android_kernel_xiaomi_sm8350/arch/mips/mm/uasm.c
Thiemo Seufer e30ec4525d [MIPS] Split the micro-assembler from tlbex.c.
This patch moves the micro-assembler in a separate implementation, as
it is useful for further run-time optimizations. The only change in
behaviour is cutting down printk noise at kernel startup time.

Checkpatch complains about macro parameters which aren't protected by
parentheses. I believe this is a flaw in checkpatch, the paste operator
used in those macros won't work with parenthesised parameters.

Signed-off-by: Thiemo Seufer <ths@networkno.de>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2008-02-01 14:48:44 +00:00

577 lines
14 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* A small micro-assembler. It is intentionally kept simple, does only
* support a subset of instructions, and does not try to hide pipeline
* effects like branch delay slots.
*
* Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
* Copyright (C) 2005, 2007 Maciej W. Rozycki
* Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/init.h>
#include <asm/inst.h>
#include <asm/elf.h>
#include <asm/bugs.h>
#include "uasm.h"
enum fields {
RS = 0x001,
RT = 0x002,
RD = 0x004,
RE = 0x008,
SIMM = 0x010,
UIMM = 0x020,
BIMM = 0x040,
JIMM = 0x080,
FUNC = 0x100,
SET = 0x200
};
#define OP_MASK 0x3f
#define OP_SH 26
#define RS_MASK 0x1f
#define RS_SH 21
#define RT_MASK 0x1f
#define RT_SH 16
#define RD_MASK 0x1f
#define RD_SH 11
#define RE_MASK 0x1f
#define RE_SH 6
#define IMM_MASK 0xffff
#define IMM_SH 0
#define JIMM_MASK 0x3ffffff
#define JIMM_SH 0
#define FUNC_MASK 0x3f
#define FUNC_SH 0
#define SET_MASK 0x7
#define SET_SH 0
enum opcode {
insn_invalid,
insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
insn_dsll, insn_dsll32, insn_dsra, insn_dsrl, insn_dsrl32,
insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
insn_tlbwr, insn_xor, insn_xori
};
struct insn {
enum opcode opcode;
u32 match;
enum fields fields;
};
/* This macro sets the non-variable bits of an instruction. */
#define M(a, b, c, d, e, f) \
((a) << OP_SH \
| (b) << RS_SH \
| (c) << RT_SH \
| (d) << RD_SH \
| (e) << RE_SH \
| (f) << FUNC_SH)
static struct insn insn_table[] __initdata = {
{ insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD },
{ insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD },
{ insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
{ insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
{ insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
{ insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM },
{ insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM },
{ insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM },
{ insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM },
{ insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
{ insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD },
{ insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE },
{ insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE },
{ insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE },
{ insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE },
{ insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE },
{ insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD },
{ insn_eret, M(cop0_op, cop_op, 0, 0, 0, eret_op), 0 },
{ insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM },
{ insn_jal, M(jal_op, 0, 0, 0, 0, 0), JIMM },
{ insn_jr, M(spec_op, 0, 0, 0, 0, jr_op), RS },
{ insn_ld, M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_ll, M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_lld, M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_lui, M(lui_op, 0, 0, 0, 0, 0), RT | SIMM },
{ insn_lw, M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_mfc0, M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_mtc0, M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_ori, M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
{ insn_rfe, M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0 },
{ insn_sc, M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_scd, M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_sd, M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_sll, M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE },
{ insn_sra, M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE },
{ insn_srl, M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE },
{ insn_subu, M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD },
{ insn_sw, M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_tlbp, M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0 },
{ insn_tlbwi, M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0 },
{ insn_tlbwr, M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0 },
{ insn_xor, M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD },
{ insn_xori, M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
{ insn_invalid, 0, 0 }
};
#undef M
static inline __init u32 build_rs(u32 arg)
{
if (arg & ~RS_MASK)
printk(KERN_WARNING "Micro-assembler field overflow\n");
return (arg & RS_MASK) << RS_SH;
}
static inline __init u32 build_rt(u32 arg)
{
if (arg & ~RT_MASK)
printk(KERN_WARNING "Micro-assembler field overflow\n");
return (arg & RT_MASK) << RT_SH;
}
static inline __init u32 build_rd(u32 arg)
{
if (arg & ~RD_MASK)
printk(KERN_WARNING "Micro-assembler field overflow\n");
return (arg & RD_MASK) << RD_SH;
}
static inline __init u32 build_re(u32 arg)
{
if (arg & ~RE_MASK)
printk(KERN_WARNING "Micro-assembler field overflow\n");
return (arg & RE_MASK) << RE_SH;
}
static inline __init u32 build_simm(s32 arg)
{
if (arg > 0x7fff || arg < -0x8000)
printk(KERN_WARNING "Micro-assembler field overflow\n");
return arg & 0xffff;
}
static inline __init u32 build_uimm(u32 arg)
{
if (arg & ~IMM_MASK)
printk(KERN_WARNING "Micro-assembler field overflow\n");
return arg & IMM_MASK;
}
static inline __init u32 build_bimm(s32 arg)
{
if (arg > 0x1ffff || arg < -0x20000)
printk(KERN_WARNING "Micro-assembler field overflow\n");
if (arg & 0x3)
printk(KERN_WARNING "Invalid micro-assembler branch target\n");
return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
}
static inline __init u32 build_jimm(u32 arg)
{
if (arg & ~((JIMM_MASK) << 2))
printk(KERN_WARNING "Micro-assembler field overflow\n");
return (arg >> 2) & JIMM_MASK;
}
static inline __init u32 build_func(u32 arg)
{
if (arg & ~FUNC_MASK)
printk(KERN_WARNING "Micro-assembler field overflow\n");
return arg & FUNC_MASK;
}
static inline __init u32 build_set(u32 arg)
{
if (arg & ~SET_MASK)
printk(KERN_WARNING "Micro-assembler field overflow\n");
return arg & SET_MASK;
}
/*
* The order of opcode arguments is implicitly left to right,
