0899964139
Add device tree properties "qcom,ramp-up-step" and "qcom,ramp-down-step", to configure the time steps for flash ramp up and ramp down. Change-Id: I80ff9394ab4af29398522a1abbaba991b67db918 Signed-off-by: Jishnu Prakash <jprakash@codeaurora.org>
3160 lines
82 KiB
C
3160 lines
82 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "flashv2: %s: " fmt, __func__
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of_gpio.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/gpio.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/power_supply.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/leds-qpnp-flash.h>
|
|
#include <linux/leds-qpnp-flash-v2.h>
|
|
#include <linux/iio/consumer.h>
|
|
#include <linux/log2.h>
|
|
#include "leds.h"
|
|
|
|
#define FLASH_LED_REG_LED_STATUS1(base) (base + 0x08)
|
|
|
|
#define FLASH_LED_REG_LED_STATUS2(base) (base + 0x09)
|
|
#define FLASH_LED_VPH_DROOP_FAULT_MASK BIT(4)
|
|
#define FLASH_LED_THERMAL_OTST_MASK GENMASK(2, 0)
|
|
|
|
#define FLASH_LED_REG_INT_RT_STS(base) (base + 0x10)
|
|
|
|
#define FLASH_LED_REG_SAFETY_TMR(base) (base + 0x40)
|
|
#define FLASH_LED_SAFETY_TMR_ENABLE BIT(7)
|
|
|
|
#define FLASH_LED_REG_TGR_CURRENT(base) (base + 0x43)
|
|
|
|
#define FLASH_LED_REG_MOD_CTRL(base) (base + 0x46)
|
|
#define FLASH_LED_MOD_CTRL_MASK BIT(7)
|
|
#define FLASH_LED_MOD_ENABLE BIT(7)
|
|
|
|
#define FLASH_LED_REG_IRES(base) (base + 0x47)
|
|
|
|
#define FLASH_LED_REG_STROBE_CFG(base) (base + 0x48)
|
|
#define FLASH_LED_STROBE_MASK GENMASK(1, 0)
|
|
|
|
#define FLASH_LED_REG_STROBE_CTRL(base) (base + 0x49)
|
|
#define FLASH_LED_HW_SW_STROBE_SEL_BIT BIT(2)
|
|
#define FLASH_HW_STROBE_MASK GENMASK(2, 0)
|
|
|
|
#define FLASH_LED_EN_LED_CTRL(base) (base + 0x4C)
|
|
#define FLASH_LED_ENABLE BIT(0)
|
|
|
|
#define FLASH_LED_REG_HDRM_PRGM(base) (base + 0x4D)
|
|
#define FLASH_LED_HDRM_VOL_MASK GENMASK(7, 4)
|
|
#define FLASH_LED_HDRM_VOL_SHIFT 4
|
|
|
|
#define FLASH_LED_REG_HDRM_AUTO_MODE_CTRL(base) (base + 0x50)
|
|
#define FLASH_LED_REG_WARMUP_DELAY(base) (base + 0x51)
|
|
|
|
#define FLASH_LED_REG_ISC_DELAY(base) (base + 0x52)
|
|
#define FLASH_LED_ISC_WARMUP_DELAY_MASK GENMASK(1, 0)
|
|
#define FLASH_LED_ISC_WARMUP_DELAY_SHIFT 6
|
|
|
|
#define FLASH_LED_REG_THERMAL_RMP_DN_RATE(base) (base + 0x55)
|
|
#define THERMAL_OTST1_RAMP_CTRL_MASK BIT(7)
|
|
#define THERMAL_OTST1_RAMP_CTRL_SHIFT 7
|
|
#define THERMAL_DERATE_SLOW_SHIFT 4
|
|
#define THERMAL_DERATE_SLOW_MASK GENMASK(6, 4)
|
|
#define THERMAL_DERATE_FAST_MASK GENMASK(2, 0)
|
|
|
|
#define FLASH_LED_REG_THERMAL_THRSH1(base) (base + 0x56)
|
|
#define FLASH_LED_THERMAL_THRSH_MASK GENMASK(2, 0)
|
|
|
|
#define FLASH_LED_REG_THERMAL_THRSH2(base) (base + 0x57)
|
|
#define FLASH_LED_REG_THERMAL_THRSH3(base) (base + 0x58)
|
|
|
|
#define FLASH_LED_REG_THERMAL_HYSTERESIS(base) (base + 0x59)
|
|
#define FLASH_LED_THERMAL_HYSTERESIS_MASK GENMASK(1, 0)
|
|
|
|
#define FLASH_LED_REG_THERMAL_DEBOUNCE(base) (base + 0x5A)
|
|
#define FLASH_LED_THERMAL_DEBOUNCE_MASK GENMASK(1, 0)
|
|
|
|
#define FLASH_LED_REG_RGLR_RAMP_RATE(base) (base + 0x5B)
|
|
#define FLASH_LED_RAMP_UP_STEP_MASK GENMASK(6, 4)
|
|
#define FLASH_LED_RAMP_UP_STEP_SHIFT 4
|
|
#define FLASH_LED_RAMP_DOWN_STEP_MASK GENMASK(2, 0)
|
|
#define FLASH_LED_RAMP_STEP_MIN_NS 200
|
|
#define FLASH_LED_RAMP_STEP_MAX_NS 25600
|
|
#define FLASH_LED_RAMP_STEP_DEFAULT_NS 6400
|
|
|
|
#define FLASH_LED_REG_VPH_DROOP_THRESHOLD(base) (base + 0x61)
|
|
#define FLASH_LED_VPH_DROOP_HYSTERESIS_MASK GENMASK(5, 4)
|
|
#define FLASH_LED_VPH_DROOP_THRESHOLD_MASK GENMASK(2, 0)
|
|
#define FLASH_LED_VPH_DROOP_HYST_SHIFT 4
|
|
|
|
#define FLASH_LED_REG_VPH_DROOP_DEBOUNCE(base) (base + 0x62)
|
|
#define FLASH_LED_VPH_DROOP_DEBOUNCE_MASK GENMASK(1, 0)
|
|
|
|
#define FLASH_LED_REG_ILED_GRT_THRSH(base) (base + 0x67)
|
|
#define FLASH_LED_ILED_GRT_THRSH_MASK GENMASK(5, 0)
|
|
|
|
#define FLASH_LED_REG_LED1N2_ICLAMP_LOW(base) (base + 0x68)
|
|
#define FLASH_LED_REG_LED1N2_ICLAMP_MID(base) (base + 0x69)
|
|
#define FLASH_LED_REG_LED3_ICLAMP_LOW(base) (base + 0x6A)
|
|
|
|
#define FLASH_LED_REG_LED3_ICLAMP_MID(base) (base + 0x6B)
|
|
#define FLASH_LED_CURRENT_MASK GENMASK(6, 0)
|
|
|
|
#define FLASH_LED_REG_MITIGATION_SEL(base) (base + 0x6E)
|
|
#define FLASH_LED_CHGR_MITIGATION_SEL_MASK GENMASK(5, 4)
|
|
#define FLASH_LED_LMH_MITIGATION_SEL_MASK GENMASK(1, 0)
|
|
|
|
#define FLASH_LED_REG_MITIGATION_SW(base) (base + 0x6F)
|
|
#define FLASH_LED_LMH_MITIGATION_EN_MASK BIT(0)
|
|
#define FLASH_LED_CHGR_MITIGATION_EN_MASK BIT(4)
|
|
#define FLASH_LED_CHGR_MITIGATION_ENABLE BIT(4)
|
|
|
|
#define FLASH_LED_REG_LMH_LEVEL(base) (base + 0x70)
|
|
#define FLASH_LED_LMH_LEVEL_MASK GENMASK(1, 0)
|
|
|
|
#define FLASH_LED_REG_MULTI_STROBE_CTRL(base) (base + 0x71)
|
|
#define LED3_FLASH_ONCE_ONLY_BIT BIT(1)
|
|
#define LED1N2_FLASH_ONCE_ONLY_BIT BIT(0)
|
|
|
|
#define FLASH_LED_REG_LPG_INPUT_CTRL(base) (base + 0x72)
|
|
#define LPG_INPUT_SEL_BIT BIT(0)
|
|
|
|
#define FLASH_LED_REG_CURRENT_DERATE_EN(base) (base + 0x76)
|
|
#define FLASH_LED_CURRENT_DERATE_EN_MASK GENMASK(2, 0)
|
|
|
|
#define VPH_DROOP_DEBOUNCE_US_TO_VAL(val_us) (val_us / 8)
|
|
#define VPH_DROOP_HYST_MV_TO_VAL(val_mv) (val_mv / 25)
|
|
#define VPH_DROOP_THRESH_VAL_TO_UV(val) ((val + 25) * 100000)
|
|
#define MITIGATION_THRSH_MA_TO_VAL(val_ma) (val_ma / 100)
|
|
#define THERMAL_HYST_TEMP_TO_VAL(val, divisor) (val / divisor)
|
|
|
|
#define FLASH_LED_WARMUP_DELAY_DEFAULT 2
|
|
#define FLASH_LED_ISC_DELAY_DEFAULT 3
|
|
#define FLASH_LED_VPH_DROOP_DEBOUNCE_DEFAULT 2
|
|
#define FLASH_LED_VPH_DROOP_HYST_DEFAULT 2
|
|
#define FLASH_LED_VPH_DROOP_THRESH_DEFAULT 5
|
|
#define BHARGER_FLASH_LED_VPH_DROOP_THRESH_DEFAULT 7
|
|
#define FLASH_LED_DEBOUNCE_MAX 3
|
|
#define FLASH_LED_HYSTERESIS_MAX 3
|
|
#define FLASH_LED_VPH_DROOP_THRESH_MAX 7
|
|
#define THERMAL_DERATE_SLOW_MAX 314592
|
|
#define THERMAL_DERATE_FAST_MAX 512
|
|
#define THERMAL_DEBOUNCE_TIME_MAX 64
|
|
#define THERMAL_DERATE_HYSTERESIS_MAX 3
|
|
#define FLASH_LED_THERMAL_THRSH_MIN 3
|
|
#define FLASH_LED_THERMAL_THRSH_MAX 7
|
|
#define FLASH_LED_THERMAL_OTST_LEVELS 3
|
|
#define FLASH_LED_VLED_MAX_DEFAULT_UV 3500000
|
|
#define FLASH_LED_IBATT_OCP_THRESH_DEFAULT_UA 4500000
|
|
#define FLASH_LED_RPARA_DEFAULT_UOHM 0
|
|
#define FLASH_LED_LMH_LEVEL_DEFAULT 0
|
|
#define FLASH_LED_LMH_MITIGATION_ENABLE 1
|
|
#define FLASH_LED_LMH_MITIGATION_DISABLE 0
|
|
#define FLASH_LED_CHGR_MITIGATION_DISABLE 0
|
|
#define FLASH_LED_LMH_MITIGATION_SEL_DEFAULT 2
|
|
#define FLASH_LED_MITIGATION_SEL_MAX 2
|
|
#define FLASH_LED_CHGR_MITIGATION_SEL_SHIFT 4
