android_kernel_xiaomi_sm8350/drivers/s390/char/sclp_con.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

328 lines
7.9 KiB
C

/*
* SCLP line mode console driver
*
* Copyright IBM Corp. 1999, 2009
* Author(s): Martin Peschke <mpeschke@de.ibm.com>
* Martin Schwidefsky <schwidefsky@de.ibm.com>
*/
#include <linux/kmod.h>
#include <linux/console.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
#include <linux/termios.h>
#include <linux/err.h>
#include <linux/reboot.h>
#include <linux/gfp.h>
#include "sclp.h"
#include "sclp_rw.h"
#include "sclp_tty.h"
#define sclp_console_major 4 /* TTYAUX_MAJOR */
#define sclp_console_minor 64
#define sclp_console_name "ttyS"
/* Lock to guard over changes to global variables */
static spinlock_t sclp_con_lock;
/* List of free pages that can be used for console output buffering */
static struct list_head sclp_con_pages;
/* List of full struct sclp_buffer structures ready for output */
static struct list_head sclp_con_outqueue;
/* Pointer to current console buffer */
static struct sclp_buffer *sclp_conbuf;
/* Timer for delayed output of console messages */
static struct timer_list sclp_con_timer;
/* Suspend mode flag */
static int sclp_con_suspended;
/* Flag that output queue is currently running */
static int sclp_con_queue_running;
/* Output format for console messages */
static unsigned short sclp_con_columns;
static unsigned short sclp_con_width_htab;
static void
sclp_conbuf_callback(struct sclp_buffer *buffer, int rc)
{
unsigned long flags;
void *page;
do {
page = sclp_unmake_buffer(buffer);
spin_lock_irqsave(&sclp_con_lock, flags);
/* Remove buffer from outqueue */
list_del(&buffer->list);
list_add_tail((struct list_head *) page, &sclp_con_pages);
/* Check if there is a pending buffer on the out queue. */
buffer = NULL;
if (!list_empty(&sclp_con_outqueue))
buffer = list_first_entry(&sclp_con_outqueue,
struct sclp_buffer, list);
if (!buffer || sclp_con_suspended) {
sclp_con_queue_running = 0;
spin_unlock_irqrestore(&sclp_con_lock, flags);
break;
}
spin_unlock_irqrestore(&sclp_con_lock, flags);
} while (sclp_emit_buffer(buffer, sclp_conbuf_callback));
}
/*
* Finalize and emit first pending buffer.
*/
static void sclp_conbuf_emit(void)
{
struct sclp_buffer* buffer;
unsigned long flags;
int rc;
spin_lock_irqsave(&sclp_con_lock, flags);
if (sclp_conbuf)
list_add_tail(&sclp_conbuf->list, &sclp_con_outqueue);
sclp_conbuf = NULL;
if (sclp_con_queue_running || sclp_con_suspended)
goto out_unlock;
if (list_empty(&sclp_con_outqueue))
goto out_unlock;
buffer = list_first_entry(&sclp_con_outqueue, struct sclp_buffer,
list);
sclp_con_queue_running = 1;
spin_unlock_irqrestore(&sclp_con_lock, flags);
rc = sclp_emit_buffer(buffer, sclp_conbuf_callback);
if (rc)
sclp_conbuf_callback(buffer, rc);
return;
out_unlock:
spin_unlock_irqrestore(&sclp_con_lock, flags);
}
/*
* Wait until out queue is empty
*/
static void sclp_console_sync_queue(void)
{
unsigned long flags;
spin_lock_irqsave(&sclp_con_lock, flags);
if (timer_pending(&sclp_con_timer))
del_timer(&sclp_con_timer);
while (sclp_con_queue_running) {
spin_unlock_irqrestore(&sclp_con_lock, flags);
sclp_sync_wait();
spin_lock_irqsave(&sclp_con_lock, flags);
}
spin_unlock_irqrestore(&sclp_con_lock, flags);
}
/*
* When this routine is called from the timer then we flush the
* temporary write buffer without further waiting on a final new line.
*/
static void
sclp_console_timeout(unsigned long data)
{
sclp_conbuf_emit();
}
/*
* Writes the given message to S390 system console
*/
static void
sclp_console_write(struct console *console, const char *message,
unsigned int count)
{
unsigned long flags;
void *page;
int written;
if (count == 0)
return;
spin_lock_irqsave(&sclp_con_lock, flags);
/*
* process escape characters, write message into buffer,
* send buffer to SCLP
*/
do {
/* make sure we have a console output buffer */
if (sclp_conbuf == NULL) {
while (list_empty(&sclp_con_pages)) {
if (sclp_con_suspended)
goto out;
spin_unlock_irqrestore(&sclp_con_lock, flags);
sclp_sync_wait();
spin_lock_irqsave(&sclp_con_lock, flags);
}
page = sclp_con_pages.next;
list_del((struct list_head *) page);
sclp_conbuf = sclp_make_buffer(page, sclp_con_columns,
sclp_con_width_htab);
}
/* try to write the string to the current output buffer */
written = sclp_write(sclp_conbuf, (const unsigned char *)
message, count);
if (written == count)
break;
/*
* Not all characters could be written to the current
* output buffer. Emit the buffer, create a new buffer
* and then output the rest of the string.
