android_kernel_xiaomi_sm8350/drivers/leds/leds-qpnp-flash-v2.c
Jishnu Prakash 0899964139 leds: qpnp-flash-v2: Add support to control flash ramp time
Add device tree properties "qcom,ramp-up-step" and
"qcom,ramp-down-step", to configure the time steps for
flash ramp up and ramp down.

Change-Id: I80ff9394ab4af29398522a1abbaba991b67db918
Signed-off-by: Jishnu Prakash <jprakash@codeaurora.org>
2021-04-12 12:28:44 +05:30

3160 lines
82 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
*/
#define pr_fmt(fmt) "flashv2: %s: " fmt, __func__
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_gpio.h>
#include <linux/of_device.h>
#include <linux/gpio.h>
#include <linux/regmap.h>
#include <linux/power_supply.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/regulator/consumer.h>
#include <linux/leds-qpnp-flash.h>
#include <linux/leds-qpnp-flash-v2.h>
#include <linux/iio/consumer.h>
#include <linux/log2.h>
#include "leds.h"
#define FLASH_LED_REG_LED_STATUS1(base) (base + 0x08)
#define FLASH_LED_REG_LED_STATUS2(base) (base + 0x09)
#define FLASH_LED_VPH_DROOP_FAULT_MASK BIT(4)
#define FLASH_LED_THERMAL_OTST_MASK GENMASK(2, 0)
#define FLASH_LED_REG_INT_RT_STS(base) (base + 0x10)
#define FLASH_LED_REG_SAFETY_TMR(base) (base + 0x40)
#define FLASH_LED_SAFETY_TMR_ENABLE BIT(7)
#define FLASH_LED_REG_TGR_CURRENT(base) (base + 0x43)
#define FLASH_LED_REG_MOD_CTRL(base) (base + 0x46)
#define FLASH_LED_MOD_CTRL_MASK BIT(7)
#define FLASH_LED_MOD_ENABLE BIT(7)
#define FLASH_LED_REG_IRES(base) (base + 0x47)
#define FLASH_LED_REG_STROBE_CFG(base) (base + 0x48)
#define FLASH_LED_STROBE_MASK GENMASK(1, 0)
#define FLASH_LED_REG_STROBE_CTRL(base) (base + 0x49)
#define FLASH_LED_HW_SW_STROBE_SEL_BIT BIT(2)
#define FLASH_HW_STROBE_MASK GENMASK(2, 0)
#define FLASH_LED_EN_LED_CTRL(base) (base + 0x4C)
#define FLASH_LED_ENABLE BIT(0)
#define FLASH_LED_REG_HDRM_PRGM(base) (base + 0x4D)
#define FLASH_LED_HDRM_VOL_MASK GENMASK(7, 4)
#define FLASH_LED_HDRM_VOL_SHIFT 4
#define FLASH_LED_REG_HDRM_AUTO_MODE_CTRL(base) (base + 0x50)
#define FLASH_LED_REG_WARMUP_DELAY(base) (base + 0x51)
#define FLASH_LED_REG_ISC_DELAY(base) (base + 0x52)
#define FLASH_LED_ISC_WARMUP_DELAY_MASK GENMASK(1, 0)
#define FLASH_LED_ISC_WARMUP_DELAY_SHIFT 6
#define FLASH_LED_REG_THERMAL_RMP_DN_RATE(base) (base + 0x55)
#define THERMAL_OTST1_RAMP_CTRL_MASK BIT(7)
#define THERMAL_OTST1_RAMP_CTRL_SHIFT 7
#define THERMAL_DERATE_SLOW_SHIFT 4
#define THERMAL_DERATE_SLOW_MASK GENMASK(6, 4)
#define THERMAL_DERATE_FAST_MASK GENMASK(2, 0)
#define FLASH_LED_REG_THERMAL_THRSH1(base) (base + 0x56)
#define FLASH_LED_THERMAL_THRSH_MASK GENMASK(2, 0)
#define FLASH_LED_REG_THERMAL_THRSH2(base) (base + 0x57)
#define FLASH_LED_REG_THERMAL_THRSH3(base) (base + 0x58)
#define FLASH_LED_REG_THERMAL_HYSTERESIS(base) (base + 0x59)
#define FLASH_LED_THERMAL_HYSTERESIS_MASK GENMASK(1, 0)
#define FLASH_LED_REG_THERMAL_DEBOUNCE(base) (base + 0x5A)
#define FLASH_LED_THERMAL_DEBOUNCE_MASK GENMASK(1, 0)
#define FLASH_LED_REG_RGLR_RAMP_RATE(base) (base + 0x5B)
#define FLASH_LED_RAMP_UP_STEP_MASK GENMASK(6, 4)
#define FLASH_LED_RAMP_UP_STEP_SHIFT 4
#define FLASH_LED_RAMP_DOWN_STEP_MASK GENMASK(2, 0)
#define FLASH_LED_RAMP_STEP_MIN_NS 200
#define FLASH_LED_RAMP_STEP_MAX_NS 25600
#define FLASH_LED_RAMP_STEP_DEFAULT_NS 6400
#define FLASH_LED_REG_VPH_DROOP_THRESHOLD(base) (base + 0x61)
#define FLASH_LED_VPH_DROOP_HYSTERESIS_MASK GENMASK(5, 4)
#define FLASH_LED_VPH_DROOP_THRESHOLD_MASK GENMASK(2, 0)
#define FLASH_LED_VPH_DROOP_HYST_SHIFT 4
#define FLASH_LED_REG_VPH_DROOP_DEBOUNCE(base) (base + 0x62)
#define FLASH_LED_VPH_DROOP_DEBOUNCE_MASK GENMASK(1, 0)
#define FLASH_LED_REG_ILED_GRT_THRSH(base) (base + 0x67)
#define FLASH_LED_ILED_GRT_THRSH_MASK GENMASK(5, 0)
#define FLASH_LED_REG_LED1N2_ICLAMP_LOW(base) (base + 0x68)
#define FLASH_LED_REG_LED1N2_ICLAMP_MID(base) (base + 0x69)
#define FLASH_LED_REG_LED3_ICLAMP_LOW(base) (base + 0x6A)
#define FLASH_LED_REG_LED3_ICLAMP_MID(base) (base + 0x6B)
#define FLASH_LED_CURRENT_MASK GENMASK(6, 0)
#define FLASH_LED_REG_MITIGATION_SEL(base) (base + 0x6E)
#define FLASH_LED_CHGR_MITIGATION_SEL_MASK GENMASK(5, 4)
#define FLASH_LED_LMH_MITIGATION_SEL_MASK GENMASK(1, 0)
#define FLASH_LED_REG_MITIGATION_SW(base) (base + 0x6F)
#define FLASH_LED_LMH_MITIGATION_EN_MASK BIT(0)
#define FLASH_LED_CHGR_MITIGATION_EN_MASK BIT(4)
#define FLASH_LED_CHGR_MITIGATION_ENABLE BIT(4)
#define FLASH_LED_REG_LMH_LEVEL(base) (base + 0x70)
#define FLASH_LED_LMH_LEVEL_MASK GENMASK(1, 0)
#define FLASH_LED_REG_MULTI_STROBE_CTRL(base) (base + 0x71)
#define LED3_FLASH_ONCE_ONLY_BIT BIT(1)
#define LED1N2_FLASH_ONCE_ONLY_BIT BIT(0)
#define FLASH_LED_REG_LPG_INPUT_CTRL(base) (base + 0x72)
#define LPG_INPUT_SEL_BIT BIT(0)
#define FLASH_LED_REG_CURRENT_DERATE_EN(base) (base + 0x76)
#define FLASH_LED_CURRENT_DERATE_EN_MASK GENMASK(2, 0)
#define VPH_DROOP_DEBOUNCE_US_TO_VAL(val_us) (val_us / 8)
#define VPH_DROOP_HYST_MV_TO_VAL(val_mv) (val_mv / 25)
#define VPH_DROOP_THRESH_VAL_TO_UV(val) ((val + 25) * 100000)
#define MITIGATION_THRSH_MA_TO_VAL(val_ma) (val_ma / 100)
#define THERMAL_HYST_TEMP_TO_VAL(val, divisor) (val / divisor)
#define FLASH_LED_WARMUP_DELAY_DEFAULT 2
#define FLASH_LED_ISC_DELAY_DEFAULT 3
#define FLASH_LED_VPH_DROOP_DEBOUNCE_DEFAULT 2
#define FLASH_LED_VPH_DROOP_HYST_DEFAULT 2
#define FLASH_LED_VPH_DROOP_THRESH_DEFAULT 5
#define BHARGER_FLASH_LED_VPH_DROOP_THRESH_DEFAULT 7
#define FLASH_LED_DEBOUNCE_MAX 3
#define FLASH_LED_HYSTERESIS_MAX 3
#define FLASH_LED_VPH_DROOP_THRESH_MAX 7
#define THERMAL_DERATE_SLOW_MAX 314592
#define THERMAL_DERATE_FAST_MAX 512
#define THERMAL_DEBOUNCE_TIME_MAX 64
#define THERMAL_DERATE_HYSTERESIS_MAX 3
#define FLASH_LED_THERMAL_THRSH_MIN 3
#define FLASH_LED_THERMAL_THRSH_MAX 7
#define FLASH_LED_THERMAL_OTST_LEVELS 3
#define FLASH_LED_VLED_MAX_DEFAULT_UV 3500000
#define FLASH_LED_IBATT_OCP_THRESH_DEFAULT_UA 4500000
#define FLASH_LED_RPARA_DEFAULT_UOHM 0
#define FLASH_LED_LMH_LEVEL_DEFAULT 0
#define FLASH_LED_LMH_MITIGATION_ENABLE 1
#define FLASH_LED_LMH_MITIGATION_DISABLE 0
#define FLASH_LED_CHGR_MITIGATION_DISABLE 0
#define FLASH_LED_LMH_MITIGATION_SEL_DEFAULT 2
#define FLASH_LED_MITIGATION_SEL_MAX 2
#define FLASH_LED_CHGR_MITIGATION_SEL_SHIFT 4
#define FLASH_LED_CHGR_MITIGATION_THRSH_DEFAULT 0xA
#define FLASH_LED_CHGR_MITIGATION_THRSH_MAX 0x1F
#define FLASH_LED_LMH_OCV_THRESH_DEFAULT_UV 3700000
#define FLASH_LED_LMH_RBATT_THRESH_DEFAULT_UOHM 400000
#define FLASH_LED_IRES_BASE 3
#define FLASH_LED_IRES_DIVISOR 2500
#define FLASH_LED_IRES_MIN_UA 5000
#define FLASH_LED_IRES_DEFAULT_UA 12500
#define FLASH_LED_IRES_DEFAULT_VAL 0x00
#define FLASH_LED_HDRM_VOL_DEFAULT_MV 0x80
#define FLASH_LED_HDRM_VOL_HI_LO_WIN_DEFAULT_MV 0x04
#define FLASH_LED_HDRM_VOL_BASE_MV 125
#define FLASH_LED_HDRM_VOL_STEP_MV 25
#define FLASH_LED_STROBE_CFG_DEFAULT 0x00
#define FLASH_LED_HW_STROBE_OPTION_1 0x00
#define FLASH_LED_HW_STROBE_OPTION_2 0x01
#define FLASH_LED_HW_STROBE_OPTION_3 0x02
#define FLASH_LED_DISABLE 0x00
#define FLASH_LED_SAFETY_TMR_DISABLED 0x13
#define FLASH_LED_MAX_TOTAL_CURRENT_MA 3750
#define FLASH_LED_IRES5P0_MAX_CURR_MA 640
#define FLASH_LED_IRES7P5_MAX_CURR_MA 960
#define FLASH_LED_IRES10P0_MAX_CURR_MA 1280
#define FLASH_LED_IRES12P5_MAX_CURR_MA 1600
#define MAX_IRES_LEVELS 4
#define FLASH_BST_PWM_OVRHD_MIN_UV 300000
#define FLASH_BST_PWM_OVRHD_MAX_UV 600000
/* notifier call chain for flash-led irqs */
static ATOMIC_NOTIFIER_HEAD(irq_notifier_list);
enum flash_charger_mitigation {
FLASH_DISABLE_CHARGER_MITIGATION,
FLASH_HW_CHARGER_MITIGATION_BY_ILED_THRSHLD,
FLASH_SW_CHARGER_MITIGATION,
};
enum flash_led_type {
FLASH_LED_TYPE_UNKNOWN,
FLASH_LED_TYPE_FLASH,
FLASH_LED_TYPE_TORCH,
};
enum {
LED1 = 0,
LED2,
LED3,
};
enum pmic_type {
PM6150L,
PMI632,
PM660L
};
enum strobe_type {
SW_STROBE = 0,
HW_STROBE,
LPG_STROBE,
};
enum wa_flags {
PM6150L_IRES_WA = BIT(0),
};
/*
* Configurations for each individual LED
*/
struct flash_node_data {
struct platform_device *pdev;
struct led_classdev cdev;
struct pinctrl *strobe_pinctrl;
struct pinctrl_state *hw_strobe_state_active;
struct pinctrl_state *hw_strobe_state_suspend;
int hw_strobe_gpio;
int ires_ua;
int default_ires_ua;
int max_current;
int current_ma;
int prev_current_ma;
u8 duration;
u8 id;
u8 ires_idx;
u8 default_ires_idx;
u8 hdrm_val;
u8 current_reg_val;
u8 strobe_ctrl;
u8 strobe_sel;
enum flash_led_type type;
bool led_on;
};
struct flash_switch_data {
struct platform_device *pdev;
struct regulator *vreg;
struct pinctrl *led_en_pinctrl;
struct pinctrl_state *gpio_state_active;
struct pinctrl_state *gpio_state_suspend;
struct led_classdev cdev;
int led_mask;
bool regulator_on;
bool enabled;
bool symmetry_en;
};
/*
* Flash LED configuration read from device tree
*/
struct flash_led_platform_data {
int *thermal_derate_current;
int all_ramp_up_done_irq;
int all_ramp_down_done_irq;
int led_fault_irq;
int ibatt_ocp_threshold_ua;
int vled_max_uv;
int rpara_uohm;
int lmh_rbatt_threshold_uohm;
int lmh_ocv_threshold_uv;
int thermal_derate_slow;
int thermal_derate_fast;
int thermal_hysteresis;
int thermal_debounce;
int thermal_thrsh1;
int thermal_thrsh2;
int thermal_thrsh3;
int ramp_up_step;
int ramp_down_step;
int hw_strobe_option;
u32 led1n2_iclamp_low_ma;
u32 led1n2_iclamp_mid_ma;
u32 led3_iclamp_low_ma;
u32 led3_iclamp_mid_ma;
u32 bst_pwm_ovrhd_uv;
u8 isc_delay;
u8 warmup_delay;
u8 current_derate_en_cfg;
u8 vph_droop_threshold;
u8 vph_droop_hysteresis;
u8 vph_droop_debounce;
u8 lmh_mitigation_sel;
u8 chgr_mitigation_sel;
u8 lmh_level;
u8 iled_thrsh_val;
bool hdrm_auto_mode_en;
bool thermal_derate_en;
bool otst_ramp_bkup_en;
};
enum flash_iio_props {
RBATT,
OCV,
IBAT,
F_TRIGGER,
F_ACTIVE,
};
static char *flash_iio_prop_names[] = {
[RBATT] = "rbatt",
[OCV] = "voltage_ocv",
[IBAT] = "current_now",
[F_TRIGGER] = "flash_trigger",
[F_ACTIVE] = "flash_active",
};
/*
* Flash LED data structure containing flash LED attributes
*/
struct qpnp_flash_led {
struct flash_led_platform_data *pdata;
struct platform_device *pdev;