|
|
#define FLASH_LED_CHGR_MITIGATION_THRSH_DEFAULT 0xA
|
|
#define FLASH_LED_CHGR_MITIGATION_THRSH_MAX 0x1F
|
|
#define FLASH_LED_LMH_OCV_THRESH_DEFAULT_UV 3700000
|
|
#define FLASH_LED_LMH_RBATT_THRESH_DEFAULT_UOHM 400000
|
|
#define FLASH_LED_IRES_BASE 3
|
|
#define FLASH_LED_IRES_DIVISOR 2500
|
|
#define FLASH_LED_IRES_MIN_UA 5000
|
|
#define FLASH_LED_IRES_DEFAULT_UA 12500
|
|
#define FLASH_LED_IRES_DEFAULT_VAL 0x00
|
|
#define FLASH_LED_HDRM_VOL_DEFAULT_MV 0x80
|
|
#define FLASH_LED_HDRM_VOL_HI_LO_WIN_DEFAULT_MV 0x04
|
|
#define FLASH_LED_HDRM_VOL_BASE_MV 125
|
|
#define FLASH_LED_HDRM_VOL_STEP_MV 25
|
|
#define FLASH_LED_STROBE_CFG_DEFAULT 0x00
|
|
#define FLASH_LED_HW_STROBE_OPTION_1 0x00
|
|
#define FLASH_LED_HW_STROBE_OPTION_2 0x01
|
|
#define FLASH_LED_HW_STROBE_OPTION_3 0x02
|
|
#define FLASH_LED_DISABLE 0x00
|
|
#define FLASH_LED_SAFETY_TMR_DISABLED 0x13
|
|
#define FLASH_LED_MAX_TOTAL_CURRENT_MA 3750
|
|
#define FLASH_LED_IRES5P0_MAX_CURR_MA 640
|
|
#define FLASH_LED_IRES7P5_MAX_CURR_MA 960
|
|
#define FLASH_LED_IRES10P0_MAX_CURR_MA 1280
|
|
#define FLASH_LED_IRES12P5_MAX_CURR_MA 1600
|
|
#define MAX_IRES_LEVELS 4
|
|
#define FLASH_BST_PWM_OVRHD_MIN_UV 300000
|
|
#define FLASH_BST_PWM_OVRHD_MAX_UV 600000
|
|
|
|
/* notifier call chain for flash-led irqs */
|
|
static ATOMIC_NOTIFIER_HEAD(irq_notifier_list);
|
|
|
|
enum flash_charger_mitigation {
|
|
FLASH_DISABLE_CHARGER_MITIGATION,
|
|
FLASH_HW_CHARGER_MITIGATION_BY_ILED_THRSHLD,
|
|
FLASH_SW_CHARGER_MITIGATION,
|
|
};
|
|
|
|
enum flash_led_type {
|
|
FLASH_LED_TYPE_UNKNOWN,
|
|
FLASH_LED_TYPE_FLASH,
|
|
FLASH_LED_TYPE_TORCH,
|
|
};
|
|
|
|
enum {
|
|
LED1 = 0,
|
|
LED2,
|
|
LED3,
|
|
};
|
|
|
|
enum pmic_type {
|
|
PM6150L,
|
|
PMI632,
|
|
PM660L
|
|
};
|
|
|
|
enum strobe_type {
|
|
SW_STROBE = 0,
|
|
HW_STROBE,
|
|
LPG_STROBE,
|
|
};
|
|
|
|
enum wa_flags {
|
|
PM6150L_IRES_WA = BIT(0),
|
|
};
|
|
|
|
/*
|
|
* Configurations for each individual LED
|
|
*/
|
|
struct flash_node_data {
|
|
struct platform_device *pdev;
|
|
struct led_classdev cdev;
|
|
struct pinctrl *strobe_pinctrl;
|
|
struct pinctrl_state *hw_strobe_state_active;
|
|
struct pinctrl_state *hw_strobe_state_suspend;
|
|
int hw_strobe_gpio;
|
|
int ires_ua;
|
|
int default_ires_ua;
|
|
int max_current;
|
|
int current_ma;
|
|
int prev_current_ma;
|
|
u8 duration;
|
|
u8 id;
|
|
u8 ires_idx;
|
|
u8 default_ires_idx;
|
|
u8 hdrm_val;
|
|
u8 current_reg_val;
|
|
u8 strobe_ctrl;
|
|
u8 strobe_sel;
|
|
enum flash_led_type type;
|
|
bool led_on;
|
|
};
|
|
|
|
|
|
struct flash_switch_data {
|
|
struct platform_device *pdev;
|
|
struct regulator *vreg;
|
|
struct pinctrl *led_en_pinctrl;
|
|
struct pinctrl_state *gpio_state_active;
|
|
struct pinctrl_state *gpio_state_suspend;
|
|
struct led_classdev cdev;
|
|
int led_mask;
|
|
bool regulator_on;
|
|
bool enabled;
|
|
bool symmetry_en;
|
|
};
|
|
|
|
/*
|
|
* Flash LED configuration read from device tree
|
|
*/
|
|
struct flash_led_platform_data {
|
|
int *thermal_derate_current;
|
|
int all_ramp_up_done_irq;
|
|
int all_ramp_down_done_irq;
|
|
int led_fault_irq;
|
|
int ibatt_ocp_threshold_ua;
|
|
int vled_max_uv;
|
|
int rpara_uohm;
|
|
int lmh_rbatt_threshold_uohm;
|
|
int lmh_ocv_threshold_uv;
|
|
int thermal_derate_slow;
|
|
int thermal_derate_fast;
|
|
int thermal_hysteresis;
|
|
int thermal_debounce;
|
|
int thermal_thrsh1;
|
|
int thermal_thrsh2;
|
|
int thermal_thrsh3;
|
|
int ramp_up_step;
|
|
int ramp_down_step;
|
|
int hw_strobe_option;
|
|
u32 led1n2_iclamp_low_ma;
|
|
u32 led1n2_iclamp_mid_ma;
|
|
u32 led3_iclamp_low_ma;
|
|
u32 led3_iclamp_mid_ma;
|
|
u32 bst_pwm_ovrhd_uv;
|
|
u8 isc_delay;
|
|
u8 warmup_delay;
|
|
u8 current_derate_en_cfg;
|
|
u8 vph_droop_threshold;
|
|
u8 vph_droop_hysteresis;
|
|
u8 vph_droop_debounce;
|
|
u8 lmh_mitigation_sel;
|
|
u8 chgr_mitigation_sel;
|
|
u8 lmh_level;
|
|
u8 iled_thrsh_val;
|
|
bool hdrm_auto_mode_en;
|
|
bool thermal_derate_en;
|
|
bool otst_ramp_bkup_en;
|
|
};
|
|
|
|
enum flash_iio_props {
|
|
RBATT,
|
|
OCV,
|
|
IBAT,
|
|
F_TRIGGER,
|
|
F_ACTIVE,
|
|
};
|
|
|
|
static char *flash_iio_prop_names[] = {
|
|
[RBATT] = "rbatt",
|
|
[OCV] = "voltage_ocv",
|
|
[IBAT] = "current_now",
|
|
[F_TRIGGER] = "flash_trigger",
|
|
[F_ACTIVE] = "flash_active",
|
|
};
|
|
|
|
/*
|
|
* Flash LED data structure containing flash LED attributes
|
|
*/
|
|
struct qpnp_flash_led {
|
|
struct flash_led_platform_data *pdata;
|
|
struct platform_device *pdev;
|
|
struct regmap *regmap;
|
|
struct flash_node_data *fnode;
|
|
struct flash_switch_data *snode;
|
|
struct power_supply *usb_psy;
|
|
struct iio_channel **iio_channels;
|
|
struct notifier_block nb;
|
|
spinlock_t lock;
|
|
int num_fnodes;
|
|
int num_snodes;
|
|
int enable;
|
|
int total_current_ma;
|
|
int pmic_type;
|
|
u32 wa_flags;
|
|
u16 base;
|
|
bool trigger_lmh;
|
|
bool trigger_chgr;
|
|
};
|
|
|
|
static int thermal_derate_slow_table[] = {
|
|
128, 256, 512, 1024, 2048, 4096, 8192, 314592,
|
|
};
|
|
|
|
static int thermal_derate_fast_table[] = {
|
|
32, 64, 96, 128, 256, 384, 512,
|
|
};
|
|
|
|
static int otst1_threshold_table[] = {
|
|
85, 79, 73, 67, 109, 103, 97, 91,
|
|
};
|
|
|
|
static int otst2_threshold_table[] = {
|
|
110, 104, 98, 92, 134, 128, 122, 116,
|
|
};
|
|
|
|
static int otst3_threshold_table[] = {
|
|
125, 119, 113, 107, 149, 143, 137, 131,
|
|
};
|
|
|
|
static int max_ires_curr_ma_table[MAX_IRES_LEVELS] = {
|
|
FLASH_LED_IRES12P5_MAX_CURR_MA, FLASH_LED_IRES10P0_MAX_CURR_MA,
|
|
FLASH_LED_IRES7P5_MAX_CURR_MA, FLASH_LED_IRES5P0_MAX_CURR_MA
|
|
};
|
|
|
|
static inline int get_current_reg_code(int target_curr_ma, int ires_ua)
|
|
{
|
|
if (!ires_ua || !target_curr_ma || (target_curr_ma < (ires_ua / 1000)))
|
|
return 0;
|
|
|
|
return DIV_ROUND_CLOSEST(target_curr_ma * 1000, ires_ua) - 1;
|
|
}
|
|
|
|
static int qpnp_flash_led_read(struct qpnp_flash_led *led, u16 addr, u8 *data)
|
|
{
|
|
int rc;
|
|
uint val;
|
|
|
|
rc = regmap_read(led->regmap, addr, &val);
|
|
if (rc < 0) {
|
|
pr_err("Unable to read from 0x%04X rc = %d\n", addr, rc);
|
|
return rc;
|
|
}
|
|
|
|
pr_debug("Read 0x%02X from addr 0x%04X\n", val, addr);
|
|
*data = (u8)val;
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_led_write(struct qpnp_flash_led *led, u16 addr, u8 data)
|
|
{
|
|
int rc;
|
|
|
|
rc = regmap_write(led->regmap, addr, data);
|
|
if (rc < 0) {
|
|
pr_err("Unable to write to 0x%04X rc = %d\n", addr, rc);
|
|
return rc;
|
|
}
|
|
|
|
pr_debug("Wrote 0x%02X to addr 0x%04X\n", data, addr);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
