android_kernel_xiaomi_sm8350/arch/x86/kernel/crash.c
Sean Christopherson 87459b9fce x86/crash: Disable virt in core NMI crash handler to avoid double shootdown
commit 26044aff37a5455b19a91785086914fd33053ef4 upstream.

Disable virtualization in crash_nmi_callback() and rework the
emergency_vmx_disable_all() path to do an NMI shootdown if and only if a
shootdown has not already occurred.   NMI crash shootdown fundamentally
can't support multiple invocations as responding CPUs are deliberately
put into halt state without unblocking NMIs.  But, the emergency reboot
path doesn't have any work of its own, it simply cares about disabling
virtualization, i.e. so long as a shootdown occurred, emergency reboot
doesn't care who initiated the shootdown, or when.

If "crash_kexec_post_notifiers" is specified on the kernel command line,
panic() will invoke crash_smp_send_stop() and result in a second call to
nmi_shootdown_cpus() during native_machine_emergency_restart().

Invoke the callback _before_ disabling virtualization, as the current
VMCS needs to be cleared before doing VMXOFF.  Note, this results in a
subtle change in ordering between disabling virtualization and stopping
Intel PT on the responding CPUs.  While VMX and Intel PT do interact,
VMXOFF and writes to MSR_IA32_RTIT_CTL do not induce faults between one
another, which is all that matters when panicking.

Harden nmi_shootdown_cpus() against multiple invocations to try and
capture any such kernel bugs via a WARN instead of hanging the system
during a crash/dump, e.g. prior to the recent hardening of
register_nmi_handler(), re-registering the NMI handler would trigger a
double list_add() and hang the system if CONFIG_BUG_ON_DATA_CORRUPTION=y.

 list_add double add: new=ffffffff82220800, prev=ffffffff8221cfe8, next=ffffffff82220800.
 WARNING: CPU: 2 PID: 1319 at lib/list_debug.c:29 __list_add_valid+0x67/0x70
 Call Trace:
  __register_nmi_handler+0xcf/0x130
  nmi_shootdown_cpus+0x39/0x90
  native_machine_emergency_restart+0x1c9/0x1d0
  panic+0x237/0x29b

Extract the disabling logic to a common helper to deduplicate code, and
to prepare for doing the shootdown in the emergency reboot path if SVM
is supported.

Note, prior to commit ed72736183c4 ("x86/reboot: Force all cpus to exit
VMX root if VMX is supported"), nmi_shootdown_cpus() was subtly protected
against a second invocation by a cpu_vmx_enabled() check as the kdump
handler would disable VMX if it ran first.

Fixes: ed72736183c4 ("x86/reboot: Force all cpus to exit VMX root if VMX is supported")
Cc: stable@vger.kernel.org
Reported-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/all/20220427224924.592546-2-gpiccoli@igalia.com
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20221130233650.1404148-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-03-11 16:44:01 +01:00

