pcount;
pfn = src / KPMSIZE;
count = min_t(size_t, count, (max_pfn * KPMSIZE) - src);
if (src & KPMMASK || count & KPMMASK)
return -EIO;
while (count > 0) {
ppage = NULL;
if (pfn_valid(pfn))
ppage = pfn_to_page(pfn);
pfn++;
if (!ppage)
pcount = 0;
else
pcount = atomic_read(&ppage->_count);
if (put_user(pcount, out++)) {
ret = -EFAULT;
break;
}
count -= KPMSIZE;
}
*ppos += (char __user *)out - buf;
if (!ret)
ret = (char __user *)out - buf;
return ret;
}
static struct file_operations proc_kpagecount_operations = {
.llseek = mem_lseek,
.read = kpagecount_read,
};
/* /proc/kpageflags - an array exposing page flags
*
* Each entry is a u64 representing the corresponding
* physical page flags.
*/
/* These macros are used to decouple internal flags from exported ones */
#define KPF_LOCKED 0
#define KPF_ERROR 1
#define KPF_REFERENCED 2
#define KPF_UPTODATE 3
#define KPF_DIRTY 4
#define KPF_LRU 5
#define KPF_ACTIVE 6
#define KPF_SLAB 7
#define KPF_WRITEBACK 8
#define KPF_RECLAIM 9
#define KPF_BUDDY 10
#define kpf_copy_bit(flags, srcpos, dstpos) (((flags >> srcpos) & 1) << dstpos)
static ssize_t kpageflags_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
u64 __user *out = (u64 __user *)buf;
struct page *ppage;
unsigned long src = *ppos;
unsigned long pfn;
ssize_t ret = 0;
u64 kflags, uflags;
pfn = src / KPMSIZE;
count = min_t(unsigned long, count, (max_pfn * KPMSIZE) - src);
if (src & KPMMASK || count & KPMMASK)
return -EIO;
while (count > 0) {
ppage = NULL;
if (pfn_valid(pfn))
ppage = pfn_to_page(pfn);
pfn++;
if (!ppage)
kflags = 0;
else
kflags = ppage->flags;
uflags = kpf_copy_bit(KPF_LOCKED, PG_locked, kflags) |
kpf_copy_bit(kflags, KPF_ERROR, PG_error) |
kpf_copy_bit(kflags, KPF_REFERENCED, PG_referenced) |
kpf_copy_bit(kflags, KPF_UPTODATE, PG_uptodate) |
kpf_copy_bit(kflags, KPF_DIRTY, PG_dirty) |
kpf_copy_bit(kflags, KPF_LRU, PG_lru) |
kpf_copy_bit(kflags, KPF_ACTIVE, PG_active) |
kpf_copy_bit(kflags, KPF_SLAB, PG_slab) |
kpf_copy_bit(kflags, KPF_WRITEBACK, PG_writeback) |
kpf_copy_bit(kflags, KPF_RECLAIM, PG_reclaim) |
kpf_copy_bit(kflags, KPF_BUDDY, PG_buddy);
if (put_user(uflags, out++)) {
ret = -EFAULT;
break;
}
count -= KPMSIZE;
}
*ppos += (char __user *)out - buf;
if (!ret)
ret = (char __user *)out - buf;
return ret;
}
static struct file_operations proc_kpageflags_operations = {
.llseek = mem_lseek,
.read = kpageflags_read,
};
#endif /* CONFIG_PROC_PAGE_MONITOR */
struct proc_dir_entry *proc_root_kcore;
void create_seq_entry(char *name, mode_t mode, const struct file_operations *f)
{
struct proc_dir_entry *entry;
entry = create_proc_entry(name, mode, NULL);
if (entry)
entry->proc_fops = f;
}
void __init proc_misc_init(void)
{
static struct {
char *name;
int (*read_proc)(char*,char**,off_t,int,int*,void*);
} *p, simple_ones[] = {
{"loadavg", loadavg_read_proc},
{"uptime", uptime_read_proc},
{"meminfo", meminfo_read_proc},
{"version", version_read_proc},
#ifdef CONFIG_PROC_HARDWARE
{"hardware", hardware_read_proc},
#endif
#ifdef CONFIG_STRAM_PROC
{"stram", stram_read_proc},
#endif
{"filesystems", filesystems_read_proc},
{"cmdline", cmdline_read_proc},
{"execdomains", execdomains_read_proc},
{NULL,}
};
for (p = simple_ones; p->name; p++)
create_proc_read_entry(p->name, 0, NULL, p->read_proc, NULL);
proc_symlink("mounts", NULL, "self/mounts");
/* And now for trickier ones */
#ifdef CONFIG_PRINTK
{
struct proc_dir_entry *entry;
entry = create_proc_entry("kmsg", S_IRUSR, &proc_root);
if (entry)
entry->proc_fops = &proc_kmsg_operations;
}
#endif
create_seq_entry("locks", 0, &proc_locks_operations);
create_seq_entry("devices", 0, &proc_devinfo_operations);
create_seq_entry("cpuinfo", 0, &proc_cpuinfo_operations);
#ifdef CONFIG_BLOCK
create_seq_entry("partitions", 0, &proc_partitions_operations);
#endif
create_seq_entry("stat", 0, &proc_stat_operations);
create_seq_entry("interrupts", 0, &proc_interrupts_operations);
#ifdef CONFIG_SLABINFO
create_seq_entry("slabinfo",S_IWUSR|S_IRUGO,&proc_slabinfo_operations);
#ifdef CONFIG_DEBUG_SLAB_LEAK
create_seq_entry("slab_allocators", 0 ,&proc_slabstats_operations);
#endif
#endif
#ifdef CONFIG_MMU
proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
#endif
create_seq_entry("buddyinfo",S_IRUGO, &fragmentation_file_operations);
create_seq_entry("pagetypeinfo", S_IRUGO, &pagetypeinfo_file_ops);
create_seq_entry("vmstat",S_IRUGO, &proc_vmstat_file_operations);
create_seq_entry("zoneinfo",S_IRUGO, &proc_zoneinfo_file_operations);
#ifdef CONFIG_BLOCK
create_seq_entry("diskstats", 0, &proc_diskstats_operations);
#endif
#ifdef CONFIG_MODULES
create_seq_entry("modules", 0, &proc_modules_operations);
#endif
#ifdef CONFIG_SCHEDSTATS
create_seq_entry("schedstat", 0, &proc_schedstat_operations);
#endif
#ifdef CONFIG_PROC_KCORE
proc_root_kcore = create_proc_entry("kcore", S_IRUSR, NULL);
if (proc_root_kcore) {
proc_root_kcore->proc_fops = &proc_kcore_operations;
proc_root_kcore->size =
(size_t)high_memory - PAGE_OFFSET + PAGE_SIZE;
}
#endif
#ifdef CONFIG_PROC_PAGE_MONITOR
create_seq_entry("kpagecount", S_IRUSR, &proc_kpagecount_operations);
create_seq_entry("kpageflags", S_IRUSR, &proc_kpageflags_operations);
#endif
#ifdef CONFIG_PROC_VMCORE
proc_vmcore = create_proc_entry("vmcore", S_IRUSR, NULL);
if (proc_vmcore)
proc_vmcore->proc_fops = &proc_vmcore_operations;
#endif
#ifdef CONFIG_MAGIC_SYSRQ
{
struct proc_dir_entry *entry;
entry = create_proc_entry("sysrq-trigger", S_IWUSR, NULL);
if (entry)
entry->proc_fops = &proc_sysrq_trigger_operations;
}
#endif
}