qpnp_flash_led_masked_read(struct qpnp_flash_led *led, u16 addr, u8 mask,
|
|
u8 *val)
|
|
{
|
|
int rc;
|
|
|
|
rc = qpnp_flash_led_read(led, addr, val);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
*val &= mask;
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
qpnp_flash_led_masked_write(struct qpnp_flash_led *led, u16 addr, u8 mask,
|
|
u8 val)
|
|
{
|
|
int rc;
|
|
|
|
rc = regmap_update_bits(led->regmap, addr, mask, val);
|
|
if (rc < 0)
|
|
pr_err("Unable to update bits from 0x%04X, rc = %d\n", addr,
|
|
rc);
|
|
else
|
|
pr_debug("Wrote 0x%02X to addr 0x%04X\n", val, addr);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static enum
|
|
led_brightness qpnp_flash_led_brightness_get(struct led_classdev *led_cdev)
|
|
{
|
|
return led_cdev->brightness;
|
|
}
|
|
|
|
static int qpnp_flash_led_headroom_config(struct qpnp_flash_led *led)
|
|
{
|
|
int rc, i, addr_offset;
|
|
|
|
for (i = 0; i < led->num_fnodes; i++) {
|
|
addr_offset = led->fnode[i].id;
|
|
rc = qpnp_flash_led_write(led,
|
|
FLASH_LED_REG_HDRM_PRGM(led->base + addr_offset),
|
|
led->fnode[i].hdrm_val);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int qpnp_flash_led_safety_tmr_config(struct qpnp_flash_led *led)
|
|
{
|
|
int rc = 0, i, addr_offset;
|
|
|
|
for (i = 0; i < led->num_fnodes; i++) {
|
|
addr_offset = led->fnode[i].id;
|
|
rc = qpnp_flash_led_write(led,
|
|
FLASH_LED_REG_SAFETY_TMR(led->base + addr_offset),
|
|
FLASH_LED_SAFETY_TMR_DISABLED);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int qpnp_flash_led_strobe_config(struct qpnp_flash_led *led)
|
|
{
|
|
int i, rc, addr_offset;
|
|
u8 val = 0, mask, strobe_mask = 0, strobe_ctrl;
|
|
|
|
for (i = 0; i < led->num_fnodes; i++) {
|
|
val |= 0x1 << led->fnode[i].id;
|
|
|
|
if (led->fnode[i].strobe_sel == HW_STROBE) {
|
|
if (led->fnode[i].id == LED3)
|
|
strobe_mask |= LED3_FLASH_ONCE_ONLY_BIT;
|
|
else
|
|
strobe_mask |= LED1N2_FLASH_ONCE_ONLY_BIT;
|
|
}
|
|
|
|
if (led->fnode[i].id == LED3 &&
|
|
led->fnode[i].strobe_sel == LPG_STROBE)
|
|
strobe_mask |= LED3_FLASH_ONCE_ONLY_BIT;
|
|
/*
|
|
* As per the hardware recommendation, to use LED2/LED3 in HW
|
|
* strobe mode, LED1 should be set to HW strobe mode as well.
|
|
*/
|
|
if (led->fnode[i].strobe_sel == HW_STROBE &&
|
|
(led->fnode[i].id == LED2 || led->fnode[i].id == LED3)) {
|
|
mask = FLASH_HW_STROBE_MASK;
|
|
addr_offset = led->fnode[LED1].id;
|
|
/*
|
|
* HW_STROBE: enable, TRIGGER: level,
|
|
* POLARITY: active high
|
|
*/
|
|
strobe_ctrl = BIT(2) | BIT(0);
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_STROBE_CTRL(
|
|
led->base + addr_offset),
|
|
mask, strobe_ctrl);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_MULTI_STROBE_CTRL(led->base),
|
|
strobe_mask, 0);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
if (led->fnode[LED3].strobe_sel == LPG_STROBE) {
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_LPG_INPUT_CTRL(led->base),
|
|
LPG_INPUT_SEL_BIT, LPG_INPUT_SEL_BIT);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int qpnp_flash_led_thermal_config(struct qpnp_flash_led *led)
|
|
{
|
|
int rc;
|
|
u8 val, mask;
|
|
|
|
val = (led->pdata->otst_ramp_bkup_en << THERMAL_OTST1_RAMP_CTRL_SHIFT);
|
|
mask = THERMAL_OTST1_RAMP_CTRL_MASK;
|
|
if (led->pdata->thermal_derate_slow >= 0) {
|
|
val |= (led->pdata->thermal_derate_slow <<
|
|
THERMAL_DERATE_SLOW_SHIFT);
|
|
mask |= THERMAL_DERATE_SLOW_MASK;
|
|
}
|
|
|
|
if (led->pdata->thermal_derate_fast >= 0) {
|
|
val |= led->pdata->thermal_derate_fast;
|
|
mask |= THERMAL_DERATE_FAST_MASK;
|
|
}
|
|
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_THERMAL_RMP_DN_RATE(led->base),
|
|
mask, val);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
if (led->pdata->thermal_debounce >= 0) {
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_THERMAL_DEBOUNCE(led->base),
|
|
FLASH_LED_THERMAL_DEBOUNCE_MASK,
|
|
led->pdata->thermal_debounce);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
|
|
if (led->pdata->thermal_hysteresis >= 0) {
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_THERMAL_HYSTERESIS(led->base),
|
|
FLASH_LED_THERMAL_HYSTERESIS_MASK,
|
|
led->pdata->thermal_hysteresis);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
|
|
if (led->pdata->thermal_thrsh1 >= 0) {
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_THERMAL_THRSH1(led->base),
|
|
FLASH_LED_THERMAL_THRSH_MASK,
|
|
led->pdata->thermal_thrsh1);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
|
|
if (led->pdata->thermal_thrsh2 >= 0) {
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_THERMAL_THRSH2(led->base),
|
|
FLASH_LED_THERMAL_THRSH_MASK,
|
|
led->pdata->thermal_thrsh2);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
|
|
if (led->pdata->thermal_thrsh3 >= 0) {
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_THERMAL_THRSH3(led->base),
|
|
FLASH_LED_THERMAL_THRSH_MASK,
|
|
led->pdata->thermal_thrsh3);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int qpnp_flash_led_init_settings(struct qpnp_flash_led *led)
|
|
{
|
|
int rc;
|
|
u8 val = 0;
|
|
|
|
rc = qpnp_flash_led_headroom_config(led);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_safety_tmr_config(led);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_strobe_config(led);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_write(led,
|
|
FLASH_LED_REG_HDRM_AUTO_MODE_CTRL(led->base),
|
|
val);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_ISC_DELAY(led->base),
|
|
FLASH_LED_ISC_WARMUP_DELAY_MASK,
|
|
led->pdata->isc_delay);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_WARMUP_DELAY(led->base),
|
|
FLASH_LED_ISC_WARMUP_DELAY_MASK,
|
|
led->pdata->warmup_delay);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_CURRENT_DERATE_EN(led->base),
|
|
FLASH_LED_CURRENT_DERATE_EN_MASK,
|
|
led->pdata->current_derate_en_cfg);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_thermal_config(led);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
val = led->pdata->ramp_up_step << FLASH_LED_RAMP_UP_STEP_SHIFT;
|
|
val |= led->pdata->ramp_down_step;
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_RGLR_RAMP_RATE(led->base),
|
|
FLASH_LED_RAMP_UP_STEP_MASK | FLASH_LED_RAMP_DOWN_STEP_MASK,
|
|
val);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_VPH_DROOP_DEBOUNCE(led->base),
|
|
FLASH_LED_VPH_DROOP_DEBOUNCE_MASK,
|
|
led->pdata->vph_droop_debounce);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_VPH_DROOP_THRESHOLD(led->base),
|
|
FLASH_LED_VPH_DROOP_THRESHOLD_MASK,
|
|
led->pdata->vph_droop_threshold);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_VPH_DROOP_THRESHOLD(led->base),