struct regmap *regmap;
struct flash_node_data *fnode;
struct flash_switch_data *snode;
struct power_supply *usb_psy;
struct iio_channel **iio_channels;
struct notifier_block nb;
spinlock_t lock;
int num_fnodes;
int num_snodes;
int enable;
int total_current_ma;
int pmic_type;
u32 wa_flags;
u16 base;
bool trigger_lmh;
bool trigger_chgr;
};
static int thermal_derate_slow_table[] = {
128, 256, 512, 1024, 2048, 4096, 8192, 314592,
};
static int thermal_derate_fast_table[] = {
32, 64, 96, 128, 256, 384, 512,
};
static int otst1_threshold_table[] = {
85, 79, 73, 67, 109, 103, 97, 91,
};
static int otst2_threshold_table[] = {
110, 104, 98, 92, 134, 128, 122, 116,
};
static int otst3_threshold_table[] = {
125, 119, 113, 107, 149, 143, 137, 131,
};
static int max_ires_curr_ma_table[MAX_IRES_LEVELS] = {
FLASH_LED_IRES12P5_MAX_CURR_MA, FLASH_LED_IRES10P0_MAX_CURR_MA,
FLASH_LED_IRES7P5_MAX_CURR_MA, FLASH_LED_IRES5P0_MAX_CURR_MA
};
static inline int get_current_reg_code(int target_curr_ma, int ires_ua)
{
if (!ires_ua || !target_curr_ma || (target_curr_ma < (ires_ua / 1000)))
return 0;
return DIV_ROUND_CLOSEST(target_curr_ma * 1000, ires_ua) - 1;
}
static int qpnp_flash_led_read(struct qpnp_flash_led *led, u16 addr, u8 *data)
{
int rc;
uint val;
rc = regmap_read(led->regmap, addr, &val);
if (rc < 0) {
pr_err("Unable to read from 0x%04X rc = %d\n", addr, rc);
return rc;
}
pr_debug("Read 0x%02X from addr 0x%04X\n", val, addr);
*data = (u8)val;
return 0;
}
static int qpnp_flash_led_write(struct qpnp_flash_led *led, u16 addr, u8 data)
{
int rc;
rc = regmap_write(led->regmap, addr, data);
if (rc < 0) {
pr_err("Unable to write to 0x%04X rc = %d\n", addr, rc);
return rc;
}
pr_debug("Wrote 0x%02X to addr 0x%04X\n", data, addr);
return 0;
}
static int
qpnp_flash_led_masked_read(struct qpnp_flash_led *led, u16 addr, u8 mask,
u8 *val)
{
int rc;
rc = qpnp_flash_led_read(led, addr, val);
if (rc < 0)
return rc;
*val &= mask;
return rc;
}
static int
qpnp_flash_led_masked_write(struct qpnp_flash_led *led, u16 addr, u8 mask,
u8 val)
{
int rc;
rc = regmap_update_bits(led->regmap, addr, mask, val);
if (rc < 0)
pr_err("Unable to update bits from 0x%04X, rc = %d\n", addr,
rc);
else
pr_debug("Wrote 0x%02X to addr 0x%04X\n", val, addr);
return rc;
}
static enum
led_brightness qpnp_flash_led_brightness_get(struct led_classdev *led_cdev)
{
return led_cdev->brightness;
}
static int qpnp_flash_led_headroom_config(struct qpnp_flash_led *led)
{
int rc, i, addr_offset;
for (i = 0; i < led->num_fnodes; i++) {
addr_offset = led->fnode[i].id;
rc = qpnp_flash_led_write(led,
FLASH_LED_REG_HDRM_PRGM(led->base + addr_offset),
led->fnode[i].hdrm_val);
if (rc < 0)
return rc;
}
return rc;
}
static int qpnp_flash_led_safety_tmr_config(struct qpnp_flash_led *led)
{
int rc = 0, i, addr_offset;
for (i = 0; i < led->num_fnodes; i++) {
addr_offset = led->fnode[i].id;
rc = qpnp_flash_led_write(led,
FLASH_LED_REG_SAFETY_TMR(led->base + addr_offset),
FLASH_LED_SAFETY_TMR_DISABLED);
if (rc < 0)
return rc;
}
return rc;
}
static int qpnp_flash_led_strobe_config(struct qpnp_flash_led *led)
{
int i, rc, addr_offset;
u8 val = 0, mask, strobe_mask = 0, strobe_ctrl;
for (i = 0; i < led->num_fnodes; i++) {
val |= 0x1 << led->fnode[i].id;
if (led->fnode[i].strobe_sel == HW_STROBE) {
if (led->fnode[i].id == LED3)
strobe_mask |= LED3_FLASH_ONCE_ONLY_BIT;
else
strobe_mask |= LED1N2_FLASH_ONCE_ONLY_BIT;
}
if (led->fnode[i].id == LED3 &&
led->fnode[i].strobe_sel == LPG_STROBE)
strobe_mask |= LED3_FLASH_ONCE_ONLY_BIT;
/*
* As per the hardware recommendation, to use LED2/LED3 in HW
* strobe mode, LED1 should be set to HW strobe mode as well.
*/
if (led->fnode[i].strobe_sel == HW_STROBE &&
(led->fnode[i].id == LED2 || led->fnode[i].id == LED3)) {
mask = FLASH_HW_STROBE_MASK;
addr_offset = led->fnode[LED1].id;
/*
* HW_STROBE: enable, TRIGGER: level,
* POLARITY: active high
*/
strobe_ctrl = BIT(2) | BIT(0);
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_STROBE_CTRL(
led->base + addr_offset),
mask, strobe_ctrl);
if (rc < 0)
return rc;
}
}
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_MULTI_STROBE_CTRL(led->base),
strobe_mask, 0);
if (rc < 0)
return rc;
if (led->fnode[LED3].strobe_sel == LPG_STROBE) {
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_LPG_INPUT_CTRL(led->base),
LPG_INPUT_SEL_BIT, LPG_INPUT_SEL_BIT);
if (rc < 0)
return rc;
}
return rc;
}
static int qpnp_flash_led_thermal_config(struct qpnp_flash_led *led)
{
int rc;
u8 val, mask;
val = (led->pdata->otst_ramp_bkup_en << THERMAL_OTST1_RAMP_CTRL_SHIFT);
mask = THERMAL_OTST1_RAMP_CTRL_MASK;
if (led->pdata->thermal_derate_slow >= 0) {
val |= (led->pdata->thermal_derate_slow <<
THERMAL_DERATE_SLOW_SHIFT);
mask |= THERMAL_DERATE_SLOW_MASK;
}
if (led->pdata->thermal_derate_fast >= 0) {
val |= led->pdata->thermal_derate_fast;
mask |= THERMAL_DERATE_FAST_MASK;
}
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_THERMAL_RMP_DN_RATE(led->base),
mask, val);
if (rc < 0)
return rc;
if (led->pdata->thermal_debounce >= 0) {
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_THERMAL_DEBOUNCE(led->base),
FLASH_LED_THERMAL_DEBOUNCE_MASK,
led->pdata->thermal_debounce);
if (rc < 0)
return rc;
}
if (led->pdata->thermal_hysteresis >= 0) {
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_THERMAL_HYSTERESIS(led->base),
FLASH_LED_THERMAL_HYSTERESIS_MASK,
led->pdata->thermal_hysteresis);
if (rc < 0)
return rc;
}
if (led->pdata->thermal_thrsh1 >= 0) {
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_THERMAL_THRSH1(led->base),
FLASH_LED_THERMAL_THRSH_MASK,
led->pdata->thermal_thrsh1);
if (rc < 0)
return rc;
}
if (led->pdata->thermal_thrsh2 >= 0) {
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_THERMAL_THRSH2(led->base),
FLASH_LED_THERMAL_THRSH_MASK,
led->pdata->thermal_thrsh2);
if (rc < 0)
return rc;
}
if (led->pdata->thermal_thrsh3 >= 0) {
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_THERMAL_THRSH3(led->base),
FLASH_LED_THERMAL_THRSH_MASK,
led->pdata->thermal_thrsh3);
if (rc < 0)
return rc;
}
return rc;
}
static int qpnp_flash_led_init_settings(struct qpnp_flash_led *led)
{
int rc;
u8 val = 0;
rc = qpnp_flash_led_headroom_config(led);
if (rc < 0)
return rc;
rc = qpnp_flash_led_safety_tmr_config(led);
if (rc < 0)
return rc;
rc = qpnp_flash_led_strobe_config(led);
if (rc < 0)
return rc;
rc = qpnp_flash_led_write(led,
FLASH_LED_REG_HDRM_AUTO_MODE_CTRL(led->base),
val);
if (rc < 0)
return rc;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_ISC_DELAY(led->base),
FLASH_LED_ISC_WARMUP_DELAY_MASK,
led->pdata->isc_delay);
if (rc < 0)
return rc;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_WARMUP_DELAY(led->base),
FLASH_LED_ISC_WARMUP_DELAY_MASK,
led->pdata->warmup_delay);
if (rc < 0)
return rc;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_CURRENT_DERATE_EN(led->base),
FLASH_LED_CURRENT_DERATE_EN_MASK,
led->pdata->current_derate_en_cfg);
if (rc < 0)
return rc;
rc = qpnp_flash_led_thermal_config(led);
if (rc < 0)
return rc;
val = led->pdata->ramp_up_step << FLASH_LED_RAMP_UP_STEP_SHIFT;
val |= led->pdata->ramp_down_step;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_RGLR_RAMP_RATE(led->base),
FLASH_LED_RAMP_UP_STEP_MASK | FLASH_LED_RAMP_DOWN_STEP_MASK,
val);
if (rc < 0)
return rc;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_VPH_DROOP_DEBOUNCE(led->base),
FLASH_LED_VPH_DROOP_DEBOUNCE_MASK,
led->pdata->vph_droop_debounce);
if (rc < 0)
return rc;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_VPH_DROOP_THRESHOLD(led->base),
FLASH_LED_VPH_DROOP_THRESHOLD_MASK,
led->pdata->vph_droop_threshold);
if (rc < 0)
return rc;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_VPH_DROOP_THRESHOLD(led->base),
FLASH_LED_VPH_DROOP_HYSTERESIS_MASK,
led->pdata->vph_droop_hysteresis);
if (rc < 0)
return rc;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_MITIGATION_SEL(led->base),
FLASH_LED_LMH_MITIGATION_SEL_MASK,
led->pdata->lmh_mitigation_sel);
if (rc < 0)
return rc;
val = led->pdata->chgr_mitigation_sel
<< FLASH_LED_CHGR_MITIGATION_SEL_SHIFT;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_MITIGATION_SEL(led->base),
FLASH_LED_CHGR_MITIGATION_SEL_MASK,
val);
if (rc < 0)
return rc;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_LMH_LEVEL(led->base),
FLASH_LED_LMH_LEVEL_MASK,
led->pdata->lmh_level);
if (rc < 0)
return rc;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_ILED_GRT_THRSH(led->base),
FLASH_LED_ILED_GRT_THRSH_MASK,
led->pdata->iled_thrsh_val);
if (rc < 0)
return rc;
if (led->pdata->led1n2_iclamp_low_ma) {
val = get_current_reg_code(led->pdata->led1n2_iclamp_low_ma,
led->fnode[LED1].ires_ua);
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_LED1N2_ICLAMP_LOW(led->base),
FLASH_LED_CURRENT_MASK, val);
if (rc < 0)
return rc;
}
if (led->pdata->led1n2_iclamp_mid_ma) {
val = get_current_reg_code(led->pdata->led1n2_iclamp_mid_ma,
led->fnode[LED1].ires_ua);
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_LED1N2_ICLAMP_MID(led->base),
FLASH_LED_CURRENT_MASK, val);
if (rc < 0)
return rc;
}
if (led->pdata->led3_iclamp_low_ma) {
val = get_current_reg_code(led->pdata->led3_iclamp_low_ma,
led->fnode[LED3].ires_ua);
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_LED3_ICLAMP_LOW(led->base),
FLASH_LED_CURRENT_MASK, val);
if (rc < 0)
return rc;
}
if (led->pdata->led3_iclamp_mid_ma) {
val = get_current_reg_code(led->pdata->led3_iclamp_mid_ma,
led->fnode[LED3].ires_ua);
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_LED3_ICLAMP_MID(led->base),
FLASH_LED_CURRENT_MASK, val);
if (rc < 0)
return rc;
}
if (led->pdata->hw_strobe_option > 0) {
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_STROBE_CFG(led->base),
FLASH_LED_STROBE_MASK,
led->pdata->hw_strobe_option);
if (rc < 0)
return rc;
}
return 0;
}
static int qpnp_flash_led_hw_strobe_enable(struct flash_node_data *fnode,
int hw_strobe_option, bool on)
{
int rc = 0;
/*
* If the LED controlled by this fnode is not GPIO controlled
* for the given strobe_option, return.