* starting with RS and ending with FUNC or IMM.
*/
static void __init build_insn(u32 **buf, enum opcode opc, ...)
{
struct insn *ip = NULL;
unsigned int i;
va_list ap;
u32 op;
for (i = 0; insn_table[i].opcode != insn_invalid; i++)
if (insn_table[i].opcode == opc) {
ip = &insn_table[i];
break;
}
if (!ip || (opc == insn_daddiu && r4k_daddiu_bug()))
panic("Unsupported Micro-assembler instruction %d", opc);
op = ip->match;
va_start(ap, opc);
if (ip->fields & RS)
op |= build_rs(va_arg(ap, u32));
if (ip->fields & RT)
op |= build_rt(va_arg(ap, u32));
if (ip->fields & RD)
op |= build_rd(va_arg(ap, u32));
if (ip->fields & RE)
op |= build_re(va_arg(ap, u32));
if (ip->fields & SIMM)
op |= build_simm(va_arg(ap, s32));
if (ip->fields & UIMM)
op |= build_uimm(va_arg(ap, u32));
if (ip->fields & BIMM)
op |= build_bimm(va_arg(ap, s32));
if (ip->fields & JIMM)
op |= build_jimm(va_arg(ap, u32));
if (ip->fields & FUNC)
op |= build_func(va_arg(ap, u32));
if (ip->fields & SET)
op |= build_set(va_arg(ap, u32));
va_end(ap);
**buf = op;
(*buf)++;
}
#define I_u1u2u3(op) \
Ip_u1u2u3(op) \
{ \
build_insn(buf, insn##op, a, b, c); \
}
#define I_u2u1u3(op) \
Ip_u2u1u3(op) \
{ \
build_insn(buf, insn##op, b, a, c); \
}
#define I_u3u1u2(op) \
Ip_u3u1u2(op) \
{ \
build_insn(buf, insn##op, b, c, a); \
}
#define I_u1u2s3(op) \
Ip_u1u2s3(op) \
{ \
build_insn(buf, insn##op, a, b, c); \
}
#define I_u2s3u1(op) \
Ip_u2s3u1(op) \
{ \
build_insn(buf, insn##op, c, a, b); \
}
#define I_u2u1s3(op) \
Ip_u2u1s3(op) \
{ \
build_insn(buf, insn##op, b, a, c); \
}
#define I_u1u2(op) \
Ip_u1u2(op) \
{ \
build_insn(buf, insn##op, a, b); \
}
#define I_u1s2(op) \
Ip_u1s2(op) \
{ \
build_insn(buf, insn##op, a, b); \
}
#define I_u1(op) \
Ip_u1(op) \
{ \
build_insn(buf, insn##op, a); \
}
#define I_0(op) \
Ip_0(op) \
{ \
build_insn(buf, insn##op); \
}
I_u2u1s3(_addiu)
I_u3u1u2(_addu)
I_u2u1u3(_andi)
I_u3u1u2(_and)
I_u1u2s3(_beq)
I_u1u2s3(_beql)
I_u1s2(_bgez)
I_u1s2(_bgezl)
I_u1s2(_bltz)
I_u1s2(_bltzl)
I_u1u2s3(_bne)
I_u1u2u3(_dmfc0)
I_u1u2u3(_dmtc0)
I_u2u1s3(_daddiu)
I_u3u1u2(_daddu)
I_u2u1u3(_dsll)
I_u2u1u3(_dsll32)
I_u2u1u3(_dsra)
I_u2u1u3(_dsrl)
I_u2u1u3(_dsrl32)
I_u3u1u2(_dsubu)
I_0(_eret)
I_u1(_j)
I_u1(_jal)
I_u1(_jr)
I_u2s3u1(_ld)
I_u2s3u1(_ll)
I_u2s3u1(_lld)
I_u1s2(_lui)
I_u2s3u1(_lw)
I_u1u2u3(_mfc0)
I_u1u2u3(_mtc0)
I_u2u1u3(_ori)
I_0(_rfe)
I_u2s3u1(_sc)
I_u2s3u1(_scd)
I_u2s3u1(_sd)
I_u2u1u3(_sll)
I_u2u1u3(_sra)
I_u2u1u3(_srl)
I_u3u1u2(_subu)
I_u2s3u1(_sw)
I_0(_tlbp)
I_0(_tlbwi)
I_0(_tlbwr)
I_u3u1u2(_xor)
I_u2u1u3(_xori)
/* Handle labels. */
void __init uasm_build_label(struct uasm_label **lab, u32 *addr, int lid)
{
(*lab)->addr = addr;
(*lab)->lab = lid;
(*lab)++;
}
int __init uasm_in_compat_space_p(long addr)
{
/* Is this address in 32bit compat space? */
#ifdef CONFIG_64BIT
return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
#else
return 1;
#endif
}
int __init uasm_rel_highest(long val)
{
#ifdef CONFIG_64BIT
return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
#else
return 0;
#endif
}
int __init uasm_rel_higher(long val)
{
#ifdef CONFIG_64BIT
return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
#else
return 0;
#endif
}
int __init uasm_rel_hi(long val)
{
return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
}
int __init uasm_rel_lo(long val)
{
return ((val & 0xffff) ^ 0x8000) - 0x8000;