|
|
FLASH_LED_VPH_DROOP_HYSTERESIS_MASK,
|
|
led->pdata->vph_droop_hysteresis);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_MITIGATION_SEL(led->base),
|
|
FLASH_LED_LMH_MITIGATION_SEL_MASK,
|
|
led->pdata->lmh_mitigation_sel);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
val = led->pdata->chgr_mitigation_sel
|
|
<< FLASH_LED_CHGR_MITIGATION_SEL_SHIFT;
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_MITIGATION_SEL(led->base),
|
|
FLASH_LED_CHGR_MITIGATION_SEL_MASK,
|
|
val);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_LMH_LEVEL(led->base),
|
|
FLASH_LED_LMH_LEVEL_MASK,
|
|
led->pdata->lmh_level);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_ILED_GRT_THRSH(led->base),
|
|
FLASH_LED_ILED_GRT_THRSH_MASK,
|
|
led->pdata->iled_thrsh_val);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
if (led->pdata->led1n2_iclamp_low_ma) {
|
|
val = get_current_reg_code(led->pdata->led1n2_iclamp_low_ma,
|
|
led->fnode[LED1].ires_ua);
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_LED1N2_ICLAMP_LOW(led->base),
|
|
FLASH_LED_CURRENT_MASK, val);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
|
|
if (led->pdata->led1n2_iclamp_mid_ma) {
|
|
val = get_current_reg_code(led->pdata->led1n2_iclamp_mid_ma,
|
|
led->fnode[LED1].ires_ua);
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_LED1N2_ICLAMP_MID(led->base),
|
|
FLASH_LED_CURRENT_MASK, val);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
|
|
if (led->pdata->led3_iclamp_low_ma) {
|
|
val = get_current_reg_code(led->pdata->led3_iclamp_low_ma,
|
|
led->fnode[LED3].ires_ua);
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_LED3_ICLAMP_LOW(led->base),
|
|
FLASH_LED_CURRENT_MASK, val);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
|
|
if (led->pdata->led3_iclamp_mid_ma) {
|
|
val = get_current_reg_code(led->pdata->led3_iclamp_mid_ma,
|
|
led->fnode[LED3].ires_ua);
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_LED3_ICLAMP_MID(led->base),
|
|
FLASH_LED_CURRENT_MASK, val);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
|
|
if (led->pdata->hw_strobe_option > 0) {
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_STROBE_CFG(led->base),
|
|
FLASH_LED_STROBE_MASK,
|
|
led->pdata->hw_strobe_option);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_led_hw_strobe_enable(struct flash_node_data *fnode,
|
|
int hw_strobe_option, bool on)
|
|
{
|
|
int rc = 0;
|
|
|
|
/*
|
|
* If the LED controlled by this fnode is not GPIO controlled
|
|
* for the given strobe_option, return.
|
|
*/
|
|
if (hw_strobe_option == FLASH_LED_HW_STROBE_OPTION_1)
|
|
return 0;
|
|
else if (hw_strobe_option == FLASH_LED_HW_STROBE_OPTION_2
|
|
&& fnode->id != LED3)
|
|
return 0;
|
|
else if (hw_strobe_option == FLASH_LED_HW_STROBE_OPTION_3
|
|
&& fnode->id == LED1)
|
|
return 0;
|
|
|
|
if (gpio_is_valid(fnode->hw_strobe_gpio)) {
|
|
gpio_set_value(fnode->hw_strobe_gpio, on ? 1 : 0);
|
|
} else if (fnode->strobe_pinctrl && fnode->hw_strobe_state_active &&
|
|
fnode->hw_strobe_state_suspend) {
|
|
rc = pinctrl_select_state(fnode->strobe_pinctrl,
|
|
on ? fnode->hw_strobe_state_active :
|
|
fnode->hw_strobe_state_suspend);
|
|
if (rc < 0) {
|
|
pr_err("failed to change hw strobe pin state\n");
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int qpnp_flash_led_regulator_enable(struct qpnp_flash_led *led,
|
|
struct flash_switch_data *snode, bool on)
|
|
{
|
|
int rc = 0;
|
|
|
|
if (!snode || !snode->vreg)
|
|
return 0;
|
|
|
|
if (snode->regulator_on == on)
|
|
return 0;
|
|
|
|
if (on)
|
|
rc = regulator_enable(snode->vreg);
|
|
else
|
|
rc = regulator_disable(snode->vreg);
|
|
|
|
if (rc < 0) {
|
|
pr_err("regulator_%s failed, rc=%d\n",
|
|
on ? "enable" : "disable", rc);
|
|
return rc;
|
|
}
|
|
|
|
snode->regulator_on = on ? true : false;
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_get_iio_chan(struct qpnp_flash_led *led,
|
|
enum flash_iio_props chan)
|
|
{
|
|
int rc = 0;
|
|
|
|
/*
|
|
* if the channel pointer is not-NULL and has a ERR value it has
|
|
* already been queried upon earlier, hence return from here.
|
|
*/
|
|
if (IS_ERR(led->iio_channels[chan]))
|
|
return -EINVAL;
|
|
|
|
if (!led->iio_channels[chan]) {
|
|
led->iio_channels[chan] = iio_channel_get(&led->pdev->dev,
|
|
flash_iio_prop_names[chan]);
|
|
if (IS_ERR(led->iio_channels[chan])) {
|
|
rc = PTR_ERR(led->iio_channels[chan]);
|
|
if (rc == -EPROBE_DEFER) {
|
|
led->iio_channels[chan] = NULL;
|
|
return rc;
|
|
}
|
|
pr_err("%s channel unavailable %d\n",
|
|
flash_iio_prop_names[chan], rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_iio_getprop(struct qpnp_flash_led *led,
|
|
enum flash_iio_props chan, int *data)
|
|
{
|
|
int rc = 0;
|
|
|
|
rc = qpnp_flash_get_iio_chan(led, chan);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = iio_read_channel_processed(led->iio_channels[chan], data);
|
|
if (rc < 0)
|
|
pr_err("Error in reading IIO channel data rc = %d\n", rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int qpnp_flash_iio_setprop(struct qpnp_flash_led *led,
|
|
enum flash_iio_props chan, int data)
|
|
{
|
|
int rc = 0;
|
|
|
|
rc = qpnp_flash_get_iio_chan(led, chan);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = iio_write_channel_raw(led->iio_channels[chan], data);
|
|
if (rc < 0)
|
|
pr_err("Error in writing IIO channel data rc = %d\n", rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
#define VOLTAGE_HDRM_DEFAULT_MV 350
|
|
#define BHARGER_VOLTAGE_HDRM_DEFAULT_MV 400
|
|
#define BHARGER_HEADROOM_OFFSET_MV 50
|
|
static int qpnp_flash_led_get_voltage_headroom(struct qpnp_flash_led *led)
|
|
{
|
|
int i, voltage_hdrm_mv = 0, voltage_hdrm_max = 0;
|
|
|
|
for (i = 0; i < led->num_fnodes; i++) {
|
|
if (led->fnode[i].led_on) {
|
|
if (led->fnode[i].id < 2) {
|
|
if (led->fnode[i].current_ma < 750)
|
|
voltage_hdrm_mv = 125;
|
|
else if (led->fnode[i].current_ma < 1000)
|
|
voltage_hdrm_mv = 175;
|
|
else if (led->fnode[i].current_ma < 1250)
|
|
voltage_hdrm_mv = 250;
|
|
else
|
|
voltage_hdrm_mv = 350;
|
|
} else {
|
|
if (led->fnode[i].current_ma < 375)
|
|
voltage_hdrm_mv = 125;
|
|
else if (led->fnode[i].current_ma < 500)
|
|
voltage_hdrm_mv = 175;
|
|
else if (led->fnode[i].current_ma < 625)
|
|
voltage_hdrm_mv = 250;
|
|
else
|
|
voltage_hdrm_mv = 350;
|
|
}
|
|
|
|
if (led->pmic_type == PMI632)
|
|
voltage_hdrm_mv += BHARGER_HEADROOM_OFFSET_MV;
|
|
|
|
voltage_hdrm_max = max(voltage_hdrm_max,
|
|
voltage_hdrm_mv);
|
|
}
|
|
}
|
|
|
|
if (!voltage_hdrm_max)
|
|
return (led->pmic_type == PMI632) ?