*/
if (hw_strobe_option == FLASH_LED_HW_STROBE_OPTION_1)
return 0;
else if (hw_strobe_option == FLASH_LED_HW_STROBE_OPTION_2
&& fnode->id != LED3)
return 0;
else if (hw_strobe_option == FLASH_LED_HW_STROBE_OPTION_3
&& fnode->id == LED1)
return 0;
if (gpio_is_valid(fnode->hw_strobe_gpio)) {
gpio_set_value(fnode->hw_strobe_gpio, on ? 1 : 0);
} else if (fnode->strobe_pinctrl && fnode->hw_strobe_state_active &&
fnode->hw_strobe_state_suspend) {
rc = pinctrl_select_state(fnode->strobe_pinctrl,
on ? fnode->hw_strobe_state_active :
fnode->hw_strobe_state_suspend);
if (rc < 0) {
pr_err("failed to change hw strobe pin state\n");
return rc;
}
}
return rc;
}
static int qpnp_flash_led_regulator_enable(struct qpnp_flash_led *led,
struct flash_switch_data *snode, bool on)
{
int rc = 0;
if (!snode || !snode->vreg)
return 0;
if (snode->regulator_on == on)
return 0;
if (on)
rc = regulator_enable(snode->vreg);
else
rc = regulator_disable(snode->vreg);
if (rc < 0) {
pr_err("regulator_%s failed, rc=%d\n",
on ? "enable" : "disable", rc);
return rc;
}
snode->regulator_on = on ? true : false;
return 0;
}
static int qpnp_flash_get_iio_chan(struct qpnp_flash_led *led,
enum flash_iio_props chan)
{
int rc = 0;
/*
* if the channel pointer is not-NULL and has a ERR value it has
* already been queried upon earlier, hence return from here.
*/
if (IS_ERR(led->iio_channels[chan]))
return -EINVAL;
if (!led->iio_channels[chan]) {
led->iio_channels[chan] = iio_channel_get(&led->pdev->dev,
flash_iio_prop_names[chan]);
if (IS_ERR(led->iio_channels[chan])) {
rc = PTR_ERR(led->iio_channels[chan]);
if (rc == -EPROBE_DEFER) {
led->iio_channels[chan] = NULL;
return rc;
}
pr_err("%s channel unavailable %d\n",
flash_iio_prop_names[chan], rc);
return rc;
}
}
return 0;
}
static int qpnp_flash_iio_getprop(struct qpnp_flash_led *led,
enum flash_iio_props chan, int *data)
{
int rc = 0;
rc = qpnp_flash_get_iio_chan(led, chan);
if (rc < 0)
return rc;
rc = iio_read_channel_processed(led->iio_channels[chan], data);
if (rc < 0)
pr_err("Error in reading IIO channel data rc = %d\n", rc);
return rc;
}
static int qpnp_flash_iio_setprop(struct qpnp_flash_led *led,
enum flash_iio_props chan, int data)
{
int rc = 0;
rc = qpnp_flash_get_iio_chan(led, chan);
if (rc < 0)
return rc;
rc = iio_write_channel_raw(led->iio_channels[chan], data);
if (rc < 0)
pr_err("Error in writing IIO channel data rc = %d\n", rc);
return rc;
}
#define VOLTAGE_HDRM_DEFAULT_MV 350
#define BHARGER_VOLTAGE_HDRM_DEFAULT_MV 400
#define BHARGER_HEADROOM_OFFSET_MV 50
static int qpnp_flash_led_get_voltage_headroom(struct qpnp_flash_led *led)
{
int i, voltage_hdrm_mv = 0, voltage_hdrm_max = 0;
for (i = 0; i < led->num_fnodes; i++) {
if (led->fnode[i].led_on) {
if (led->fnode[i].id < 2) {
if (led->fnode[i].current_ma < 750)
voltage_hdrm_mv = 125;
else if (led->fnode[i].current_ma < 1000)
voltage_hdrm_mv = 175;
else if (led->fnode[i].current_ma < 1250)
voltage_hdrm_mv = 250;
else
voltage_hdrm_mv = 350;
} else {
if (led->fnode[i].current_ma < 375)
voltage_hdrm_mv = 125;
else if (led->fnode[i].current_ma < 500)
voltage_hdrm_mv = 175;
else if (led->fnode[i].current_ma < 625)
voltage_hdrm_mv = 250;
else
voltage_hdrm_mv = 350;
}
if (led->pmic_type == PMI632)
voltage_hdrm_mv += BHARGER_HEADROOM_OFFSET_MV;
voltage_hdrm_max = max(voltage_hdrm_max,
voltage_hdrm_mv);
}
}
if (!voltage_hdrm_max)
return (led->pmic_type == PMI632) ?
BHARGER_VOLTAGE_HDRM_DEFAULT_MV :
VOLTAGE_HDRM_DEFAULT_MV;
return voltage_hdrm_max;
}
#define UCONV 1000000LL
#define MCONV 1000LL
#define FLASH_VDIP_MARGIN 50000
#define BOB_EFFICIENCY 900LL
#define VIN_FLASH_MIN_UV 3300000LL
static int qpnp_flash_led_calc_max_current(struct qpnp_flash_led *led,
int *max_current)
{
int ocv_uv, ibat_now, voltage_hdrm_mv, rc;
int rbatt_uohm = 0;
int64_t ibat_flash_ua, avail_flash_ua, avail_flash_power_fw;
int64_t ibat_safe_ua, vin_flash_uv, vph_flash_uv, vph_flash_vdip;
/* RESISTANCE = esr_uohm + rslow_uohm */
rc = qpnp_flash_iio_getprop(led, RBATT, &rbatt_uohm);
/* Do not return error if the QG driver is not probed */
if (rc == -EPROBE_DEFER) {
*max_current = FLASH_LED_MAX_TOTAL_CURRENT_MA;
return 0;
} else if (rc < 0) {
pr_err("Unable to read battery resistance, rc=%d\n", rc);
return rc;
}
/* If no battery is connected, return max possible flash current */
if (!rbatt_uohm) {
*max_current = FLASH_LED_MAX_TOTAL_CURRENT_MA;
return 0;
}
rc = qpnp_flash_iio_getprop(led, OCV, &ocv_uv);
if (rc < 0) {
pr_err("Unable to read OCV, rc=%d\n", rc);
return rc;
}
rc = qpnp_flash_iio_getprop(led, IBAT, &ibat_now);
if (rc < 0) {
pr_err("unable to read current_now, rc=%d\n", rc);
return rc;
}
rbatt_uohm += led->pdata->rpara_uohm;
voltage_hdrm_mv = qpnp_flash_led_get_voltage_headroom(led);
vph_flash_vdip =
VPH_DROOP_THRESH_VAL_TO_UV(led->pdata->vph_droop_threshold)
+ FLASH_VDIP_MARGIN;
/* Check if LMH_MITIGATION needs to be triggered */
if (!led->trigger_lmh && (ocv_uv < led->pdata->lmh_ocv_threshold_uv ||
rbatt_uohm > led->pdata->lmh_rbatt_threshold_uohm)) {
led->trigger_lmh = true;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_MITIGATION_SW(led->base),
FLASH_LED_LMH_MITIGATION_EN_MASK,
FLASH_LED_LMH_MITIGATION_ENABLE);
if (rc < 0) {
pr_err("trigger lmh mitigation failed, rc=%d\n", rc);
return rc;
}
/* Wait for LMH mitigation to take effect */
udelay(100);
return qpnp_flash_led_calc_max_current(led, max_current);
}
/*
* Calculate the maximum current that can pulled out of the battery
* before the battery voltage dips below a safe threshold.
*/
ibat_safe_ua = div_s64((ocv_uv - vph_flash_vdip) * UCONV,
rbatt_uohm);
if (ibat_safe_ua <= led->pdata->ibatt_ocp_threshold_ua) {
/*
* If the calculated current is below the OCP threshold, then
* use it as the possible flash current.
*/
ibat_flash_ua = ibat_safe_ua - ibat_now;
vph_flash_uv = vph_flash_vdip;
} else {
/*
* If the calculated current is above the OCP threshold, then
* use the ocp threshold instead.
*
* Any higher current will be tripping the battery OCP.
*/
ibat_flash_ua = led->pdata->ibatt_ocp_threshold_ua - ibat_now;
vph_flash_uv = ocv_uv - div64_s64((int64_t)rbatt_uohm
* led->pdata->ibatt_ocp_threshold_ua, UCONV);
}
/* Calculate the input voltage of the flash module. */
vin_flash_uv = max((led->pdata->vled_max_uv +
(voltage_hdrm_mv * MCONV)), VIN_FLASH_MIN_UV);
/* Calculate the available power for the flash module. */
avail_flash_power_fw = BOB_EFFICIENCY * vph_flash_uv * ibat_flash_ua;
/*
* Calculate the available amount of current the flash module can draw
* before collapsing the battery. (available power/ flash input voltage)
*/
avail_flash_ua = div64_s64(avail_flash_power_fw, vin_flash_uv * MCONV);
pr_debug("avail_iflash=%lld, ocv=%d, ibat=%d, rbatt=%d, trigger_lmh=%d\n",
avail_flash_ua, ocv_uv, ibat_now, rbatt_uohm, led->trigger_lmh);
*max_current = min(FLASH_LED_MAX_TOTAL_CURRENT_MA,
(int)(div64_s64(avail_flash_ua, MCONV)));
return 0;
}
static int is_usb_psy_available(struct qpnp_flash_led *led)
{
if (!led->usb_psy) {
led->usb_psy = power_supply_get_by_name("usb");
if (!led->usb_psy) {
pr_err_ratelimited("Couldn't get usb_psy\n");
return -ENODEV;
}
}
return 0;
}
#define CHGBST_EFFICIENCY 800LL
#define CHGBST_FLASH_VDIP_MARGIN 10000
#define VIN_FLASH_UV 5000000
#define BHARGER_FLASH_LED_MAX_TOTAL_CURRENT_MA 1500
#define BHARGER_FLASH_LED_WITH_OTG_MAX_TOTAL_CURRENT_MA 1100
static int qpnp_flash_led_calc_bharger_max_current(struct qpnp_flash_led *led,
int *max_current)
{
union power_supply_propval pval = {0, };
int ocv_uv, ibat_now, voltage_hdrm_mv, flash_led_max_total_curr_ma, rc;
int rbatt_uohm = 0, usb_present, otg_enable;
int64_t ibat_flash_ua, avail_flash_ua, avail_flash_power_fw;
int64_t ibat_safe_ua, vin_flash_uv, vph_flash_uv, vph_flash_vdip;
int64_t bst_pwm_ovrhd_uv;
rc = is_usb_psy_available(led);
if (rc < 0)
return rc;
rc = power_supply_get_property(led->usb_psy, POWER_SUPPLY_PROP_SCOPE,
&pval);
if (rc < 0) {
pr_err("usb psy does not support usb present, rc=%d\n", rc);
return rc;
}
otg_enable = pval.intval;
/* RESISTANCE = esr_uohm + rslow_uohm */
rc = qpnp_flash_iio_getprop(led, RBATT, &rbatt_uohm);
/* Do not return error if the QG driver is not probed */
if (rc == -EPROBE_DEFER) {
*max_current = FLASH_LED_MAX_TOTAL_CURRENT_MA;
return 0;
} else if (rc < 0) {
pr_err("Unable to read battery resistance, rc=%d\n", rc);
return rc;
}
/* If no battery is connected, return max possible flash current */
if (!rbatt_uohm) {
*max_current = (otg_enable == POWER_SUPPLY_SCOPE_SYSTEM) ?