*/
spin_unlock_irqrestore(&sclp_con_lock, flags);
sclp_conbuf_emit();
spin_lock_irqsave(&sclp_con_lock, flags);
message += written;
count -= written;
} while (count > 0);
/* Setup timer to output current console buffer after 1/10 second */
if (sclp_conbuf != NULL && sclp_chars_in_buffer(sclp_conbuf) != 0 &&
!timer_pending(&sclp_con_timer)) {
init_timer(&sclp_con_timer);
sclp_con_timer.function = sclp_console_timeout;
sclp_con_timer.data = 0UL;
sclp_con_timer.expires = jiffies + HZ/10;
add_timer(&sclp_con_timer);
}
out:
spin_unlock_irqrestore(&sclp_con_lock, flags);
}
static struct tty_driver *
sclp_console_device(struct console *c, int *index)
{
*index = c->index;
return sclp_tty_driver;
}
/*
* Make sure that all buffers will be flushed to the SCLP.
*/
static void
sclp_console_flush(void)
{
sclp_conbuf_emit();
sclp_console_sync_queue();
}
/*
* Resume console: If there are cached messages, emit them.
*/
static void sclp_console_resume(void)
{
unsigned long flags;
spin_lock_irqsave(&sclp_con_lock, flags);
sclp_con_suspended = 0;
spin_unlock_irqrestore(&sclp_con_lock, flags);
sclp_conbuf_emit();
}
/*
* Suspend console: Set suspend flag and flush console
*/
static void sclp_console_suspend(void)
{
unsigned long flags;
spin_lock_irqsave(&sclp_con_lock, flags);
sclp_con_suspended = 1;
spin_unlock_irqrestore(&sclp_con_lock, flags);
sclp_console_flush();
}
static int sclp_console_notify(struct notifier_block *self,
unsigned long event, void *data)
{
sclp_console_flush();
return NOTIFY_OK;
}
static struct notifier_block on_panic_nb = {
.notifier_call = sclp_console_notify,
.priority = SCLP_PANIC_PRIO_CLIENT,
};
static struct notifier_block on_reboot_nb = {
.notifier_call = sclp_console_notify,
.priority = 1,
};
/*
* used to register the SCLP console to the kernel and to
* give printk necessary information
*/
static struct console sclp_console =
{
.name = sclp_console_name,
.write = sclp_console_write,
.device = sclp_console_device,
.flags = CON_PRINTBUFFER,
.index = 0 /* ttyS0 */
};
/*
* This function is called for SCLP suspend and resume events.
*/
void sclp_console_pm_event(enum sclp_pm_event sclp_pm_event)
{
switch (sclp_pm_event) {
case SCLP_PM_EVENT_FREEZE:
sclp_console_suspend();
break;
case SCLP_PM_EVENT_RESTORE:
case SCLP_PM_EVENT_THAW:
sclp_console_resume();
break;
}
}
/*
* called by console_init() in drivers/char/tty_io.c at boot-time.
*/
static int __init
sclp_console_init(void)
{
void *page;
int i;
int rc;
if (!CONSOLE_IS_SCLP)
return 0;
rc = sclp_rw_init();
if (rc)
return rc;
/* Allocate pages for output buffering */
INIT_LIST_HEAD(&sclp_con_pages);
for (i = 0; i < MAX_CONSOLE_PAGES; i++) {
page = (void *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
list_add_tail(page, &sclp_con_pages);
}
INIT_LIST_HEAD(&sclp_con_outqueue);
spin_lock_init(&sclp_con_lock);
sclp_conbuf = NULL;
init_timer(&sclp_con_timer);
/* Set output format */
if (MACHINE_IS_VM)
/*
* save 4 characters for the CPU number
* written at start of each line by VM/CP
*/
sclp_con_columns = 76;
else
sclp_con_columns = 80;
sclp_con_width_htab = 8;
/* enable printk-access to this driver */
atomic_notifier_chain_register(&panic_notifier_list, &on_panic_nb);
register_reboot_notifier(&on_reboot_nb);
register_console(&sclp_console);
return 0;
}
console_initcall(sclp_console_init);