|
|
BHARGER_VOLTAGE_HDRM_DEFAULT_MV :
|
|
VOLTAGE_HDRM_DEFAULT_MV;
|
|
|
|
return voltage_hdrm_max;
|
|
}
|
|
|
|
#define UCONV 1000000LL
|
|
#define MCONV 1000LL
|
|
#define FLASH_VDIP_MARGIN 50000
|
|
#define BOB_EFFICIENCY 900LL
|
|
#define VIN_FLASH_MIN_UV 3300000LL
|
|
static int qpnp_flash_led_calc_max_current(struct qpnp_flash_led *led,
|
|
int *max_current)
|
|
{
|
|
int ocv_uv, ibat_now, voltage_hdrm_mv, rc;
|
|
int rbatt_uohm = 0;
|
|
int64_t ibat_flash_ua, avail_flash_ua, avail_flash_power_fw;
|
|
int64_t ibat_safe_ua, vin_flash_uv, vph_flash_uv, vph_flash_vdip;
|
|
|
|
/* RESISTANCE = esr_uohm + rslow_uohm */
|
|
rc = qpnp_flash_iio_getprop(led, RBATT, &rbatt_uohm);
|
|
/* Do not return error if the QG driver is not probed */
|
|
if (rc == -EPROBE_DEFER) {
|
|
*max_current = FLASH_LED_MAX_TOTAL_CURRENT_MA;
|
|
return 0;
|
|
} else if (rc < 0) {
|
|
pr_err("Unable to read battery resistance, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/* If no battery is connected, return max possible flash current */
|
|
if (!rbatt_uohm) {
|
|
*max_current = FLASH_LED_MAX_TOTAL_CURRENT_MA;
|
|
return 0;
|
|
}
|
|
|
|
rc = qpnp_flash_iio_getprop(led, OCV, &ocv_uv);
|
|
if (rc < 0) {
|
|
pr_err("Unable to read OCV, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = qpnp_flash_iio_getprop(led, IBAT, &ibat_now);
|
|
if (rc < 0) {
|
|
pr_err("unable to read current_now, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
rbatt_uohm += led->pdata->rpara_uohm;
|
|
voltage_hdrm_mv = qpnp_flash_led_get_voltage_headroom(led);
|
|
vph_flash_vdip =
|
|
VPH_DROOP_THRESH_VAL_TO_UV(led->pdata->vph_droop_threshold)
|
|
+ FLASH_VDIP_MARGIN;
|
|
|
|
/* Check if LMH_MITIGATION needs to be triggered */
|
|
if (!led->trigger_lmh && (ocv_uv < led->pdata->lmh_ocv_threshold_uv ||
|
|
rbatt_uohm > led->pdata->lmh_rbatt_threshold_uohm)) {
|
|
led->trigger_lmh = true;
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_MITIGATION_SW(led->base),
|
|
FLASH_LED_LMH_MITIGATION_EN_MASK,
|
|
FLASH_LED_LMH_MITIGATION_ENABLE);
|
|
if (rc < 0) {
|
|
pr_err("trigger lmh mitigation failed, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/* Wait for LMH mitigation to take effect */
|
|
udelay(100);
|
|
|
|
return qpnp_flash_led_calc_max_current(led, max_current);
|
|
}
|
|
|
|
/*
|
|
* Calculate the maximum current that can pulled out of the battery
|
|
* before the battery voltage dips below a safe threshold.
|
|
*/
|
|
ibat_safe_ua = div_s64((ocv_uv - vph_flash_vdip) * UCONV,
|
|
rbatt_uohm);
|
|
|
|
if (ibat_safe_ua <= led->pdata->ibatt_ocp_threshold_ua) {
|
|
/*
|
|
* If the calculated current is below the OCP threshold, then
|
|
* use it as the possible flash current.
|
|
*/
|
|
ibat_flash_ua = ibat_safe_ua - ibat_now;
|
|
vph_flash_uv = vph_flash_vdip;
|
|
} else {
|
|
/*
|
|
* If the calculated current is above the OCP threshold, then
|
|
* use the ocp threshold instead.
|
|
*
|
|
* Any higher current will be tripping the battery OCP.
|
|
*/
|
|
ibat_flash_ua = led->pdata->ibatt_ocp_threshold_ua - ibat_now;
|
|
vph_flash_uv = ocv_uv - div64_s64((int64_t)rbatt_uohm
|
|
* led->pdata->ibatt_ocp_threshold_ua, UCONV);
|
|
}
|
|
/* Calculate the input voltage of the flash module. */
|
|
vin_flash_uv = max((led->pdata->vled_max_uv +
|
|
(voltage_hdrm_mv * MCONV)), VIN_FLASH_MIN_UV);
|
|
/* Calculate the available power for the flash module. */
|
|
avail_flash_power_fw = BOB_EFFICIENCY * vph_flash_uv * ibat_flash_ua;
|
|
/*
|
|
* Calculate the available amount of current the flash module can draw
|
|
* before collapsing the battery. (available power/ flash input voltage)
|
|
*/
|
|
avail_flash_ua = div64_s64(avail_flash_power_fw, vin_flash_uv * MCONV);
|
|
pr_debug("avail_iflash=%lld, ocv=%d, ibat=%d, rbatt=%d, trigger_lmh=%d\n",
|
|
avail_flash_ua, ocv_uv, ibat_now, rbatt_uohm, led->trigger_lmh);
|
|
*max_current = min(FLASH_LED_MAX_TOTAL_CURRENT_MA,
|
|
(int)(div64_s64(avail_flash_ua, MCONV)));
|
|
return 0;
|
|
}
|
|
|
|
static int is_usb_psy_available(struct qpnp_flash_led *led)
|
|
{
|
|
if (!led->usb_psy) {
|
|
led->usb_psy = power_supply_get_by_name("usb");
|
|
if (!led->usb_psy) {
|
|
pr_err_ratelimited("Couldn't get usb_psy\n");
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define CHGBST_EFFICIENCY 800LL
|
|
#define CHGBST_FLASH_VDIP_MARGIN 10000
|
|
#define VIN_FLASH_UV 5000000
|
|
#define BHARGER_FLASH_LED_MAX_TOTAL_CURRENT_MA 1500
|
|
#define BHARGER_FLASH_LED_WITH_OTG_MAX_TOTAL_CURRENT_MA 1100
|
|
static int qpnp_flash_led_calc_bharger_max_current(struct qpnp_flash_led *led,
|
|
int *max_current)
|
|
{
|
|
union power_supply_propval pval = {0, };
|
|
int ocv_uv, ibat_now, voltage_hdrm_mv, flash_led_max_total_curr_ma, rc;
|
|
int rbatt_uohm = 0, usb_present, otg_enable;
|
|
int64_t ibat_flash_ua, avail_flash_ua, avail_flash_power_fw;
|
|
int64_t ibat_safe_ua, vin_flash_uv, vph_flash_uv, vph_flash_vdip;
|
|
int64_t bst_pwm_ovrhd_uv;
|
|
|
|
rc = is_usb_psy_available(led);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = power_supply_get_property(led->usb_psy, POWER_SUPPLY_PROP_SCOPE,
|
|
&pval);
|
|
if (rc < 0) {
|
|
pr_err("usb psy does not support usb present, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
otg_enable = pval.intval;
|
|
|
|
/* RESISTANCE = esr_uohm + rslow_uohm */
|
|
rc = qpnp_flash_iio_getprop(led, RBATT, &rbatt_uohm);
|
|
/* Do not return error if the QG driver is not probed */
|
|
if (rc == -EPROBE_DEFER) {
|
|
*max_current = FLASH_LED_MAX_TOTAL_CURRENT_MA;
|
|
return 0;
|
|
} else if (rc < 0) {
|
|
pr_err("Unable to read battery resistance, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/* If no battery is connected, return max possible flash current */
|
|
if (!rbatt_uohm) {
|
|
*max_current = (otg_enable == POWER_SUPPLY_SCOPE_SYSTEM) ?
|
|
BHARGER_FLASH_LED_WITH_OTG_MAX_TOTAL_CURRENT_MA :
|
|
BHARGER_FLASH_LED_MAX_TOTAL_CURRENT_MA;
|
|
return 0;
|
|
}
|
|
|
|
rc = qpnp_flash_iio_getprop(led, OCV, &ocv_uv);
|
|
if (rc < 0) {
|
|
pr_err("Unable to read OCV, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = qpnp_flash_iio_getprop(led, IBAT, &ibat_now);
|
|
if (rc < 0) {
|
|
pr_err("Unable to read current, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
bst_pwm_ovrhd_uv = led->pdata->bst_pwm_ovrhd_uv;
|
|
|
|
rc = power_supply_get_property(led->usb_psy, POWER_SUPPLY_PROP_PRESENT,
|
|
&pval);
|
|
if (rc < 0) {
|
|
pr_err("usb psy does not support usb present, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
usb_present = pval.intval;
|
|
|
|
rbatt_uohm += led->pdata->rpara_uohm;
|
|
voltage_hdrm_mv = qpnp_flash_led_get_voltage_headroom(led);
|
|
vph_flash_vdip =
|
|
VPH_DROOP_THRESH_VAL_TO_UV(led->pdata->vph_droop_threshold)
|
|
+ CHGBST_FLASH_VDIP_MARGIN;
|
|
|
|
/* Check if LMH_MITIGATION needs to be triggered */
|
|
if (!led->trigger_lmh && (ocv_uv < led->pdata->lmh_ocv_threshold_uv ||
|
|
rbatt_uohm > led->pdata->lmh_rbatt_threshold_uohm)) {
|
|
led->trigger_lmh = true;
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_MITIGATION_SW(led->base),
|
|
FLASH_LED_LMH_MITIGATION_EN_MASK,
|
|
FLASH_LED_LMH_MITIGATION_ENABLE);
|
|
if (rc < 0) {
|
|
pr_err("trigger lmh mitigation failed, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/* Wait for LMH mitigation to take effect */
|
|
udelay(100);
|
|
|
|
return qpnp_flash_led_calc_bharger_max_current(led,
|
|
max_current);
|
|
}
|
|
|
|
/*
|
|
* Calculate the maximum current that can pulled out of the battery
|
|
* before the battery voltage dips below a safe threshold.
|
|
*/
|
|
ibat_safe_ua = div_s64((ocv_uv - vph_flash_vdip) * UCONV,
|
|
rbatt_uohm);
|
|
|
|
if (ibat_safe_ua <= led->pdata->ibatt_ocp_threshold_ua) {
|
|
/*
|
|
* If the calculated current is below the OCP threshold, then
|
|
* use it as the possible flash current.
|
|
*/
|
|
ibat_flash_ua = ibat_safe_ua - ibat_now;
|
|
vph_flash_uv = vph_flash_vdip;
|
|
} else {
|
|
/*
|
|
* If the calculated current is above the OCP threshold, then
|
|
* use the ocp threshold instead.
|
|
*
|
|
* Any higher current will be tripping the battery OCP.