BHARGER_FLASH_LED_WITH_OTG_MAX_TOTAL_CURRENT_MA :
BHARGER_FLASH_LED_MAX_TOTAL_CURRENT_MA;
return 0;
}
rc = qpnp_flash_iio_getprop(led, OCV, &ocv_uv);
if (rc < 0) {
pr_err("Unable to read OCV, rc=%d\n", rc);
return rc;
}
rc = qpnp_flash_iio_getprop(led, IBAT, &ibat_now);
if (rc < 0) {
pr_err("Unable to read current, rc=%d\n", rc);
return rc;
}
bst_pwm_ovrhd_uv = led->pdata->bst_pwm_ovrhd_uv;
rc = power_supply_get_property(led->usb_psy, POWER_SUPPLY_PROP_PRESENT,
&pval);
if (rc < 0) {
pr_err("usb psy does not support usb present, rc=%d\n", rc);
return rc;
}
usb_present = pval.intval;
rbatt_uohm += led->pdata->rpara_uohm;
voltage_hdrm_mv = qpnp_flash_led_get_voltage_headroom(led);
vph_flash_vdip =
VPH_DROOP_THRESH_VAL_TO_UV(led->pdata->vph_droop_threshold)
+ CHGBST_FLASH_VDIP_MARGIN;
/* Check if LMH_MITIGATION needs to be triggered */
if (!led->trigger_lmh && (ocv_uv < led->pdata->lmh_ocv_threshold_uv ||
rbatt_uohm > led->pdata->lmh_rbatt_threshold_uohm)) {
led->trigger_lmh = true;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_MITIGATION_SW(led->base),
FLASH_LED_LMH_MITIGATION_EN_MASK,
FLASH_LED_LMH_MITIGATION_ENABLE);
if (rc < 0) {
pr_err("trigger lmh mitigation failed, rc=%d\n", rc);
return rc;
}
/* Wait for LMH mitigation to take effect */
udelay(100);
return qpnp_flash_led_calc_bharger_max_current(led,
max_current);
}
/*
* Calculate the maximum current that can pulled out of the battery
* before the battery voltage dips below a safe threshold.
*/
ibat_safe_ua = div_s64((ocv_uv - vph_flash_vdip) * UCONV,
rbatt_uohm);
if (ibat_safe_ua <= led->pdata->ibatt_ocp_threshold_ua) {
/*
* If the calculated current is below the OCP threshold, then
* use it as the possible flash current.
*/
ibat_flash_ua = ibat_safe_ua - ibat_now;
vph_flash_uv = vph_flash_vdip;
} else {
/*
* If the calculated current is above the OCP threshold, then
* use the ocp threshold instead.
*
* Any higher current will be tripping the battery OCP.
*/
ibat_flash_ua = led->pdata->ibatt_ocp_threshold_ua - ibat_now;
vph_flash_uv = ocv_uv - div64_s64((int64_t)rbatt_uohm
* led->pdata->ibatt_ocp_threshold_ua, UCONV);
}
/* when USB is present or OTG is enabled, VIN_FLASH is always at 5V */
if (usb_present || (otg_enable == POWER_SUPPLY_SCOPE_SYSTEM))
vin_flash_uv = VIN_FLASH_UV;
else
/* Calculate the input voltage of the flash module. */
vin_flash_uv = max((led->pdata->vled_max_uv +
(voltage_hdrm_mv * MCONV)),
vph_flash_uv + bst_pwm_ovrhd_uv);
/* Calculate the available power for the flash module. */
avail_flash_power_fw = CHGBST_EFFICIENCY * vph_flash_uv * ibat_flash_ua;
/*
* Calculate the available amount of current the flash module can draw
* before collapsing the battery. (available power/ flash input voltage)
*/
avail_flash_ua = div64_s64(avail_flash_power_fw, vin_flash_uv * MCONV);
flash_led_max_total_curr_ma = otg_enable ?
BHARGER_FLASH_LED_WITH_OTG_MAX_TOTAL_CURRENT_MA :
BHARGER_FLASH_LED_MAX_TOTAL_CURRENT_MA;
*max_current = min(flash_led_max_total_curr_ma,
(int)(div64_s64(avail_flash_ua, MCONV)));
pr_debug("avail_iflash=%lld, ocv=%d, ibat=%d, rbatt=%d, trigger_lmh=%d max_current=%lld usb_present=%d otg_enable=%d\n",
avail_flash_ua, ocv_uv, ibat_now, rbatt_uohm, led->trigger_lmh,
(*max_current * MCONV), usb_present, otg_enable);
return 0;
}
static int qpnp_flash_led_calc_thermal_current_lim(struct qpnp_flash_led *led,
int *thermal_current_lim)
{
int rc;
u8 thermal_thrsh1, thermal_thrsh2, thermal_thrsh3, otst_status;
/* Store THERMAL_THRSHx register values */
rc = qpnp_flash_led_masked_read(led,
FLASH_LED_REG_THERMAL_THRSH1(led->base),
FLASH_LED_THERMAL_THRSH_MASK,
&thermal_thrsh1);
if (rc < 0)
return rc;
rc = qpnp_flash_led_masked_read(led,
FLASH_LED_REG_THERMAL_THRSH2(led->base),
FLASH_LED_THERMAL_THRSH_MASK,
&thermal_thrsh2);
if (rc < 0)
return rc;
rc = qpnp_flash_led_masked_read(led,
FLASH_LED_REG_THERMAL_THRSH3(led->base),
FLASH_LED_THERMAL_THRSH_MASK,
&thermal_thrsh3);
if (rc < 0)
return rc;
/* Lower THERMAL_THRSHx thresholds to minimum */
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_THERMAL_THRSH1(led->base),
FLASH_LED_THERMAL_THRSH_MASK,
FLASH_LED_THERMAL_THRSH_MIN);
if (rc < 0)
return rc;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_THERMAL_THRSH2(led->base),
FLASH_LED_THERMAL_THRSH_MASK,
FLASH_LED_THERMAL_THRSH_MIN);
if (rc < 0)
return rc;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_THERMAL_THRSH3(led->base),
FLASH_LED_THERMAL_THRSH_MASK,
FLASH_LED_THERMAL_THRSH_MIN);
if (rc < 0)
return rc;
/* Check THERMAL_OTST status */
rc = qpnp_flash_led_read(led,
FLASH_LED_REG_LED_STATUS2(led->base),
&otst_status);
if (rc < 0)
return rc;
otst_status &= FLASH_LED_THERMAL_OTST_MASK;
/* Look up current limit based on THERMAL_OTST status */
if (otst_status)
*thermal_current_lim =
led->pdata->thermal_derate_current[otst_status >> 1];
/* Restore THERMAL_THRESHx registers to original values */
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_THERMAL_THRSH1(led->base),
FLASH_LED_THERMAL_THRSH_MASK,
thermal_thrsh1);
if (rc < 0)
return rc;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_THERMAL_THRSH2(led->base),
FLASH_LED_THERMAL_THRSH_MASK,
thermal_thrsh2);
if (rc < 0)
return rc;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_THERMAL_THRSH3(led->base),
FLASH_LED_THERMAL_THRSH_MASK,
thermal_thrsh3);
if (rc < 0)
return rc;
return 0;
}
static int qpnp_flash_led_get_max_avail_current(struct qpnp_flash_led *led,
int *max_avail_current)
{
int thermal_current_lim = 0, rc;
led->trigger_lmh = false;
if (led->pmic_type == PMI632)
rc = qpnp_flash_led_calc_bharger_max_current(led,
max_avail_current);
else
rc = qpnp_flash_led_calc_max_current(led, max_avail_current);
if (rc < 0) {
pr_err("Couldn't calculate max_avail_current, rc=%d\n", rc);
return rc;
}
if (led->pdata->thermal_derate_en) {
rc = qpnp_flash_led_calc_thermal_current_lim(led,
&thermal_current_lim);
if (rc < 0) {
pr_err("Couldn't calculate thermal_current_lim, rc=%d\n",
rc);
return rc;
}
}
if (thermal_current_lim)
*max_avail_current = min(*max_avail_current,
thermal_current_lim);
return 0;
}
static void qpnp_flash_led_aggregate_max_current(struct flash_node_data *fnode)
{
struct qpnp_flash_led *led = dev_get_drvdata(&fnode->pdev->dev);
if (fnode->current_ma)
led->total_current_ma += fnode->current_ma
- fnode->prev_current_ma;
else
led->total_current_ma -= fnode->prev_current_ma;
fnode->prev_current_ma = fnode->current_ma;
}
static void qpnp_flash_led_node_set(struct flash_node_data *fnode, int value)
{
int i = 0;
int prgm_current_ma = value;
int min_ma = fnode->ires_ua / 1000;
struct qpnp_flash_led *led = dev_get_drvdata(&fnode->pdev->dev);
if (value <= 0)
prgm_current_ma = 0;
else if (value < min_ma)
prgm_current_ma = min_ma;
fnode->ires_idx = fnode->default_ires_idx;
fnode->ires_ua = fnode->default_ires_ua;
prgm_current_ma = min(prgm_current_ma, fnode->max_current);
if (prgm_current_ma > max_ires_curr_ma_table[fnode->ires_idx]) {
/* find the matching ires */
for (i = MAX_IRES_LEVELS - 1; i >= 0; i--) {
if (prgm_current_ma <= max_ires_curr_ma_table[i]) {
fnode->ires_idx = i;
fnode->ires_ua = FLASH_LED_IRES_MIN_UA +
(FLASH_LED_IRES_BASE - fnode->ires_idx) *
FLASH_LED_IRES_DIVISOR;
break;
}
}
} else if (prgm_current_ma <= 20 &&
(led->wa_flags & PM6150L_IRES_WA)) {
fnode->ires_idx = FLASH_LED_IRES_BASE;
fnode->ires_ua = FLASH_LED_IRES_MIN_UA;
}
fnode->current_ma = prgm_current_ma;
fnode->cdev.brightness = prgm_current_ma;
fnode->current_reg_val = get_current_reg_code(prgm_current_ma,
fnode->ires_ua);
if (prgm_current_ma)
fnode->led_on = true;
if (led->pmic_type != PMI632 &&
led->pdata->chgr_mitigation_sel == FLASH_SW_CHARGER_MITIGATION) {
qpnp_flash_led_aggregate_max_current(fnode);
led->trigger_chgr = false;
if (led->total_current_ma >= 1000)
led->trigger_chgr = true;
}
}
static int qpnp_flash_led_switch_disable(struct flash_switch_data *snode)
{
struct qpnp_flash_led *led = dev_get_drvdata(&snode->pdev->dev);
int i, rc, addr_offset;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_EN_LED_CTRL(led->base),
snode->led_mask, FLASH_LED_DISABLE);
if (rc < 0)
return rc;
if (led->trigger_lmh) {
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_MITIGATION_SW(led->base),
FLASH_LED_LMH_MITIGATION_EN_MASK,
FLASH_LED_LMH_MITIGATION_DISABLE);
if (rc < 0) {
pr_err("disable lmh mitigation failed, rc=%d\n", rc);
return rc;
}
}
if (led->pdata->chgr_mitigation_sel && !led->trigger_chgr) {
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_MITIGATION_SW(led->base),
FLASH_LED_CHGR_MITIGATION_EN_MASK,
FLASH_LED_CHGR_MITIGATION_DISABLE);
if (rc < 0) {
pr_err("disable chgr mitigation failed, rc=%d\n", rc);
return rc;
}
}
led->enable--;
if (led->enable == 0) {
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_MOD_CTRL(led->base),
FLASH_LED_MOD_CTRL_MASK, FLASH_LED_DISABLE);
if (rc < 0)
return rc;
}
for (i = 0; i < led->num_fnodes; i++) {
if (!led->fnode[i].led_on ||
!(snode->led_mask & BIT(led->fnode[i].id)))
continue;
addr_offset = led->fnode[i].id;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_TGR_CURRENT(led->base + addr_offset),
FLASH_LED_CURRENT_MASK, 0);
if (rc < 0)
return rc;
rc = qpnp_flash_led_write(led,
FLASH_LED_REG_SAFETY_TMR(led->base + addr_offset),
FLASH_LED_SAFETY_TMR_DISABLED);
if (rc < 0)
return rc;
led->fnode[i].led_on = false;
if (led->fnode[i].strobe_sel == HW_STROBE) {
rc = qpnp_flash_led_hw_strobe_enable(&led->fnode[i],
led->pdata->hw_strobe_option, false);
if (rc < 0) {
pr_err("Unable to disable hw strobe, rc=%d\n",
rc);
return rc;
}
}
}
if (snode->led_en_pinctrl) {
pr_debug("Selecting suspend state for %s\n", snode->cdev.name);
rc = pinctrl_select_state(snode->led_en_pinctrl,
snode->gpio_state_suspend);
if (rc < 0) {
pr_err("failed to select pinctrl suspend state rc=%d\n",
rc);
return rc;
}
}
snode->enabled = false;
return 0;
}
static int qpnp_flash_led_symmetry_config(struct flash_switch_data *snode)
{
struct qpnp_flash_led *led = dev_get_drvdata(&snode->pdev->dev);
int i, total_curr_ma = 0, num_leds = 0, prgm_current_ma;
enum flash_led_type type = FLASH_LED_TYPE_UNKNOWN;
for (i = 0; i < led->num_fnodes; i++) {
if (snode->led_mask & BIT(led->fnode[i].id)) {
if (led->fnode[i].type == FLASH_LED_TYPE_FLASH &&
led->fnode[i].led_on)
type = FLASH_LED_TYPE_FLASH;
if (led->fnode[i].type == FLASH_LED_TYPE_TORCH &&
led->fnode[i].led_on)
type = FLASH_LED_TYPE_TORCH;
}
}
if (type == FLASH_LED_TYPE_UNKNOWN) {
pr_err("Incorrect type possibly because of no active LEDs\n");
return -EINVAL;
}
for (i = 0; i < led->num_fnodes; i++) {
if ((snode->led_mask & BIT(led->fnode[i].id)) &&
(led->fnode[i].type == type)) {
total_curr_ma += led->fnode[i].current_ma;
num_leds++;
}
}
if (num_leds > 0 && total_curr_ma > 0) {
prgm_current_ma = total_curr_ma / num_leds;
} else {
pr_err("Incorrect configuration, num_leds: %d total_curr_ma: %d\n",
num_leds, total_curr_ma);
return -EINVAL;
}
if (prgm_current_ma == 0) {
pr_warn("prgm_curr_ma cannot be 0\n");
return 0;
}
pr_debug("num_leds: %d total: %d prgm_curr_ma: %d\n", num_leds,
total_curr_ma, prgm_current_ma);
for (i = 0; i < led->num_fnodes; i++) {
if (snode->led_mask & BIT(led->fnode[i].id) &&
led->fnode[i].current_ma != prgm_current_ma &&
led->fnode[i].type == type) {
qpnp_flash_led_node_set(&led->fnode[i],
prgm_current_ma);
pr_debug("%s LED %d current: %d code: %d ires_ua: %d\n",
(type == FLASH_LED_TYPE_FLASH) ?