}
void __init UASM_i_LA_mostly(u32 **buf, unsigned int rs, long addr)
{
if (!uasm_in_compat_space_p(addr)) {
uasm_i_lui(buf, rs, uasm_rel_highest(addr));
if (uasm_rel_higher(addr))
uasm_i_daddiu(buf, rs, rs, uasm_rel_higher(addr));
if (uasm_rel_hi(addr)) {
uasm_i_dsll(buf, rs, rs, 16);
uasm_i_daddiu(buf, rs, rs, uasm_rel_hi(addr));
uasm_i_dsll(buf, rs, rs, 16);
} else
uasm_i_dsll32(buf, rs, rs, 0);
} else
uasm_i_lui(buf, rs, uasm_rel_hi(addr));
}
void __init UASM_i_LA(u32 **buf, unsigned int rs, long addr)
{
UASM_i_LA_mostly(buf, rs, addr);
if (uasm_rel_lo(addr)) {
if (!uasm_in_compat_space_p(addr))
uasm_i_daddiu(buf, rs, rs, uasm_rel_lo(addr));
else
uasm_i_addiu(buf, rs, rs, uasm_rel_lo(addr));
}
}
/* Handle relocations. */
void __init
uasm_r_mips_pc16(struct uasm_reloc **rel, u32 *addr, int lid)
{
(*rel)->addr = addr;
(*rel)->type = R_MIPS_PC16;
(*rel)->lab = lid;
(*rel)++;
}
static inline void __init
__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
{
long laddr = (long)lab->addr;
long raddr = (long)rel->addr;
switch (rel->type) {
case R_MIPS_PC16:
*rel->addr |= build_bimm(laddr - (raddr + 4));
break;
default:
panic("Unsupported Micro-assembler relocation %d",
rel->type);
}
}
void __init
uasm_resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
{
struct uasm_label *l;
for (; rel->lab != UASM_LABEL_INVALID; rel++)
for (l = lab; l->lab != UASM_LABEL_INVALID; l++)
if (rel->lab == l->lab)
__resolve_relocs(rel, l);
}
void __init
uasm_move_relocs(struct uasm_reloc *rel, u32 *first, u32 *end, long off)
{
for (; rel->lab != UASM_LABEL_INVALID; rel++)
if (rel->addr >= first && rel->addr < end)
rel->addr += off;
}
void __init
uasm_move_labels(struct uasm_label *lab, u32 *first, u32 *end, long off)
{
for (; lab->lab != UASM_LABEL_INVALID; lab++)
if (lab->addr >= first && lab->addr < end)
lab->addr += off;
}
void __init
uasm_copy_handler(struct uasm_reloc *rel, struct uasm_label *lab, u32 *first,
u32 *end, u32 *target)
{
long off = (long)(target - first);
memcpy(target, first, (end - first) * sizeof(u32));
uasm_move_relocs(rel, first, end, off);
uasm_move_labels(lab, first, end, off);
}
int __init uasm_insn_has_bdelay(struct uasm_reloc *rel, u32 *addr)
{
for (; rel->lab != UASM_LABEL_INVALID; rel++) {
if (rel->addr == addr
&& (rel->type == R_MIPS_PC16
|| rel->type == R_MIPS_26))
return 1;
}
return 0;
}
/* Convenience functions for labeled branches. */
void __init
uasm_il_bltz(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
{
uasm_r_mips_pc16(r, *p, lid);
uasm_i_bltz(p, reg, 0);
}
void __init
uasm_il_b(u32 **p, struct uasm_reloc **r, int lid)
{
uasm_r_mips_pc16(r, *p, lid);
uasm_i_b(p, 0);
}
void __init
uasm_il_beqz(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
{
uasm_r_mips_pc16(r, *p, lid);
uasm_i_beqz(p, reg, 0);
}
void __init
uasm_il_beqzl(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
{
uasm_r_mips_pc16(r, *p, lid);
uasm_i_beqzl(p, reg, 0);
}
void __init
uasm_il_bnez(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
{
uasm_r_mips_pc16(r, *p, lid);
uasm_i_bnez(p, reg, 0);
}
void __init
uasm_il_bgezl(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
{
uasm_r_mips_pc16(r, *p, lid);
uasm_i_bgezl(p, reg, 0);
}
void __init
uasm_il_bgez(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
{
uasm_r_mips_pc16(r, *p, lid);
uasm_i_bgez(p, reg, 0);
}