|
|
*/
|
|
ibat_flash_ua = led->pdata->ibatt_ocp_threshold_ua - ibat_now;
|
|
vph_flash_uv = ocv_uv - div64_s64((int64_t)rbatt_uohm
|
|
* led->pdata->ibatt_ocp_threshold_ua, UCONV);
|
|
}
|
|
|
|
/* when USB is present or OTG is enabled, VIN_FLASH is always at 5V */
|
|
if (usb_present || (otg_enable == POWER_SUPPLY_SCOPE_SYSTEM))
|
|
vin_flash_uv = VIN_FLASH_UV;
|
|
else
|
|
/* Calculate the input voltage of the flash module. */
|
|
vin_flash_uv = max((led->pdata->vled_max_uv +
|
|
(voltage_hdrm_mv * MCONV)),
|
|
vph_flash_uv + bst_pwm_ovrhd_uv);
|
|
|
|
/* Calculate the available power for the flash module. */
|
|
avail_flash_power_fw = CHGBST_EFFICIENCY * vph_flash_uv * ibat_flash_ua;
|
|
/*
|
|
* Calculate the available amount of current the flash module can draw
|
|
* before collapsing the battery. (available power/ flash input voltage)
|
|
*/
|
|
avail_flash_ua = div64_s64(avail_flash_power_fw, vin_flash_uv * MCONV);
|
|
flash_led_max_total_curr_ma = otg_enable ?
|
|
BHARGER_FLASH_LED_WITH_OTG_MAX_TOTAL_CURRENT_MA :
|
|
BHARGER_FLASH_LED_MAX_TOTAL_CURRENT_MA;
|
|
*max_current = min(flash_led_max_total_curr_ma,
|
|
(int)(div64_s64(avail_flash_ua, MCONV)));
|
|
|
|
pr_debug("avail_iflash=%lld, ocv=%d, ibat=%d, rbatt=%d, trigger_lmh=%d max_current=%lld usb_present=%d otg_enable=%d\n",
|
|
avail_flash_ua, ocv_uv, ibat_now, rbatt_uohm, led->trigger_lmh,
|
|
(*max_current * MCONV), usb_present, otg_enable);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int qpnp_flash_led_calc_thermal_current_lim(struct qpnp_flash_led *led,
|
|
int *thermal_current_lim)
|
|
{
|
|
int rc;
|
|
u8 thermal_thrsh1, thermal_thrsh2, thermal_thrsh3, otst_status;
|
|
|
|
/* Store THERMAL_THRSHx register values */
|
|
rc = qpnp_flash_led_masked_read(led,
|
|
FLASH_LED_REG_THERMAL_THRSH1(led->base),
|
|
FLASH_LED_THERMAL_THRSH_MASK,
|
|
&thermal_thrsh1);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_masked_read(led,
|
|
FLASH_LED_REG_THERMAL_THRSH2(led->base),
|
|
FLASH_LED_THERMAL_THRSH_MASK,
|
|
&thermal_thrsh2);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_masked_read(led,
|
|
FLASH_LED_REG_THERMAL_THRSH3(led->base),
|
|
FLASH_LED_THERMAL_THRSH_MASK,
|
|
&thermal_thrsh3);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Lower THERMAL_THRSHx thresholds to minimum */
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_THERMAL_THRSH1(led->base),
|
|
FLASH_LED_THERMAL_THRSH_MASK,
|
|
FLASH_LED_THERMAL_THRSH_MIN);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_THERMAL_THRSH2(led->base),
|
|
FLASH_LED_THERMAL_THRSH_MASK,
|
|
FLASH_LED_THERMAL_THRSH_MIN);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_THERMAL_THRSH3(led->base),
|
|
FLASH_LED_THERMAL_THRSH_MASK,
|
|
FLASH_LED_THERMAL_THRSH_MIN);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Check THERMAL_OTST status */
|
|
rc = qpnp_flash_led_read(led,
|
|
FLASH_LED_REG_LED_STATUS2(led->base),
|
|
&otst_status);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
otst_status &= FLASH_LED_THERMAL_OTST_MASK;
|
|
/* Look up current limit based on THERMAL_OTST status */
|
|
if (otst_status)
|
|
*thermal_current_lim =
|
|
led->pdata->thermal_derate_current[otst_status >> 1];
|
|
|
|
/* Restore THERMAL_THRESHx registers to original values */
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_THERMAL_THRSH1(led->base),
|
|
FLASH_LED_THERMAL_THRSH_MASK,
|
|
thermal_thrsh1);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_THERMAL_THRSH2(led->base),
|
|
FLASH_LED_THERMAL_THRSH_MASK,
|
|
thermal_thrsh2);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_THERMAL_THRSH3(led->base),
|
|
FLASH_LED_THERMAL_THRSH_MASK,
|
|
thermal_thrsh3);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_led_get_max_avail_current(struct qpnp_flash_led *led,
|
|
int *max_avail_current)
|
|
{
|
|
int thermal_current_lim = 0, rc;
|
|
|
|
led->trigger_lmh = false;
|
|
|
|
if (led->pmic_type == PMI632)
|
|
rc = qpnp_flash_led_calc_bharger_max_current(led,
|
|
max_avail_current);
|
|
else
|
|
rc = qpnp_flash_led_calc_max_current(led, max_avail_current);
|
|
|
|
if (rc < 0) {
|
|
pr_err("Couldn't calculate max_avail_current, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
if (led->pdata->thermal_derate_en) {
|
|
rc = qpnp_flash_led_calc_thermal_current_lim(led,
|
|
&thermal_current_lim);
|
|
if (rc < 0) {
|
|
pr_err("Couldn't calculate thermal_current_lim, rc=%d\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
if (thermal_current_lim)
|
|
*max_avail_current = min(*max_avail_current,
|
|
thermal_current_lim);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void qpnp_flash_led_aggregate_max_current(struct flash_node_data *fnode)
|
|
{
|
|
struct qpnp_flash_led *led = dev_get_drvdata(&fnode->pdev->dev);
|
|
|
|
if (fnode->current_ma)
|
|
led->total_current_ma += fnode->current_ma
|
|
- fnode->prev_current_ma;
|
|
else
|
|
led->total_current_ma -= fnode->prev_current_ma;
|
|
|
|
fnode->prev_current_ma = fnode->current_ma;
|
|
}
|
|
|
|
static void qpnp_flash_led_node_set(struct flash_node_data *fnode, int value)
|
|
{
|
|
int i = 0;
|
|
int prgm_current_ma = value;
|
|
int min_ma = fnode->ires_ua / 1000;
|
|
struct qpnp_flash_led *led = dev_get_drvdata(&fnode->pdev->dev);
|
|
|
|
if (value <= 0)
|
|
prgm_current_ma = 0;
|
|
else if (value < min_ma)
|
|
prgm_current_ma = min_ma;
|
|
|
|
fnode->ires_idx = fnode->default_ires_idx;
|
|
fnode->ires_ua = fnode->default_ires_ua;
|
|
|
|
prgm_current_ma = min(prgm_current_ma, fnode->max_current);
|
|
if (prgm_current_ma > max_ires_curr_ma_table[fnode->ires_idx]) {
|
|
/* find the matching ires */
|
|
for (i = MAX_IRES_LEVELS - 1; i >= 0; i--) {
|
|
if (prgm_current_ma <= max_ires_curr_ma_table[i]) {
|
|
fnode->ires_idx = i;
|
|
fnode->ires_ua = FLASH_LED_IRES_MIN_UA +
|
|
(FLASH_LED_IRES_BASE - fnode->ires_idx) *
|
|
FLASH_LED_IRES_DIVISOR;
|
|
break;
|
|
}
|
|
}
|
|
} else if (prgm_current_ma <= 20 &&
|
|
(led->wa_flags & PM6150L_IRES_WA)) {
|
|
fnode->ires_idx = FLASH_LED_IRES_BASE;
|
|
fnode->ires_ua = FLASH_LED_IRES_MIN_UA;
|
|
}
|
|
|
|
fnode->current_ma = prgm_current_ma;
|
|
fnode->cdev.brightness = prgm_current_ma;
|
|
fnode->current_reg_val = get_current_reg_code(prgm_current_ma,
|
|
fnode->ires_ua);
|
|
if (prgm_current_ma)
|
|
fnode->led_on = true;
|
|
|
|
if (led->pmic_type != PMI632 &&
|
|
led->pdata->chgr_mitigation_sel == FLASH_SW_CHARGER_MITIGATION) {
|
|
qpnp_flash_led_aggregate_max_current(fnode);
|
|
led->trigger_chgr = false;
|
|
if (led->total_current_ma >= 1000)
|
|
led->trigger_chgr = true;
|
|
}
|
|
}
|
|
|
|
static int qpnp_flash_led_switch_disable(struct flash_switch_data *snode)
|
|
{
|
|
struct qpnp_flash_led *led = dev_get_drvdata(&snode->pdev->dev);
|
|
int i, rc, addr_offset;
|
|
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_EN_LED_CTRL(led->base),
|
|
snode->led_mask, FLASH_LED_DISABLE);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
if (led->trigger_lmh) {
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_MITIGATION_SW(led->base),
|
|
FLASH_LED_LMH_MITIGATION_EN_MASK,
|
|
FLASH_LED_LMH_MITIGATION_DISABLE);
|
|
if (rc < 0) {
|
|
pr_err("disable lmh mitigation failed, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
if (led->pdata->chgr_mitigation_sel && !led->trigger_chgr) {
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_MITIGATION_SW(led->base),
|
|
FLASH_LED_CHGR_MITIGATION_EN_MASK,
|
|
FLASH_LED_CHGR_MITIGATION_DISABLE);
|
|
if (rc < 0) {
|
|
pr_err("disable chgr mitigation failed, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
led->enable--;
|
|
if (led->enable == 0) {
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_MOD_CTRL(led->base),
|
|
FLASH_LED_MOD_CTRL_MASK, FLASH_LED_DISABLE);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
|
|
for (i = 0; i < led->num_fnodes; i++) {
|
|
if (!led->fnode[i].led_on ||
|
|
!(snode->led_mask & BIT(led->fnode[i].id)))
|
|
continue;
|
|
|
|
addr_offset = led->fnode[i].id;
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_TGR_CURRENT(led->base + addr_offset),
|
|
FLASH_LED_CURRENT_MASK, 0);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_write(led,
|
|
FLASH_LED_REG_SAFETY_TMR(led->base + addr_offset),
|
|
FLASH_LED_SAFETY_TMR_DISABLED);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
led->fnode[i].led_on = false;
|
|
|
|
if (led->fnode[i].strobe_sel == HW_STROBE) {
|
|
rc = qpnp_flash_led_hw_strobe_enable(&led->fnode[i],
|
|
led->pdata->hw_strobe_option, false);
|
|
if (rc < 0) {
|
|
pr_err("Unable to disable hw strobe, rc=%d\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (snode->led_en_pinctrl) {
|
|
pr_debug("Selecting suspend state for %s\n", snode->cdev.name);
|
|
rc = pinctrl_select_state(snode->led_en_pinctrl,
|
|
snode->gpio_state_suspend);
|
|
if (rc < 0) {
|
|
pr_err("failed to select pinctrl suspend state rc=%d\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
snode->enabled = false;
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_led_symmetry_config(struct flash_switch_data *snode)