"flash" : "torch",
led->fnode[i].id, prgm_current_ma,
led->fnode[i].current_reg_val,
led->fnode[i].ires_ua);
}
}
return 0;
}
static int qpnp_flash_led_module_enable(struct flash_switch_data *snode)
{
struct qpnp_flash_led *led = dev_get_drvdata(&snode->pdev->dev);
int rc = 0;
if (led->enable == 0) {
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_MOD_CTRL(led->base),
FLASH_LED_MOD_CTRL_MASK, FLASH_LED_MOD_ENABLE);
if (rc < 0)
return rc;
}
led->enable++;
return rc;
}
static int qpnp_flash_led_switch_set(struct flash_switch_data *snode, bool on)
{
struct qpnp_flash_led *led = dev_get_drvdata(&snode->pdev->dev);
int rc, i, addr_offset;
u8 val, mask;
if (snode->enabled == on) {
pr_debug("Switch node is already %s!\n",
on ? "enabled" : "disabled");
return 0;
}
if (!on) {
rc = qpnp_flash_led_switch_disable(snode);
return rc;
}
/* Iterate over all active leds for this switch node */
if (snode->symmetry_en) {
rc = qpnp_flash_led_symmetry_config(snode);
if (rc < 0) {
pr_err("Failed to configure current symmetrically, rc=%d\n",
rc);
return rc;
}
}
val = 0;
for (i = 0; i < led->num_fnodes; i++)
if (led->fnode[i].led_on &&
snode->led_mask & BIT(led->fnode[i].id))
val |= led->fnode[i].ires_idx << (led->fnode[i].id * 2);
rc = qpnp_flash_led_masked_write(led, FLASH_LED_REG_IRES(led->base),
FLASH_LED_CURRENT_MASK, val);
if (rc < 0)
return rc;
val = 0;
for (i = 0; i < led->num_fnodes; i++) {
if (!led->fnode[i].led_on ||
!(snode->led_mask & BIT(led->fnode[i].id)))
continue;
addr_offset = led->fnode[i].id;
if (led->fnode[i].strobe_sel == SW_STROBE)
mask = FLASH_LED_HW_SW_STROBE_SEL_BIT;
else
mask = FLASH_HW_STROBE_MASK;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_STROBE_CTRL(led->base + addr_offset),
mask, led->fnode[i].strobe_ctrl);
if (rc < 0)
return rc;
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_TGR_CURRENT(led->base + addr_offset),
FLASH_LED_CURRENT_MASK, led->fnode[i].current_reg_val);
if (rc < 0)
return rc;
rc = qpnp_flash_led_write(led,
FLASH_LED_REG_SAFETY_TMR(led->base + addr_offset),
led->fnode[i].duration);
if (rc < 0)
return rc;
val |= FLASH_LED_ENABLE << led->fnode[i].id;
if (led->fnode[i].strobe_sel == HW_STROBE) {
rc = qpnp_flash_led_hw_strobe_enable(&led->fnode[i],
led->pdata->hw_strobe_option, true);
if (rc < 0) {
pr_err("Unable to enable hw strobe rc=%d\n",
rc);
return rc;
}
}
}
if (snode->led_en_pinctrl) {
pr_debug("Selecting active state for %s\n", snode->cdev.name);
rc = pinctrl_select_state(snode->led_en_pinctrl,
snode->gpio_state_active);
if (rc < 0) {
pr_err("failed to select pinctrl active state rc=%d\n",
rc);
return rc;
}
}
rc = qpnp_flash_led_module_enable(snode);
if (rc < 0)
return rc;
if (led->trigger_lmh) {
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_MITIGATION_SW(led->base),
FLASH_LED_LMH_MITIGATION_EN_MASK,
FLASH_LED_LMH_MITIGATION_ENABLE);
if (rc < 0) {
pr_err("trigger lmh mitigation failed, rc=%d\n", rc);
return rc;
}
/* Wait for LMH mitigation to take effect */
udelay(500);
}
if (led->pdata->chgr_mitigation_sel && led->trigger_chgr) {
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_REG_MITIGATION_SW(led->base),
FLASH_LED_CHGR_MITIGATION_EN_MASK,
FLASH_LED_CHGR_MITIGATION_ENABLE);
if (rc < 0) {
pr_err("trigger chgr mitigation failed, rc=%d\n", rc);
return rc;
}
}
rc = qpnp_flash_led_masked_write(led,
FLASH_LED_EN_LED_CTRL(led->base),
snode->led_mask, val);
if (rc < 0)
return rc;
snode->enabled = true;
return 0;
}
static int qpnp_flash_led_regulator_control(struct led_classdev *led_cdev,
int options, int *max_current)
{
int rc, val;
struct flash_switch_data *snode;
struct qpnp_flash_led *led;
snode = container_of(led_cdev, struct flash_switch_data, cdev);
led = dev_get_drvdata(&snode->pdev->dev);
if (led->pmic_type == PMI632) {
rc = is_usb_psy_available(led);
if (rc < 0)
return rc;
}
if (!(options & FLASH_LED_PREPARE_OPTIONS_MASK)) {
pr_err("Invalid options %d\n", options);
return -EINVAL;
}
if (options & ENABLE_REGULATOR) {
if (led->pmic_type == PMI632) {
val = 1;
rc = qpnp_flash_iio_setprop(led, F_ACTIVE, val);
if (rc < 0) {
pr_err("Failed to set FLASH_ACTIVE on charger rc=%d\n",
rc);
return rc;
}
pr_debug("FLASH_ACTIVE = 1\n");
} else {
rc = qpnp_flash_led_regulator_enable(led, snode, true);
if (rc < 0) {
pr_err("enable regulator failed, rc=%d\n", rc);
return rc;
}
}
}
if (options & DISABLE_REGULATOR) {
if (led->pmic_type == PMI632) {
val = 0;
rc = qpnp_flash_iio_setprop(led, F_ACTIVE, val);
if (rc < 0) {
pr_err("Failed to set FLASH_ACTIVE on charger rc=%d\n",
rc);
return rc;
}
pr_debug("FLASH_ACTIVE = 0\n");
} else {
rc = qpnp_flash_led_regulator_enable(led, snode, false);
if (rc < 0) {
pr_err("disable regulator failed, rc=%d\n", rc);
return rc;
}
}
}
if (options & QUERY_MAX_AVAIL_CURRENT) {
rc = qpnp_flash_led_get_max_avail_current(led, max_current);
if (rc < 0) {
pr_err("query max current failed, rc=%d\n", rc);
return rc;
}
}
return 0;
}
static struct led_classdev *trigger_to_lcdev(struct led_trigger *trig)
{
struct led_classdev *led_cdev;
read_lock(&trig->leddev_list_lock);
list_for_each_entry(led_cdev, &trig->led_cdevs, trig_list) {
if (!strcmp(led_cdev->default_trigger, trig->name)) {
read_unlock(&trig->leddev_list_lock);
return led_cdev;
}
}
read_unlock(&trig->leddev_list_lock);
return NULL;
}
int qpnp_flash_led_prepare(struct led_trigger *trig, int options,
int *max_current)
{
struct led_classdev *led_cdev;
int rc;
if (!trig) {
pr_err("Invalid led_trigger provided\n");
return -EINVAL;
}
led_cdev = trigger_to_lcdev(trig);
if (!led_cdev) {
pr_err("Invalid led_cdev in trigger %s\n", trig->name);
return -EINVAL;
}
rc = qpnp_flash_led_regulator_control(led_cdev, options, max_current);
return rc;
}
EXPORT_SYMBOL(qpnp_flash_led_prepare);
static void qpnp_flash_led_brightness_set(struct led_classdev *led_cdev,
enum led_brightness value)
{
struct flash_node_data *fnode = NULL;
struct flash_switch_data *snode = NULL;
struct qpnp_flash_led *led = NULL;
int rc;
/*
* strncmp() must be used here since a prefix comparison is required
* in order to support names like led:switch_0 and led:flash_1.
*/
if (!strncmp(led_cdev->name, "led:switch", strlen("led:switch"))) {
snode = container_of(led_cdev, struct flash_switch_data, cdev);
led = dev_get_drvdata(&snode->pdev->dev);
} else if (!strncmp(led_cdev->name, "led:flash", strlen("led:flash")) ||
!strncmp(led_cdev->name, "led:torch",
strlen("led:torch"))) {
fnode = container_of(led_cdev, struct flash_node_data, cdev);
led = dev_get_drvdata(&fnode->pdev->dev);
}
if (!led) {
pr_err("Failed to get flash driver data\n");
return;
}
spin_lock(&led->lock);
if (snode) {
rc = qpnp_flash_led_switch_set(snode, value > 0);
if (rc < 0)
pr_err("Failed to set flash LED switch rc=%d\n", rc);
} else if (fnode) {
qpnp_flash_led_node_set(fnode, value);
}
spin_unlock(&led->lock);
}
static ssize_t qpnp_flash_led_prepare_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int rc, options, max_current;
u32 val;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
rc = kstrtouint(buf, 0, &val);
if (rc < 0)
return rc;
if (val != 0 && val != 1)
return count;
options = val ? ENABLE_REGULATOR : DISABLE_REGULATOR;
rc = qpnp_flash_led_regulator_control(led_cdev, options, &max_current);
if (rc < 0)
return rc;
return count;
}
/* sysfs show function for flash_max_current */
static ssize_t qpnp_flash_led_max_current_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int rc, max_current = 0;
struct flash_switch_data *snode;
struct qpnp_flash_led *led;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
snode = container_of(led_cdev, struct flash_switch_data, cdev);
led = dev_get_drvdata(&snode->pdev->dev);
rc = qpnp_flash_led_get_max_avail_current(led, &max_current);
if (rc < 0)
pr_err("query max current failed, rc=%d\n", rc);
return snprintf(buf, PAGE_SIZE, "%d\n", max_current);
}
/* sysfs attributes exported by flash_led */
static struct device_attribute qpnp_flash_led_attrs[] = {
__ATTR(max_current, 0664, qpnp_flash_led_max_current_show, NULL),
__ATTR(enable, 0664, NULL, qpnp_flash_led_prepare_store),
};
/* irq handler */
static irqreturn_t qpnp_flash_led_irq_handler(int irq, void *_led)
{
struct qpnp_flash_led *led = _led;
enum flash_led_irq_type irq_type = INVALID_IRQ;
int rc;
u8 irq_status, led_status1, led_status2;
pr_debug("irq received, irq=%d\n", irq);
rc = qpnp_flash_led_read(led,
FLASH_LED_REG_INT_RT_STS(led->base), &irq_status);
if (rc < 0) {
pr_err("Failed to read interrupt status reg, rc=%d\n", rc);
goto exit;
}
if (irq == led->pdata->all_ramp_up_done_irq)
irq_type = ALL_RAMP_UP_DONE_IRQ;
else if (irq == led->pdata->all_ramp_down_done_irq)
irq_type = ALL_RAMP_DOWN_DONE_IRQ;
else if (irq == led->pdata->led_fault_irq)
irq_type = LED_FAULT_IRQ;
if (irq_type == ALL_RAMP_UP_DONE_IRQ)
atomic_notifier_call_chain(&irq_notifier_list,
irq_type, NULL);
if (irq_type == LED_FAULT_IRQ) {
rc = qpnp_flash_led_read(led,
FLASH_LED_REG_LED_STATUS1(led->base), &led_status1);
if (rc < 0) {
pr_err("Failed to read led_status1 reg, rc=%d\n", rc);
goto exit;
}
rc = qpnp_flash_led_read(led,
FLASH_LED_REG_LED_STATUS2(led->base), &led_status2);
if (rc < 0) {
pr_err("Failed to read led_status2 reg, rc=%d\n", rc);
goto exit;
}
if (led_status1)
pr_emerg("led short/open fault detected! led_status1=%x\n",
led_status1);
if (led_status2 & FLASH_LED_VPH_DROOP_FAULT_MASK)
pr_emerg("led vph_droop fault detected!\n");
}
pr_debug("irq handled, irq_type=%x, irq_status=%x\n", irq_type,
irq_status);
exit:
return IRQ_HANDLED;
}
int qpnp_flash_led_register_irq_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_register(&irq_notifier_list, nb);
}
int qpnp_flash_led_unregister_irq_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_unregister(&irq_notifier_list, nb);
}
static inline u8 get_safety_timer_code(u32 duration_ms)
{
if (!duration_ms)
return 0;
return (duration_ms / 10) - 1;
}
static inline u8 get_vph_droop_thresh_code(u32 val_mv)
{
if (!val_mv)
return 0;
return (val_mv / 100) - 25;
}
static int qpnp_flash_led_parse_hw_strobe_dt(struct flash_node_data *fnode)
{
struct device_node *node = fnode->cdev.dev->of_node;
if (of_find_property(node, "qcom,hw-strobe-gpio", NULL)) {
fnode->hw_strobe_gpio = of_get_named_gpio(node,
"qcom,hw-strobe-gpio", 0);
if (fnode->hw_strobe_gpio < 0) {
pr_err("Invalid gpio specified\n");
return fnode->hw_strobe_gpio;
}
gpio_direction_output(fnode->hw_strobe_gpio, 0);
} else if (fnode->strobe_pinctrl) {
fnode->hw_strobe_gpio = -1;
fnode->hw_strobe_state_active =
pinctrl_lookup_state(fnode->strobe_pinctrl,
"strobe_enable");
if (IS_ERR_OR_NULL(fnode->hw_strobe_state_active)) {
pr_err("No active pin for hardware strobe, rc=%ld\n",
PTR_ERR(fnode->hw_strobe_state_active));
fnode->hw_strobe_state_active = NULL;
}
fnode->hw_strobe_state_suspend =
pinctrl_lookup_state(fnode->strobe_pinctrl,
"strobe_disable");
if (IS_ERR_OR_NULL(fnode->hw_strobe_state_suspend)) {
pr_err("No suspend pin for hardware strobe, rc=%ld\n",
PTR_ERR(fnode->hw_strobe_state_suspend));
fnode->hw_strobe_state_suspend = NULL;
}
}
return 0;
}
static int qpnp_flash_led_parse_strobe_sel_dt(struct qpnp_flash_led *led,
struct flash_node_data *fnode,
struct device_node *node)
{
int rc;
u32 val;
u8 hw_strobe = 0, edge_trigger = 0, active_high = 0;
fnode->strobe_sel = SW_STROBE;
rc = of_property_read_u32(node, "qcom,strobe-sel", &val);
if (rc < 0) {
if (rc != -EINVAL) {
pr_err("Unable to read qcom,strobe-sel property\n");
return rc;
}
} else {
if (val < SW_STROBE || val > LPG_STROBE) {
pr_err("Incorrect strobe selection specified %d\n",
val);
return -EINVAL;
}
fnode->strobe_sel = (u8)val;
}
/*
* LPG strobe is allowed only for LED3 and HW strobe option should be
* option 2 or 3.