484 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Architecture specific (i386/x86_64) functions for kexec based crash dumps.
*
* Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
*
* Copyright (C) IBM Corporation, 2004. All rights reserved.
* Copyright (C) Red Hat Inc., 2014. All rights reserved.
* Authors:
* Vivek Goyal <vgoyal@redhat.com>
*
*/
#define pr_fmt(fmt) "kexec: " fmt
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/smp.h>
#include <linux/reboot.h>
#include <linux/kexec.h>
#include <linux/delay.h>
#include <linux/elf.h>
#include <linux/elfcore.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/memblock.h>
#include <asm/processor.h>
#include <asm/hardirq.h>
#include <asm/nmi.h>
#include <asm/hw_irq.h>
#include <asm/apic.h>
#include <asm/e820/types.h>
#include <asm/io_apic.h>
#include <asm/hpet.h>
#include <linux/kdebug.h>
#include <asm/cpu.h>
#include <asm/reboot.h>
#include <asm/intel_pt.h>
#include <asm/crash.h>
#include <asm/cmdline.h>
/* Used while preparing memory map entries for second kernel */
struct crash_memmap_data {
struct boot_params *params;
/* Type of memory */
unsigned int type;
};
/*
* This is used to VMCLEAR all VMCSs loaded on the
* processor. And when loading kvm_intel module, the
* callback function pointer will be assigned.
*
* protected by rcu.
*/
crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
static inline void cpu_crash_vmclear_loaded_vmcss(void)
{
crash_vmclear_fn *do_vmclear_operation = NULL;
rcu_read_lock();
do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
if (do_vmclear_operation)
do_vmclear_operation();
rcu_read_unlock();
}
/*
* When the crashkernel option is specified, only use the low
* 1M for the real mode trampoline.
*/
void __init crash_reserve_low_1M(void)
{
if (cmdline_find_option(boot_command_line, "crashkernel", NULL, 0) < 0)
return;
memblock_reserve(0, 1<<20);
pr_info("Reserving the low 1M of memory for crashkernel\n");
}
#if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
{
crash_save_cpu(regs, cpu);
/*
* VMCLEAR VMCSs loaded on all cpus if needed.
*/
cpu_crash_vmclear_loaded_vmcss();
/*
* Disable Intel PT to stop its logging
*/
cpu_emergency_stop_pt();
disable_local_APIC();
}
void kdump_nmi_shootdown_cpus(void)
{
nmi_shootdown_cpus(kdump_nmi_callback);
disable_local_APIC();
}
/* Override the weak function in kernel/panic.c */
void crash_smp_send_stop(void)
{
static int cpus_stopped;
if (cpus_stopped)
return;
if (smp_ops.crash_stop_other_cpus)
smp_ops.crash_stop_other_cpus();
else
smp_send_stop();
cpus_stopped = 1;
}
#else
void crash_smp_send_stop(void)
{
/* There are no cpus to shootdown */
}
#endif
void native_machine_crash_shutdown(struct pt_regs *regs)
{
/* This function is only called after the system
* has panicked or is otherwise in a critical state.
* The minimum amount of code to allow a kexec'd kernel
* to run successfully needs to happen here.
*
* In practice this means shooting down the other cpus in
* an SMP system.
*/
/* The kernel is broken so disable interrupts */
local_irq_disable();
crash_smp_send_stop();
/*
* VMCLEAR VMCSs loaded on this cpu if needed.
*/
cpu_crash_vmclear_loaded_vmcss();
cpu_emergency_disable_virtualization();
/*
* Disable Intel PT to stop its logging
*/
cpu_emergency_stop_pt();
#ifdef CONFIG_X86_IO_APIC
/* Prevent crash_kexec() from deadlocking on ioapic_lock. */
ioapic_zap_locks();
clear_IO_APIC();
#endif
lapic_shutdown();
restore_boot_irq_mode();
#ifdef CONFIG_HPET_TIMER
hpet_disable();
#endif
crash_save_cpu(regs, safe_smp_processor_id());
}
#ifdef CONFIG_KEXEC_FILE
static unsigned long crash_zero_bytes;
static int get_nr_ram_ranges_callback(struct resource *res, void *arg)
{
unsigned int *nr_ranges = arg;
(*nr_ranges)++;
return 0;
}
/* Gather all the required information to prepare elf headers for ram regions */
static struct crash_mem *fill_up_crash_elf_data(void)
{
unsigned int nr_ranges = 0;
struct crash_mem *cmem;
walk_system_ram_res(0, -1, &nr_ranges,
get_nr_ram_ranges_callback);
if (!nr_ranges)
return NULL;
/*
* Exclusion of crash region and/or crashk_low_res may cause
* another range split. So add extra two slots here.
*/
nr_ranges += 2;
cmem = vzalloc(struct_size(cmem, ranges, nr_ranges));
if (!cmem)
return NULL;
cmem->max_nr_ranges = nr_ranges;
cmem->nr_ranges = 0;
return cmem;
}
/*
* Look for any unwanted ranges between mstart, mend and remove them. This
* might lead to split and split ranges are put in cmem->ranges[] array
*/
static int elf_header_exclude_ranges(struct crash_mem *cmem)
{
int ret = 0;
/* Exclude crashkernel region */
ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
if (ret)
return ret;
if (crashk_low_res.end) {
ret = crash_exclude_mem_range(cmem, crashk_low_res.start,
crashk_low_res.end);
}
return ret;
}
static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg)
{
struct crash_mem *cmem = arg;
cmem->ranges[cmem->nr_ranges].start = res->start;
cmem->ranges[cmem->nr_ranges].end = res->end;
cmem->nr_ranges++;
return 0;
}
/* Prepare elf headers. Return addr and size */
static int prepare_elf_headers(struct kimage *image, void **addr,
unsigned long *sz)
{
struct crash_mem *cmem;
Elf64_Ehdr *ehdr;
Elf64_Phdr *phdr;
int ret, i;
cmem = fill_up_crash_elf_data();
if (!cmem)
return -ENOMEM;
ret = walk_system_ram_res(0, -1, cmem,
prepare_elf64_ram_headers_callback);
if (ret)