|
|
{
|
|
struct qpnp_flash_led *led = dev_get_drvdata(&snode->pdev->dev);
|
|
int i, total_curr_ma = 0, num_leds = 0, prgm_current_ma;
|
|
enum flash_led_type type = FLASH_LED_TYPE_UNKNOWN;
|
|
|
|
for (i = 0; i < led->num_fnodes; i++) {
|
|
if (snode->led_mask & BIT(led->fnode[i].id)) {
|
|
if (led->fnode[i].type == FLASH_LED_TYPE_FLASH &&
|
|
led->fnode[i].led_on)
|
|
type = FLASH_LED_TYPE_FLASH;
|
|
|
|
if (led->fnode[i].type == FLASH_LED_TYPE_TORCH &&
|
|
led->fnode[i].led_on)
|
|
type = FLASH_LED_TYPE_TORCH;
|
|
}
|
|
}
|
|
|
|
if (type == FLASH_LED_TYPE_UNKNOWN) {
|
|
pr_err("Incorrect type possibly because of no active LEDs\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < led->num_fnodes; i++) {
|
|
if ((snode->led_mask & BIT(led->fnode[i].id)) &&
|
|
(led->fnode[i].type == type)) {
|
|
total_curr_ma += led->fnode[i].current_ma;
|
|
num_leds++;
|
|
}
|
|
}
|
|
|
|
if (num_leds > 0 && total_curr_ma > 0) {
|
|
prgm_current_ma = total_curr_ma / num_leds;
|
|
} else {
|
|
pr_err("Incorrect configuration, num_leds: %d total_curr_ma: %d\n",
|
|
num_leds, total_curr_ma);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (prgm_current_ma == 0) {
|
|
pr_warn("prgm_curr_ma cannot be 0\n");
|
|
return 0;
|
|
}
|
|
|
|
pr_debug("num_leds: %d total: %d prgm_curr_ma: %d\n", num_leds,
|
|
total_curr_ma, prgm_current_ma);
|
|
|
|
for (i = 0; i < led->num_fnodes; i++) {
|
|
if (snode->led_mask & BIT(led->fnode[i].id) &&
|
|
led->fnode[i].current_ma != prgm_current_ma &&
|
|
led->fnode[i].type == type) {
|
|
qpnp_flash_led_node_set(&led->fnode[i],
|
|
prgm_current_ma);
|
|
pr_debug("%s LED %d current: %d code: %d ires_ua: %d\n",
|
|
(type == FLASH_LED_TYPE_FLASH) ?
|
|
"flash" : "torch",
|
|
led->fnode[i].id, prgm_current_ma,
|
|
led->fnode[i].current_reg_val,
|
|
led->fnode[i].ires_ua);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_led_module_enable(struct flash_switch_data *snode)
|
|
{
|
|
struct qpnp_flash_led *led = dev_get_drvdata(&snode->pdev->dev);
|
|
int rc = 0;
|
|
|
|
if (led->enable == 0) {
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_MOD_CTRL(led->base),
|
|
FLASH_LED_MOD_CTRL_MASK, FLASH_LED_MOD_ENABLE);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
led->enable++;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int qpnp_flash_led_switch_set(struct flash_switch_data *snode, bool on)
|
|
{
|
|
struct qpnp_flash_led *led = dev_get_drvdata(&snode->pdev->dev);
|
|
int rc, i, addr_offset;
|
|
u8 val, mask;
|
|
|
|
if (snode->enabled == on) {
|
|
pr_debug("Switch node is already %s!\n",
|
|
on ? "enabled" : "disabled");
|
|
return 0;
|
|
}
|
|
|
|
if (!on) {
|
|
rc = qpnp_flash_led_switch_disable(snode);
|
|
return rc;
|
|
}
|
|
|
|
/* Iterate over all active leds for this switch node */
|
|
if (snode->symmetry_en) {
|
|
rc = qpnp_flash_led_symmetry_config(snode);
|
|
if (rc < 0) {
|
|
pr_err("Failed to configure current symmetrically, rc=%d\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
val = 0;
|
|
for (i = 0; i < led->num_fnodes; i++)
|
|
if (led->fnode[i].led_on &&
|
|
snode->led_mask & BIT(led->fnode[i].id))
|
|
val |= led->fnode[i].ires_idx << (led->fnode[i].id * 2);
|
|
|
|
rc = qpnp_flash_led_masked_write(led, FLASH_LED_REG_IRES(led->base),
|
|
FLASH_LED_CURRENT_MASK, val);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
val = 0;
|
|
for (i = 0; i < led->num_fnodes; i++) {
|
|
if (!led->fnode[i].led_on ||
|
|
!(snode->led_mask & BIT(led->fnode[i].id)))
|
|
continue;
|
|
|
|
addr_offset = led->fnode[i].id;
|
|
if (led->fnode[i].strobe_sel == SW_STROBE)
|
|
mask = FLASH_LED_HW_SW_STROBE_SEL_BIT;
|
|
else
|
|
mask = FLASH_HW_STROBE_MASK;
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_STROBE_CTRL(led->base + addr_offset),
|
|
mask, led->fnode[i].strobe_ctrl);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_TGR_CURRENT(led->base + addr_offset),
|
|
FLASH_LED_CURRENT_MASK, led->fnode[i].current_reg_val);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_write(led,
|
|
FLASH_LED_REG_SAFETY_TMR(led->base + addr_offset),
|
|
led->fnode[i].duration);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
val |= FLASH_LED_ENABLE << led->fnode[i].id;
|
|
|
|
if (led->fnode[i].strobe_sel == HW_STROBE) {
|
|
rc = qpnp_flash_led_hw_strobe_enable(&led->fnode[i],
|
|
led->pdata->hw_strobe_option, true);
|
|
if (rc < 0) {
|
|
pr_err("Unable to enable hw strobe rc=%d\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (snode->led_en_pinctrl) {
|
|
pr_debug("Selecting active state for %s\n", snode->cdev.name);
|
|
rc = pinctrl_select_state(snode->led_en_pinctrl,
|
|
snode->gpio_state_active);
|
|
if (rc < 0) {
|
|
pr_err("failed to select pinctrl active state rc=%d\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
rc = qpnp_flash_led_module_enable(snode);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
if (led->trigger_lmh) {
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_MITIGATION_SW(led->base),
|
|
FLASH_LED_LMH_MITIGATION_EN_MASK,
|
|
FLASH_LED_LMH_MITIGATION_ENABLE);
|
|
if (rc < 0) {
|
|
pr_err("trigger lmh mitigation failed, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
/* Wait for LMH mitigation to take effect */
|
|
udelay(500);
|
|
}
|
|
|
|
if (led->pdata->chgr_mitigation_sel && led->trigger_chgr) {
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_REG_MITIGATION_SW(led->base),
|
|
FLASH_LED_CHGR_MITIGATION_EN_MASK,
|
|
FLASH_LED_CHGR_MITIGATION_ENABLE);
|
|
if (rc < 0) {
|
|
pr_err("trigger chgr mitigation failed, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
rc = qpnp_flash_led_masked_write(led,
|
|
FLASH_LED_EN_LED_CTRL(led->base),
|
|
snode->led_mask, val);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
snode->enabled = true;
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_led_regulator_control(struct led_classdev *led_cdev,
|
|
int options, int *max_current)
|
|
{
|
|
int rc, val;
|
|
struct flash_switch_data *snode;
|
|
struct qpnp_flash_led *led;
|
|
|
|
snode = container_of(led_cdev, struct flash_switch_data, cdev);
|
|
led = dev_get_drvdata(&snode->pdev->dev);
|
|
|
|
if (led->pmic_type == PMI632) {
|
|
rc = is_usb_psy_available(led);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
|
|
if (!(options & FLASH_LED_PREPARE_OPTIONS_MASK)) {
|
|
pr_err("Invalid options %d\n", options);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (options & ENABLE_REGULATOR) {
|
|
if (led->pmic_type == PMI632) {
|
|
val = 1;
|
|
rc = qpnp_flash_iio_setprop(led, F_ACTIVE, val);
|
|
if (rc < 0) {
|
|
pr_err("Failed to set FLASH_ACTIVE on charger rc=%d\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
pr_debug("FLASH_ACTIVE = 1\n");
|
|
} else {
|
|
rc = qpnp_flash_led_regulator_enable(led, snode, true);
|
|
if (rc < 0) {
|
|
pr_err("enable regulator failed, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (options & DISABLE_REGULATOR) {
|
|
if (led->pmic_type == PMI632) {
|
|
val = 0;
|
|
rc = qpnp_flash_iio_setprop(led, F_ACTIVE, val);
|
|
if (rc < 0) {
|
|
pr_err("Failed to set FLASH_ACTIVE on charger rc=%d\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
pr_debug("FLASH_ACTIVE = 0\n");
|
|
} else {
|
|
rc = qpnp_flash_led_regulator_enable(led, snode, false);
|
|
if (rc < 0) {
|
|
pr_err("disable regulator failed, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (options & QUERY_MAX_AVAIL_CURRENT) {
|
|
rc = qpnp_flash_led_get_max_avail_current(led, max_current);
|
|
if (rc < 0) {
|
|
pr_err("query max current failed, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct led_classdev *trigger_to_lcdev(struct led_trigger *trig)
|
|
{
|
|
struct led_classdev *led_cdev;
|
|
|
|
read_lock(&trig->leddev_list_lock);
|
|
list_for_each_entry(led_cdev, &trig->led_cdevs, trig_list) {
|
|
if (!strcmp(led_cdev->default_trigger, trig->name)) {
|
|
read_unlock(&trig->leddev_list_lock);
|
|
return led_cdev;
|
|
}
|
|
}
|
|
|
|
read_unlock(&trig->leddev_list_lock);
|
|
return NULL;
|
|
}
|
|
|
|
int qpnp_flash_led_prepare(struct led_trigger *trig, int options,
|
|
int *max_current)
|
|
{
|
|
struct led_classdev *led_cdev;
|
|
int rc;
|
|
|
|
if (!trig) {
|
|
pr_err("Invalid led_trigger provided\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
led_cdev = trigger_to_lcdev(trig);
|
|
if (!led_cdev) {
|
|
pr_err("Invalid led_cdev in trigger %s\n", trig->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rc = qpnp_flash_led_regulator_control(led_cdev, options, max_current);
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(qpnp_flash_led_prepare);
|
|
|
|
static void qpnp_flash_led_brightness_set(struct led_classdev *led_cdev,
|
|
enum led_brightness value)
|
|
{
|
|
struct flash_node_data *fnode = NULL;
|
|
struct flash_switch_data *snode = NULL;
|
|
struct qpnp_flash_led *led = NULL;
|
|
int rc;
|
|
|
|
/*
|
|
* strncmp() must be used here since a prefix comparison is required
|
|
* in order to support names like led:switch_0 and led:flash_1.