*/
if (fnode->strobe_sel == LPG_STROBE) {
if (led->pdata->hw_strobe_option ==
FLASH_LED_HW_STROBE_OPTION_1) {
pr_err("Incorrect strobe option for LPG strobe\n");
return -EINVAL;
}
if (fnode->id != LED3) {
pr_err("Incorrect LED chosen for LPG strobe\n");
return -EINVAL;
}
}
if (fnode->strobe_sel == HW_STROBE) {
edge_trigger = of_property_read_bool(node,
"qcom,hw-strobe-edge-trigger");
active_high = !of_property_read_bool(node,
"qcom,hw-strobe-active-low");
hw_strobe = 1;
} else if (fnode->strobe_sel == LPG_STROBE) {
/* LPG strobe requires level trigger and active high */
edge_trigger = 0;
active_high = 1;
hw_strobe = 1;
}
fnode->strobe_ctrl = (hw_strobe << 2) | (edge_trigger << 1) |
active_high;
return 0;
}
static int qpnp_flash_led_parse_label_dt(struct flash_node_data *fnode,
struct device_node *node)
{
const char *temp_string;
int rc;
rc = of_property_read_string(node, "label", &temp_string);
if (!rc) {
if (!strcmp(temp_string, "flash")) {
fnode->type = FLASH_LED_TYPE_FLASH;
} else if (!strcmp(temp_string, "torch")) {
fnode->type = FLASH_LED_TYPE_TORCH;
} else {
pr_err("Wrong flash LED type\n");
return rc;
}
} else {
pr_err("Unable to read flash LED label\n");
return rc;
}
return rc;
}
static int qpnp_flash_led_parse_each_led_dt(struct qpnp_flash_led *led,
struct flash_node_data *fnode, struct device_node *node)
{
int rc, min_ma;
u32 val;
fnode->pdev = led->pdev;
fnode->cdev.brightness_set = qpnp_flash_led_brightness_set;
fnode->cdev.brightness_get = qpnp_flash_led_brightness_get;
rc = of_property_read_string(node, "qcom,led-name", &fnode->cdev.name);
if (rc < 0) {
pr_err("Unable to read flash LED names\n");
return rc;
}
rc = qpnp_flash_led_parse_label_dt(fnode, node);
if (rc < 0)
return rc;
rc = of_property_read_u32(node, "qcom,id", &val);
if (!rc) {
fnode->id = (u8)val;
if (led->pmic_type == PMI632 && fnode->id > LED2) {
pr_err("Flash node id = %d not supported\n", fnode->id);
return -EINVAL;
}
} else {
pr_err("Unable to read flash LED ID\n");
return rc;
}
rc = of_property_read_string(node, "qcom,default-led-trigger",
&fnode->cdev.default_trigger);
if (rc < 0) {
pr_err("Unable to read trigger name\n");
return rc;
}
fnode->default_ires_ua = fnode->ires_ua = FLASH_LED_IRES_DEFAULT_UA;
fnode->default_ires_idx = fnode->ires_idx = FLASH_LED_IRES_DEFAULT_VAL;
rc = of_property_read_u32(node, "qcom,ires-ua", &val);
if (!rc) {
fnode->default_ires_ua = fnode->ires_ua = val;
fnode->default_ires_idx = fnode->ires_idx =
FLASH_LED_IRES_BASE - (val - FLASH_LED_IRES_MIN_UA) /
FLASH_LED_IRES_DIVISOR;
} else if (rc != -EINVAL) {
pr_err("Unable to read current resolution rc=%d\n", rc);
return rc;
}
min_ma = fnode->ires_ua / 1000;
rc = of_property_read_u32(node, "qcom,max-current", &val);
if (!rc) {
if (val < min_ma)
val = min_ma;
fnode->max_current = val;
fnode->cdev.max_brightness = val;
} else {
pr_err("Unable to read max current, rc=%d\n", rc);
return rc;
}
rc = of_property_read_u32(node, "qcom,current-ma", &val);
if (!rc) {
if (val < min_ma || val > fnode->max_current)
pr_warn("Invalid operational current specified, capping it\n");
if (val < min_ma)
val = min_ma;
if (val > fnode->max_current)
val = fnode->max_current;
fnode->current_ma = val;
fnode->cdev.brightness = val;
} else if (rc != -EINVAL) {
pr_err("Unable to read operational current, rc=%d\n", rc);
return rc;
}
fnode->duration = FLASH_LED_SAFETY_TMR_DISABLED;
rc = of_property_read_u32(node, "qcom,duration-ms", &val);
if (!rc) {
fnode->duration = get_safety_timer_code(val);
if (fnode->duration)
fnode->duration |= FLASH_LED_SAFETY_TMR_ENABLE;
} else if (rc == -EINVAL) {
if (fnode->type == FLASH_LED_TYPE_FLASH) {
pr_err("Timer duration is required for flash LED\n");
return rc;
}
} else {
pr_err("Unable to read timer duration\n");
return rc;
}
fnode->hdrm_val = FLASH_LED_HDRM_VOL_DEFAULT_MV;
rc = of_property_read_u32(node, "qcom,hdrm-voltage-mv", &val);
if (!rc) {
val = (val - FLASH_LED_HDRM_VOL_BASE_MV) /
FLASH_LED_HDRM_VOL_STEP_MV;
fnode->hdrm_val = (val << FLASH_LED_HDRM_VOL_SHIFT) &
FLASH_LED_HDRM_VOL_MASK;
} else if (rc != -EINVAL) {
pr_err("Unable to read headroom voltage\n");
return rc;
}
rc = of_property_read_u32(node, "qcom,hdrm-vol-hi-lo-win-mv", &val);
if (!rc) {
fnode->hdrm_val |= (val / FLASH_LED_HDRM_VOL_STEP_MV) &
~FLASH_LED_HDRM_VOL_MASK;
} else if (rc == -EINVAL) {
fnode->hdrm_val |= FLASH_LED_HDRM_VOL_HI_LO_WIN_DEFAULT_MV;
} else {
pr_err("Unable to read hdrm hi-lo window voltage\n");
return rc;
}
rc = qpnp_flash_led_parse_strobe_sel_dt(led, fnode, node);
if (rc < 0)
return rc;
rc = led_classdev_register(&led->pdev->dev, &fnode->cdev);
if (rc < 0) {
pr_err("Unable to register led node %d\n", fnode->id);
return rc;
}
fnode->cdev.dev->of_node = node;
fnode->strobe_pinctrl = devm_pinctrl_get(fnode->cdev.dev);
if (IS_ERR_OR_NULL(fnode->strobe_pinctrl)) {
pr_debug("No pinctrl defined for %s, err=%ld\n",
fnode->cdev.name, PTR_ERR(fnode->strobe_pinctrl));
fnode->strobe_pinctrl = NULL;
}
if (fnode->strobe_sel == HW_STROBE)
return qpnp_flash_led_parse_hw_strobe_dt(fnode);
return 0;
}
static int qpnp_flash_led_parse_and_register_switch(struct qpnp_flash_led *led,
struct flash_switch_data *snode,
struct device_node *node)
{
int rc = 0, num;
char reg_name[16], reg_sup_name[16];
rc = of_property_read_string(node, "qcom,led-name", &snode->cdev.name);
if (rc < 0) {
pr_err("Failed to read switch node name, rc=%d\n", rc);
return rc;
}
rc = sscanf(snode->cdev.name, "led:switch_%d", &num);
if (!rc) {
pr_err("No number for switch device?\n");
return -EINVAL;
}
rc = of_property_read_string(node, "qcom,default-led-trigger",
&snode->cdev.default_trigger);
if (rc < 0) {
pr_err("Unable to read trigger name, rc=%d\n", rc);
return rc;
}
rc = of_property_read_u32(node, "qcom,led-mask", &snode->led_mask);
if (rc < 0) {
pr_err("Unable to read led mask rc=%d\n", rc);
return rc;
}
snode->symmetry_en = of_property_read_bool(node, "qcom,symmetry-en");
if (snode->led_mask < 1 || snode->led_mask > 7) {
pr_err("Invalid value for led-mask\n");
return -EINVAL;
}
scnprintf(reg_name, sizeof(reg_name), "switch%d-supply", num);
if (of_find_property(led->pdev->dev.of_node, reg_name, NULL)) {
scnprintf(reg_sup_name, sizeof(reg_sup_name), "switch%d", num);
snode->vreg = devm_regulator_get(&led->pdev->dev, reg_sup_name);
if (IS_ERR_OR_NULL(snode->vreg)) {
rc = PTR_ERR(snode->vreg);
if (rc != -EPROBE_DEFER)
pr_err("Failed to get regulator, rc=%d\n", rc);
snode->vreg = NULL;
return rc;
}
}
snode->pdev = led->pdev;
snode->cdev.brightness_set = qpnp_flash_led_brightness_set;
snode->cdev.brightness_get = qpnp_flash_led_brightness_get;
rc = led_classdev_register(&led->pdev->dev, &snode->cdev);
if (rc < 0) {
pr_err("Unable to register led switch node\n");
return rc;
}
snode->cdev.dev->of_node = node;
snode->led_en_pinctrl = devm_pinctrl_get(snode->cdev.dev);
if (IS_ERR_OR_NULL(snode->led_en_pinctrl)) {
pr_debug("No pinctrl defined for %s, err=%ld\n",
snode->cdev.name, PTR_ERR(snode->led_en_pinctrl));
snode->led_en_pinctrl = NULL;
}
if (snode->led_en_pinctrl) {
snode->gpio_state_active =
pinctrl_lookup_state(snode->led_en_pinctrl,
"led_enable");
if (IS_ERR_OR_NULL(snode->gpio_state_active)) {
pr_err("Cannot lookup LED active state\n");
devm_pinctrl_put(snode->led_en_pinctrl);
snode->led_en_pinctrl = NULL;
return PTR_ERR(snode->gpio_state_active);
}
snode->gpio_state_suspend =
pinctrl_lookup_state(snode->led_en_pinctrl,
"led_disable");
if (IS_ERR_OR_NULL(snode->gpio_state_suspend)) {
pr_err("Cannot lookup LED disable state\n");
devm_pinctrl_put(snode->led_en_pinctrl);
snode->led_en_pinctrl = NULL;
return PTR_ERR(snode->gpio_state_suspend);
}
}
return 0;
}
static int get_code_from_table(int *table, int len, int value)
{
int i;
for (i = 0; i < len; i++) {
if (value == table[i])
break;
}
if (i == len) {
pr_err("Couldn't find %d from table\n", value);
return -ENODATA;
}
return i;
}
static int qpnp_flash_led_parse_thermal_config_dt(struct qpnp_flash_led *led,
struct device_node *node)
{
int rc;
u32 val;
led->pdata->thermal_derate_en =
of_property_read_bool(node, "qcom,thermal-derate-en");
if (led->pdata->thermal_derate_en) {
led->pdata->thermal_derate_current =
devm_kcalloc(&led->pdev->dev,
FLASH_LED_THERMAL_OTST_LEVELS,
sizeof(int), GFP_KERNEL);
if (!led->pdata->thermal_derate_current)
return -ENOMEM;
rc = of_property_read_u32_array(node,
"qcom,thermal-derate-current",
led->pdata->thermal_derate_current,
FLASH_LED_THERMAL_OTST_LEVELS);
if (rc < 0) {
pr_err("Unable to read thermal current limits, rc=%d\n",
rc);
return rc;
}
}
led->pdata->otst_ramp_bkup_en =
!of_property_read_bool(node, "qcom,otst-ramp-back-up-dis");
led->pdata->thermal_derate_slow = -EINVAL;
rc = of_property_read_u32(node, "qcom,thermal-derate-slow", &val);
if (!rc) {
if (val < 0 || val > THERMAL_DERATE_SLOW_MAX) {
pr_err("Invalid thermal_derate_slow %d\n", val);
return -EINVAL;
}
led->pdata->thermal_derate_slow =
get_code_from_table(thermal_derate_slow_table,
ARRAY_SIZE(thermal_derate_slow_table), val);
} else if (rc != -EINVAL) {
pr_err("Unable to read thermal derate slow, rc=%d\n", rc);
return rc;
}
led->pdata->thermal_derate_fast = -EINVAL;
rc = of_property_read_u32(node, "qcom,thermal-derate-fast", &val);
if (!rc) {
if (val < 0 || val > THERMAL_DERATE_FAST_MAX) {
pr_err("Invalid thermal_derate_fast %d\n", val);
return -EINVAL;
}
led->pdata->thermal_derate_fast =