goto out;
/* Exclude unwanted mem ranges */
ret = elf_header_exclude_ranges(cmem);
if (ret)
goto out;
/* By default prepare 64bit headers */
ret = crash_prepare_elf64_headers(cmem,
IS_ENABLED(CONFIG_X86_64), addr, sz);
if (ret)
goto out;
/*
* If a range matches backup region, adjust offset to backup
* segment.
*/
ehdr = (Elf64_Ehdr *)*addr;
phdr = (Elf64_Phdr *)(ehdr + 1);
for (i = 0; i < ehdr->e_phnum; phdr++, i++)
if (phdr->p_type == PT_LOAD &&
phdr->p_paddr == image->arch.backup_src_start &&
phdr->p_memsz == image->arch.backup_src_sz) {
phdr->p_offset = image->arch.backup_load_addr;
break;
}
out:
vfree(cmem);
return ret;
}
static int add_e820_entry(struct boot_params *params, struct e820_entry *entry)
{
unsigned int nr_e820_entries;
nr_e820_entries = params->e820_entries;
if (nr_e820_entries >= E820_MAX_ENTRIES_ZEROPAGE)
return 1;
memcpy(&params->e820_table[nr_e820_entries], entry,
sizeof(struct e820_entry));
params->e820_entries++;
return 0;
}
static int memmap_entry_callback(struct resource *res, void *arg)
{
struct crash_memmap_data *cmd = arg;
struct boot_params *params = cmd->params;
struct e820_entry ei;
ei.addr = res->start;
ei.size = resource_size(res);
ei.type = cmd->type;
add_e820_entry(params, &ei);
return 0;
}
static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
unsigned long long mstart,
unsigned long long mend)
{
unsigned long start, end;
int ret = 0;
cmem->ranges[0].start = mstart;
cmem->ranges[0].end = mend;
cmem->nr_ranges = 1;
/* Exclude Backup region */
start = image->arch.backup_load_addr;
end = start + image->arch.backup_src_sz - 1;
ret = crash_exclude_mem_range(cmem, start, end);
if (ret)
return ret;
/* Exclude elf header region */
start = image->arch.elf_load_addr;
end = start + image->arch.elf_headers_sz - 1;
return crash_exclude_mem_range(cmem, start, end);
}
/* Prepare memory map for crash dump kernel */
int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
{
int i, ret = 0;
unsigned long flags;
struct e820_entry ei;
struct crash_memmap_data cmd;
struct crash_mem *cmem;
cmem = vzalloc(struct_size(cmem, ranges, 1));
if (!cmem)
return -ENOMEM;
memset(&cmd, 0, sizeof(struct crash_memmap_data));
cmd.params = params;
/* Add first 640K segment */
ei.addr = image->arch.backup_src_start;
ei.size = image->arch.backup_src_sz;
ei.type = E820_TYPE_RAM;
add_e820_entry(params, &ei);
/* Add ACPI tables */
cmd.type = E820_TYPE_ACPI;
flags = IORESOURCE_MEM | IORESOURCE_BUSY;
walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd,
memmap_entry_callback);
/* Add ACPI Non-volatile Storage */
cmd.type = E820_TYPE_NVS;
walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd,
memmap_entry_callback);
/* Add e820 reserved ranges */
cmd.type = E820_TYPE_RESERVED;
flags = IORESOURCE_MEM;
walk_iomem_res_desc(IORES_DESC_RESERVED, flags, 0, -1, &cmd,
memmap_entry_callback);
/* Add crashk_low_res region */
if (crashk_low_res.end) {
ei.addr = crashk_low_res.start;
ei.size = crashk_low_res.end - crashk_low_res.start + 1;
ei.type = E820_TYPE_RAM;
add_e820_entry(params, &ei);
}
/* Exclude some ranges from crashk_res and add rest to memmap */
ret = memmap_exclude_ranges(image, cmem, crashk_res.start,
crashk_res.end);
if (ret)
goto out;
for (i = 0; i < cmem->nr_ranges; i++) {
ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
/* If entry is less than a page, skip it */
if (ei.size < PAGE_SIZE)
continue;
ei.addr = cmem->ranges[i].start;
ei.type = E820_TYPE_RAM;
add_e820_entry(params, &ei);
}
out:
vfree(cmem);
return ret;
}
static int determine_backup_region(struct resource *res, void *arg)
{
struct kimage *image = arg;
image->arch.backup_src_start = res->start;
image->arch.backup_src_sz = resource_size(res);
/* Expecting only one range for backup region */
return 1;
}
int crash_load_segments(struct kimage *image)
{
int ret;
struct kexec_buf kbuf = { .image = image, .buf_min = 0,
.buf_max = ULONG_MAX, .top_down = false };
/*
* Determine and load a segment for backup area. First 640K RAM
* region is backup source
*/
ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
image, determine_backup_region);
/* Zero or postive return values are ok */
if (ret < 0)
return ret;
/* Add backup segment. */
if (image->arch.backup_src_sz) {
kbuf.buffer = &crash_zero_bytes;
kbuf.bufsz = sizeof(crash_zero_bytes);
kbuf.memsz = image->arch.backup_src_sz;
kbuf.buf_align = PAGE_SIZE;
/*
* Ideally there is no source for backup segment. This is
* copied in purgatory after crash. Just add a zero filled
* segment for now to make sure checksum logic works fine.
*/
ret = kexec_add_buffer(&kbuf);
if (ret)
return ret;
image->arch.backup_load_addr = kbuf.mem;
pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
image->arch.backup_load_addr,
image->arch.backup_src_start, kbuf.memsz);
}
/* Prepare elf headers and add a segment */
ret = prepare_elf_headers(image, &kbuf.buffer, &kbuf.bufsz);
if (ret)
return ret;
image->arch.elf_headers = kbuf.buffer;
image->arch.elf_headers_sz = kbuf.bufsz;
kbuf.memsz = kbuf.bufsz;
kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
ret = kexec_add_buffer(&kbuf);
if (ret) {
vfree((void *)image->arch.elf_headers);
return ret;
}
image->arch.elf_load_addr = kbuf.mem;
pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
image->arch.elf_load_addr, kbuf.bufsz, kbuf.bufsz);
return ret;
}
#endif /* CONFIG_KEXEC_FILE */