get_code_from_table(thermal_derate_fast_table,
ARRAY_SIZE(thermal_derate_fast_table), val);
} else if (rc != -EINVAL) {
pr_err("Unable to read thermal derate fast, rc=%d\n", rc);
return rc;
}
led->pdata->thermal_debounce = -EINVAL;
rc = of_property_read_u32(node, "qcom,thermal-debounce", &val);
if (!rc) {
if (val < 0 || val > THERMAL_DEBOUNCE_TIME_MAX) {
pr_err("Invalid thermal_debounce %d\n", val);
return -EINVAL;
}
if (val >= 0 && val < 16)
led->pdata->thermal_debounce = 0;
else
led->pdata->thermal_debounce = ilog2(val) - 3;
} else if (rc != -EINVAL) {
pr_err("Unable to read thermal debounce, rc=%d\n", rc);
return rc;
}
led->pdata->thermal_hysteresis = -EINVAL;
rc = of_property_read_u32(node, "qcom,thermal-hysteresis", &val);
if (!rc) {
if (led->pmic_type == PM660L)
val = THERMAL_HYST_TEMP_TO_VAL(val, 20);
else
val = THERMAL_HYST_TEMP_TO_VAL(val, 15);
if (val < 0 || val > THERMAL_DERATE_HYSTERESIS_MAX) {
pr_err("Invalid thermal_derate_hysteresis %d\n", val);
return -EINVAL;
}
led->pdata->thermal_hysteresis = val;
} else if (rc != -EINVAL) {
pr_err("Unable to read thermal hysteresis, rc=%d\n", rc);
return rc;
}
led->pdata->thermal_thrsh1 = -EINVAL;
rc = of_property_read_u32(node, "qcom,thermal-thrsh1", &val);
if (!rc) {
led->pdata->thermal_thrsh1 =
get_code_from_table(otst1_threshold_table,
ARRAY_SIZE(otst1_threshold_table), val);
} else if (rc != -EINVAL) {
pr_err("Unable to read thermal thrsh1, rc=%d\n", rc);
return rc;
}
led->pdata->thermal_thrsh2 = -EINVAL;
rc = of_property_read_u32(node, "qcom,thermal-thrsh2", &val);
if (!rc) {
led->pdata->thermal_thrsh2 =
get_code_from_table(otst2_threshold_table,
ARRAY_SIZE(otst2_threshold_table), val);
} else if (rc != -EINVAL) {
pr_err("Unable to read thermal thrsh2, rc=%d\n", rc);
return rc;
}
led->pdata->thermal_thrsh3 = -EINVAL;
rc = of_property_read_u32(node, "qcom,thermal-thrsh3", &val);
if (!rc) {
led->pdata->thermal_thrsh3 =
get_code_from_table(otst3_threshold_table,
ARRAY_SIZE(otst3_threshold_table), val);
} else if (rc != -EINVAL) {
pr_err("Unable to read thermal thrsh3, rc=%d\n", rc);
return rc;
}
return 0;
}
static int qpnp_flash_led_parse_vph_droop_config_dt(struct qpnp_flash_led *led,
struct device_node *node)
{
int rc;
u32 val;
led->pdata->vph_droop_debounce = FLASH_LED_VPH_DROOP_DEBOUNCE_DEFAULT;
rc = of_property_read_u32(node, "qcom,vph-droop-debounce-us", &val);
if (!rc) {
led->pdata->vph_droop_debounce =
VPH_DROOP_DEBOUNCE_US_TO_VAL(val);
} else if (rc != -EINVAL) {
pr_err("Unable to read VPH droop debounce, rc=%d\n", rc);
return rc;
}
if (led->pdata->vph_droop_debounce > FLASH_LED_DEBOUNCE_MAX) {
pr_err("Invalid VPH droop debounce specified\n");
return -EINVAL;
}
if (led->pmic_type == PMI632)
led->pdata->vph_droop_threshold =
BHARGER_FLASH_LED_VPH_DROOP_THRESH_DEFAULT;
else
led->pdata->vph_droop_threshold =
FLASH_LED_VPH_DROOP_THRESH_DEFAULT;
rc = of_property_read_u32(node, "qcom,vph-droop-threshold-mv", &val);
if (!rc) {
led->pdata->vph_droop_threshold =
get_vph_droop_thresh_code(val);
} else if (rc != -EINVAL) {
pr_err("Unable to read VPH droop threshold, rc=%d\n", rc);
return rc;
}
if (led->pdata->vph_droop_threshold > FLASH_LED_VPH_DROOP_THRESH_MAX) {
pr_err("Invalid VPH droop threshold specified\n");
return -EINVAL;
}
led->pdata->vph_droop_hysteresis =
FLASH_LED_VPH_DROOP_HYST_DEFAULT;
rc = of_property_read_u32(node, "qcom,vph-droop-hysteresis-mv", &val);
if (!rc) {
led->pdata->vph_droop_hysteresis =
VPH_DROOP_HYST_MV_TO_VAL(val);
} else if (rc != -EINVAL) {
pr_err("Unable to read VPH droop hysteresis, rc=%d\n", rc);
return rc;
}
if (led->pdata->vph_droop_hysteresis > FLASH_LED_HYSTERESIS_MAX) {
pr_err("Invalid VPH droop hysteresis specified\n");
return -EINVAL;
}
led->pdata->vph_droop_hysteresis <<= FLASH_LED_VPH_DROOP_HYST_SHIFT;
return 0;
}
static int qpnp_flash_led_parse_iclamp_config_dt(struct qpnp_flash_led *led,
struct device_node *node)
{
int rc;
u32 val;
rc = of_property_read_u32(node, "qcom,led1n2-iclamp-low-ma", &val);
if (!rc) {
led->pdata->led1n2_iclamp_low_ma = val;
} else if (rc != -EINVAL) {
pr_err("Unable to read led1n2_iclamp_low current, rc=%d\n", rc);
return rc;
}
rc = of_property_read_u32(node, "qcom,led1n2-iclamp-mid-ma", &val);
if (!rc) {
led->pdata->led1n2_iclamp_mid_ma = val;
} else if (rc != -EINVAL) {
pr_err("Unable to read led1n2_iclamp_mid current, rc=%d\n", rc);
return rc;
}
rc = of_property_read_u32(node, "qcom,led3-iclamp-low-ma", &val);
if (!rc) {
led->pdata->led3_iclamp_low_ma = val;
} else if (rc != -EINVAL) {
pr_err("Unable to read led3_iclamp_low current, rc=%d\n", rc);
return rc;
}
rc = of_property_read_u32(node, "qcom,led3-iclamp-mid-ma", &val);
if (!rc) {
led->pdata->led3_iclamp_mid_ma = val;
} else if (rc != -EINVAL) {
pr_err("Unable to read led3_iclamp_mid current, rc=%d\n", rc);
return rc;
}
return 0;
}
static int qpnp_flash_led_parse_lmh_config_dt(struct qpnp_flash_led *led,
struct device_node *node)
{
int rc;
u32 val;
led->pdata->lmh_ocv_threshold_uv =
FLASH_LED_LMH_OCV_THRESH_DEFAULT_UV;
rc = of_property_read_u32(node, "qcom,lmh-ocv-threshold-uv", &val);
if (!rc) {
led->pdata->lmh_ocv_threshold_uv = val;
} else if (rc != -EINVAL) {
pr_err("Unable to parse lmh ocv threshold, rc=%d\n", rc);
return rc;
}
led->pdata->lmh_rbatt_threshold_uohm =
FLASH_LED_LMH_RBATT_THRESH_DEFAULT_UOHM;
rc = of_property_read_u32(node, "qcom,lmh-rbatt-threshold-uohm", &val);
if (!rc) {
led->pdata->lmh_rbatt_threshold_uohm = val;
} else if (rc != -EINVAL) {
pr_err("Unable to parse lmh rbatt threshold, rc=%d\n", rc);
return rc;
}
led->pdata->lmh_level = FLASH_LED_LMH_LEVEL_DEFAULT;
rc = of_property_read_u32(node, "qcom,lmh-level", &val);
if (!rc) {
led->pdata->lmh_level = val;
} else if (rc != -EINVAL) {
pr_err("Unable to parse lmh_level, rc=%d\n", rc);
return rc;
}
led->pdata->lmh_mitigation_sel = FLASH_LED_LMH_MITIGATION_SEL_DEFAULT;
rc = of_property_read_u32(node, "qcom,lmh-mitigation-sel", &val);
if (!rc) {
led->pdata->lmh_mitigation_sel = val;
} else if (rc != -EINVAL) {
pr_err("Unable to parse lmh_mitigation_sel, rc=%d\n", rc);
return rc;
}
if (led->pdata->lmh_mitigation_sel > FLASH_LED_MITIGATION_SEL_MAX) {
pr_err("Invalid lmh_mitigation_sel specified\n");
return -EINVAL;
}
return 0;
}
static int qpnp_flash_led_parse_iled_threshold_dt(struct qpnp_flash_led *led,
struct device_node *node)
{
int rc;
u32 val;
led->pdata->iled_thrsh_val = FLASH_LED_CHGR_MITIGATION_THRSH_DEFAULT;
rc = of_property_read_u32(node, "qcom,iled-thrsh-ma", &val);
if (!rc) {
led->pdata->iled_thrsh_val = MITIGATION_THRSH_MA_TO_VAL(val);
} else if (rc != -EINVAL) {
pr_err("Unable to parse iled_thrsh_val, rc=%d\n", rc);
return rc;
}
if (led->pdata->iled_thrsh_val > FLASH_LED_CHGR_MITIGATION_THRSH_MAX) {
pr_err("Invalid iled_thrsh_val specified\n");
return -EINVAL;
}
return 0;
}
static int qpnp_flash_led_parse_chgr_mitigation_dt(struct qpnp_flash_led *led,
struct device_node *node)
{
int rc;
u32 val;
if (led->pmic_type == PMI632)
led->pdata->chgr_mitigation_sel =
FLASH_DISABLE_CHARGER_MITIGATION;
else
led->pdata->chgr_mitigation_sel = FLASH_SW_CHARGER_MITIGATION;
rc = of_property_read_u32(node, "qcom,chgr-mitigation-sel", &val);
if (!rc) {
led->pdata->chgr_mitigation_sel = val;
} else if (rc != -EINVAL) {
pr_err("Unable to parse chgr_mitigation_sel, rc=%d\n", rc);
return rc;
}
if (led->pdata->chgr_mitigation_sel > FLASH_LED_MITIGATION_SEL_MAX) {
pr_err("Invalid chgr_mitigation_sel specified\n");
return -EINVAL;
}
return 0;
}
static int qpnp_flash_led_parse_battery_prop_dt(struct qpnp_flash_led *led,
struct device_node *node)
{
int rc;
u32 val;
led->pdata->ibatt_ocp_threshold_ua =
FLASH_LED_IBATT_OCP_THRESH_DEFAULT_UA;
rc = of_property_read_u32(node, "qcom,ibatt-ocp-threshold-ua", &val);
if (!rc) {
led->pdata->ibatt_ocp_threshold_ua = val;
} else if (rc != -EINVAL) {
pr_err("Unable to parse ibatt_ocp threshold, rc=%d\n", rc);
return rc;
}
led->pdata->rpara_uohm = FLASH_LED_RPARA_DEFAULT_UOHM;
rc = of_property_read_u32(node, "qcom,rparasitic-uohm", &val);
if (!rc) {
led->pdata->rpara_uohm = val;
} else if (rc != -EINVAL) {
pr_err("Unable to parse rparasitic, rc=%d\n", rc);
return rc;
}
return 0;
}
static void qpnp_flash_led_parse_fault_detection_dt(struct qpnp_flash_led *led,
struct device_node *node)
{
bool short_circuit_det, open_circuit_det, vph_droop_det;
short_circuit_det =
of_property_read_bool(node, "qcom,short-circuit-det");
open_circuit_det = of_property_read_bool(node, "qcom,open-circuit-det");
vph_droop_det = of_property_read_bool(node, "qcom,vph-droop-det");
led->pdata->current_derate_en_cfg = (vph_droop_det << 2) |
(open_circuit_det << 1) | short_circuit_det;
}
static int qpnp_flash_led_parse_warmup_delay_dt(struct qpnp_flash_led *led,
struct device_node *node)
{
int rc;
u32 val;
led->pdata->warmup_delay = FLASH_LED_WARMUP_DELAY_DEFAULT;
rc = of_property_read_u32(node, "qcom,warmup-delay-us", &val);
if (!rc) {
led->pdata->warmup_delay =
val >> FLASH_LED_ISC_WARMUP_DELAY_SHIFT;
} else if (rc != -EINVAL) {
pr_err("Unable to read WARMUP delay, rc=%d\n", rc);
return rc;
}
return 0;
}
static void qpnp_flash_led_parse_irqs_dt(struct qpnp_flash_led *led,
struct device_node *node)
{
led->pdata->all_ramp_up_done_irq =
of_irq_get_byname(node, "all-ramp-up-done-irq");
if (led->pdata->all_ramp_up_done_irq < 0)
pr_debug("all-ramp-up-done-irq not used\n");
led->pdata->all_ramp_down_done_irq =
of_irq_get_byname(node, "all-ramp-down-done-irq");
if (led->pdata->all_ramp_down_done_irq < 0)
pr_debug("all-ramp-down-done-irq not used\n");
led->pdata->led_fault_irq =
of_irq_get_byname(node, "led-fault-irq");
if (led->pdata->led_fault_irq < 0)
pr_debug("led-fault-irq not used\n");
}
static int qpnp_flash_led_isc_delay_dt(struct qpnp_flash_led *led,
struct device_node *node)
{
int rc;
u32 val;
led->pdata->isc_delay = FLASH_LED_ISC_DELAY_DEFAULT;
rc = of_property_read_u32(node, "qcom,isc-delay-us", &val);
if (!rc) {
led->pdata->isc_delay =
val >> FLASH_LED_ISC_WARMUP_DELAY_SHIFT;
} else if (rc != -EINVAL) {
pr_err("Unable to read ISC delay, rc=%d\n", rc);
return rc;
}
return 0;
}
static int qpnp_flash_led_parse_common_dt(struct qpnp_flash_led *led,
struct device_node *node)
{
int rc;
u32 val;
rc = of_property_read_u32(node, "reg", &val);
if (rc < 0) {
pr_err("Couldn't find reg in node %s, rc = %d\n",
node->full_name, rc);
return rc;
}
led->base = val;
led->pdata->hdrm_auto_mode_en = of_property_read_bool(node,
"qcom,hdrm-auto-mode");
rc = qpnp_flash_led_isc_delay_dt(led, node);
if (rc < 0)
return rc;
rc = qpnp_flash_led_parse_warmup_delay_dt(led, node);
if (rc < 0)
return rc;
qpnp_flash_led_parse_fault_detection_dt(led, node);
rc = qpnp_flash_led_parse_thermal_config_dt(led, node);
if (rc < 0)
return rc;
rc = qpnp_flash_led_parse_vph_droop_config_dt(led, node);
if (rc < 0)
return rc;
rc = qpnp_flash_led_parse_iclamp_config_dt(led, node);
if (rc < 0)
return rc;
led->pdata->hw_strobe_option = -EINVAL;
rc = of_property_read_u32(node, "qcom,hw-strobe-option", &val);
if (!rc) {
led->pdata->hw_strobe_option = val;
} else if (rc != -EINVAL) {
pr_err("Unable to parse hw strobe option, rc=%d\n", rc);
return rc;
}
led->pdata->vled_max_uv = FLASH_LED_VLED_MAX_DEFAULT_UV;
rc = of_property_read_u32(node, "qcom,vled-max-uv", &val);
if (!rc) {
led->pdata->vled_max_uv = val;
} else if (rc != -EINVAL) {
pr_err("Unable to parse vled_max voltage, rc=%d\n", rc);
return rc;
}
val = FLASH_LED_RAMP_STEP_DEFAULT_NS;
rc = of_property_read_u32(node, "qcom,ramp-up-step", &val);
if (!rc && (val < FLASH_LED_RAMP_STEP_MIN_NS || val > FLASH_LED_RAMP_STEP_MAX_NS)) {
pr_err("Invalid ramp-up-step %d\n", val);
return -EINVAL;
} else if (rc && rc != -EINVAL) {
pr_err("Unable to read ramp-up-step, rc=%d\n", rc);
return rc;
}
led->pdata->ramp_up_step = ilog2(val / 100) - 1;
val = FLASH_LED_RAMP_STEP_DEFAULT_NS;
rc = of_property_read_u32(node, "qcom,ramp-down-step", &val);
if (!rc && (val < FLASH_LED_RAMP_STEP_MIN_NS || val > FLASH_LED_RAMP_STEP_MAX_NS)) {
pr_err("Invalid ramp-down-step %d\n", val);
return -EINVAL;
} else if (rc && rc != -EINVAL) {
pr_err("Unable to read ramp-down-step, rc=%d\n", rc);
return rc;
}
led->pdata->ramp_down_step = ilog2(val / 100) - 1;
rc = qpnp_flash_led_parse_battery_prop_dt(led, node);
if (rc < 0)
return rc;
rc = qpnp_flash_led_parse_lmh_config_dt(led, node);
if (rc < 0)
return rc;
rc = qpnp_flash_led_parse_chgr_mitigation_dt(led, node);
if (rc < 0)
return rc;
rc = qpnp_flash_led_parse_iled_threshold_dt(led, node);
if (rc < 0)
return rc;
led->pdata->bst_pwm_ovrhd_uv = FLASH_BST_PWM_OVRHD_MIN_UV;
rc = of_property_read_u32(node, "qcom,bst-pwm-ovrhd-uv", &val);
if (!rc) {
if (val >= FLASH_BST_PWM_OVRHD_MIN_UV &&
val <= FLASH_BST_PWM_OVRHD_MAX_UV)
led->pdata->bst_pwm_ovrhd_uv = val;
}
qpnp_flash_led_parse_irqs_dt(led, node);
return 0;
}
static int qpnp_flash_led_register_interrupts(struct qpnp_flash_led *led)
{
int rc;
/* setup irqs */
if (led->pdata->all_ramp_up_done_irq >= 0) {
rc = devm_request_threaded_irq(&led->pdev->dev,
led->pdata->all_ramp_up_done_irq,
NULL, qpnp_flash_led_irq_handler,
IRQF_ONESHOT,
"qpnp_flash_led_all_ramp_up_done_irq", led);
if (rc < 0) {
pr_err("Unable to request all_ramp_up_done(%d) IRQ(err:%d)\n",
led->pdata->all_ramp_up_done_irq, rc);
return rc;
}
}
if (led->pdata->all_ramp_down_done_irq >= 0) {
rc = devm_request_threaded_irq(&led->pdev->dev,
led->pdata->all_ramp_down_done_irq,
NULL, qpnp_flash_led_irq_handler,
IRQF_ONESHOT,
"qpnp_flash_led_all_ramp_down_done_irq", led);
if (rc < 0) {
pr_err("Unable to request all_ramp_down_done(%d) IRQ(err:%d)\n",
led->pdata->all_ramp_down_done_irq, rc);
return rc;
}
}
if (led->pdata->led_fault_irq >= 0) {
rc = devm_request_threaded_irq(&led->pdev->dev,
led->pdata->led_fault_irq,
NULL, qpnp_flash_led_irq_handler,
IRQF_ONESHOT,
"qpnp_flash_led_fault_irq", led);
if (rc < 0) {
pr_err("Unable to request led_fault(%d) IRQ(err:%d)\n",
led->pdata->led_fault_irq, rc);
return rc;
}
}
return 0;
}
static int qpnp_flash_led_probe(struct platform_device *pdev)
{
struct qpnp_flash_led *led;
struct device_node *node, *temp;
const char *temp_string;
int rc, i = 0, j = 0;
node = pdev->dev.of_node;
if (!node) {
pr_err("No flash LED nodes defined\n");
return -ENODEV;
}
led = devm_kzalloc(&pdev->dev, sizeof(struct qpnp_flash_led),
GFP_KERNEL);
if (!led)
return -ENOMEM;
led->regmap = dev_get_regmap(pdev->dev.parent, NULL);
if (!led->regmap) {
pr_err("Couldn't get parent's regmap\n");
return -EINVAL;
}
led->pmic_type = (u8)of_device_get_match_data(&pdev->dev);
if (led->pmic_type == PM6150L)
led->wa_flags |= PM6150L_IRES_WA;
led->pdev = pdev;
led->pdata = devm_kzalloc(&pdev->dev,
sizeof(struct flash_led_platform_data), GFP_KERNEL);
if (!led->pdata)
return -ENOMEM;
led->iio_channels = devm_kcalloc(&pdev->dev,
ARRAY_SIZE(flash_iio_prop_names),
sizeof(struct iio_channel *), GFP_KERNEL);
if (!led->iio_channels)
return -ENOMEM;
spin_lock_init(&led->lock);
rc = qpnp_flash_led_parse_common_dt(led, node);
if (rc < 0) {
pr_err("Failed to parse common flash LED device tree rc=%d\n",
rc);
return rc;
}
for_each_available_child_of_node(node, temp) {
rc = of_property_read_string(temp, "label", &temp_string);
if (rc < 0) {
pr_err("Failed to parse label, rc=%d\n", rc);
return rc;
}
if (!strcmp("switch", temp_string)) {
led->num_snodes++;
} else if (!strcmp("flash", temp_string) ||
!strcmp("torch", temp_string)) {
led->num_fnodes++;
} else {
pr_err("Invalid label for led node\n");
return -EINVAL;
}
}
if (!led->num_fnodes) {
pr_err("No LED nodes defined\n");
return -ECHILD;
}
led->fnode = devm_kcalloc(&pdev->dev, led->num_fnodes,
sizeof(*led->fnode), GFP_KERNEL);
if (!led->fnode)
return -ENOMEM;
led->snode = devm_kcalloc(&pdev->dev, led->num_snodes,
sizeof(*led->snode), GFP_KERNEL);
if (!led->snode)
return -ENOMEM;
temp = NULL;
i = 0;
j = 0;
for_each_available_child_of_node(node, temp) {
rc = of_property_read_string(temp, "label", &temp_string);
if (rc < 0) {
pr_err("Failed to parse label, rc=%d\n", rc);
return rc;
}
if (!strcmp("flash", temp_string) ||
!strcmp("torch", temp_string)) {
rc = qpnp_flash_led_parse_each_led_dt(led,
&led->fnode[i], temp);
if (rc < 0) {
pr_err("Unable to parse flash node %d rc=%d\n",
i, rc);
goto error_led_register;
}
i++;
}
if (!strcmp("switch", temp_string)) {
rc = qpnp_flash_led_parse_and_register_switch(led,
&led->snode[j], temp);
if (rc < 0) {
pr_err("Unable to parse and register switch node, rc=%d\n",
rc);
goto error_switch_register;
}
j++;
}
}
rc = qpnp_flash_led_register_interrupts(led);
if (rc < 0)
goto error_switch_register;
rc = qpnp_flash_led_init_settings(led);
if (rc < 0) {
pr_err("Failed to initialize flash LED, rc=%d\n", rc);
goto error_switch_register;
}
for (i = 0; i < led->num_snodes; i++) {
for (j = 0; j < ARRAY_SIZE(qpnp_flash_led_attrs); j++) {
rc = sysfs_create_file(&led->snode[i].cdev.dev->kobj,
&qpnp_flash_led_attrs[j].attr);
if (rc < 0) {
pr_err("sysfs creation failed, rc=%d\n", rc);
goto sysfs_fail;
}
}
}
dev_set_drvdata(&pdev->dev, led);
return 0;
sysfs_fail:
for (--j; j >= 0; j--)
sysfs_remove_file(&led->snode[i].cdev.dev->kobj,
&qpnp_flash_led_attrs[j].attr);
for (--i; i >= 0; i--) {
for (j = 0; j < ARRAY_SIZE(qpnp_flash_led_attrs); j++)
sysfs_remove_file(&led->snode[i].cdev.dev->kobj,
&qpnp_flash_led_attrs[j].attr);
}
i = led->num_snodes;
error_switch_register:
while (i > 0)
led_classdev_unregister(&led->snode[--i].cdev);
i = led->num_fnodes;
error_led_register:
while (i > 0)
led_classdev_unregister(&led->fnode[--i].cdev);
return rc;
}
static int qpnp_flash_led_remove(struct platform_device *pdev)
{
struct qpnp_flash_led *led = dev_get_drvdata(&pdev->dev);
int i, j;
for (i = 0; i < led->num_snodes; i++) {
for (j = 0; j < ARRAY_SIZE(qpnp_flash_led_attrs); j++)
sysfs_remove_file(&led->snode[i].cdev.dev->kobj,
&qpnp_flash_led_attrs[j].attr);
if (led->snode[i].regulator_on)
qpnp_flash_led_regulator_enable(led,
&led->snode[i], false);
}
while (i > 0)
led_classdev_unregister(&led->snode[--i].cdev);
i = led->num_fnodes;
while (i > 0)
led_classdev_unregister(&led->fnode[--i].cdev);
power_supply_unreg_notifier(&led->nb);
return 0;
}
const struct of_device_id qpnp_flash_led_match_table[] = {
{ .compatible = "qcom,pm6150l-flash-led-v2", .data = (void *)PM6150L},
{ .compatible = "qcom,pmi632-flash-led-v2", .data = (void *)PMI632},
{ },
};
static struct platform_driver qpnp_flash_led_driver = {
.driver = {
.name = "qcom,qpnp-flash-led-v2",
.of_match_table = qpnp_flash_led_match_table,
},
.probe = qpnp_flash_led_probe,
.remove = qpnp_flash_led_remove,
};
module_platform_driver(qpnp_flash_led_driver);
MODULE_DESCRIPTION("QPNP Flash LED driver v2");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("leds:leds-qpnp-flash-v2");