|
|
*/
|
|
if (!strncmp(led_cdev->name, "led:switch", strlen("led:switch"))) {
|
|
snode = container_of(led_cdev, struct flash_switch_data, cdev);
|
|
led = dev_get_drvdata(&snode->pdev->dev);
|
|
} else if (!strncmp(led_cdev->name, "led:flash", strlen("led:flash")) ||
|
|
!strncmp(led_cdev->name, "led:torch",
|
|
strlen("led:torch"))) {
|
|
fnode = container_of(led_cdev, struct flash_node_data, cdev);
|
|
led = dev_get_drvdata(&fnode->pdev->dev);
|
|
}
|
|
|
|
if (!led) {
|
|
pr_err("Failed to get flash driver data\n");
|
|
return;
|
|
}
|
|
|
|
spin_lock(&led->lock);
|
|
if (snode) {
|
|
rc = qpnp_flash_led_switch_set(snode, value > 0);
|
|
if (rc < 0)
|
|
pr_err("Failed to set flash LED switch rc=%d\n", rc);
|
|
} else if (fnode) {
|
|
qpnp_flash_led_node_set(fnode, value);
|
|
}
|
|
|
|
spin_unlock(&led->lock);
|
|
}
|
|
|
|
static ssize_t qpnp_flash_led_prepare_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int rc, options, max_current;
|
|
u32 val;
|
|
struct led_classdev *led_cdev = dev_get_drvdata(dev);
|
|
|
|
rc = kstrtouint(buf, 0, &val);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
if (val != 0 && val != 1)
|
|
return count;
|
|
|
|
options = val ? ENABLE_REGULATOR : DISABLE_REGULATOR;
|
|
|
|
rc = qpnp_flash_led_regulator_control(led_cdev, options, &max_current);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
return count;
|
|
}
|
|
|
|
/* sysfs show function for flash_max_current */
|
|
static ssize_t qpnp_flash_led_max_current_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
int rc, max_current = 0;
|
|
struct flash_switch_data *snode;
|
|
struct qpnp_flash_led *led;
|
|
struct led_classdev *led_cdev = dev_get_drvdata(dev);
|
|
|
|
snode = container_of(led_cdev, struct flash_switch_data, cdev);
|
|
led = dev_get_drvdata(&snode->pdev->dev);
|
|
|
|
rc = qpnp_flash_led_get_max_avail_current(led, &max_current);
|
|
if (rc < 0)
|
|
pr_err("query max current failed, rc=%d\n", rc);
|
|
|
|
return snprintf(buf, PAGE_SIZE, "%d\n", max_current);
|
|
}
|
|
|
|
/* sysfs attributes exported by flash_led */
|
|
static struct device_attribute qpnp_flash_led_attrs[] = {
|
|
__ATTR(max_current, 0664, qpnp_flash_led_max_current_show, NULL),
|
|
__ATTR(enable, 0664, NULL, qpnp_flash_led_prepare_store),
|
|
};
|
|
|
|
/* irq handler */
|
|
static irqreturn_t qpnp_flash_led_irq_handler(int irq, void *_led)
|
|
{
|
|
struct qpnp_flash_led *led = _led;
|
|
enum flash_led_irq_type irq_type = INVALID_IRQ;
|
|
int rc;
|
|
u8 irq_status, led_status1, led_status2;
|
|
|
|
pr_debug("irq received, irq=%d\n", irq);
|
|
|
|
rc = qpnp_flash_led_read(led,
|
|
FLASH_LED_REG_INT_RT_STS(led->base), &irq_status);
|
|
if (rc < 0) {
|
|
pr_err("Failed to read interrupt status reg, rc=%d\n", rc);
|
|
goto exit;
|
|
}
|
|
|
|
if (irq == led->pdata->all_ramp_up_done_irq)
|
|
irq_type = ALL_RAMP_UP_DONE_IRQ;
|
|
else if (irq == led->pdata->all_ramp_down_done_irq)
|
|
irq_type = ALL_RAMP_DOWN_DONE_IRQ;
|
|
else if (irq == led->pdata->led_fault_irq)
|
|
irq_type = LED_FAULT_IRQ;
|
|
|
|
if (irq_type == ALL_RAMP_UP_DONE_IRQ)
|
|
atomic_notifier_call_chain(&irq_notifier_list,
|
|
irq_type, NULL);
|
|
|
|
if (irq_type == LED_FAULT_IRQ) {
|
|
rc = qpnp_flash_led_read(led,
|
|
FLASH_LED_REG_LED_STATUS1(led->base), &led_status1);
|
|
if (rc < 0) {
|
|
pr_err("Failed to read led_status1 reg, rc=%d\n", rc);
|
|
goto exit;
|
|
}
|
|
|
|
rc = qpnp_flash_led_read(led,
|
|
FLASH_LED_REG_LED_STATUS2(led->base), &led_status2);
|
|
if (rc < 0) {
|
|
pr_err("Failed to read led_status2 reg, rc=%d\n", rc);
|
|
goto exit;
|
|
}
|
|
|
|
if (led_status1)
|
|
pr_emerg("led short/open fault detected! led_status1=%x\n",
|
|
led_status1);
|
|
|
|
if (led_status2 & FLASH_LED_VPH_DROOP_FAULT_MASK)
|
|
pr_emerg("led vph_droop fault detected!\n");
|
|
}
|
|
|
|
pr_debug("irq handled, irq_type=%x, irq_status=%x\n", irq_type,
|
|
irq_status);
|
|
|
|
exit:
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
int qpnp_flash_led_register_irq_notifier(struct notifier_block *nb)
|
|
{
|
|
return atomic_notifier_chain_register(&irq_notifier_list, nb);
|
|
}
|
|
|
|
int qpnp_flash_led_unregister_irq_notifier(struct notifier_block *nb)
|
|
{
|
|
return atomic_notifier_chain_unregister(&irq_notifier_list, nb);
|
|
}
|
|
|
|
static inline u8 get_safety_timer_code(u32 duration_ms)
|
|
{
|
|
if (!duration_ms)
|
|
return 0;
|
|
|
|
return (duration_ms / 10) - 1;
|
|
}
|
|
|
|
static inline u8 get_vph_droop_thresh_code(u32 val_mv)
|
|
{
|
|
if (!val_mv)
|
|
return 0;
|
|
|
|
return (val_mv / 100) - 25;
|
|
}
|
|
|
|
static int qpnp_flash_led_parse_hw_strobe_dt(struct flash_node_data *fnode)
|
|
{
|
|
struct device_node *node = fnode->cdev.dev->of_node;
|
|
|
|
if (of_find_property(node, "qcom,hw-strobe-gpio", NULL)) {
|
|
fnode->hw_strobe_gpio = of_get_named_gpio(node,
|
|
"qcom,hw-strobe-gpio", 0);
|
|
if (fnode->hw_strobe_gpio < 0) {
|
|
pr_err("Invalid gpio specified\n");
|
|
return fnode->hw_strobe_gpio;
|
|
}
|
|
|
|
gpio_direction_output(fnode->hw_strobe_gpio, 0);
|
|
} else if (fnode->strobe_pinctrl) {
|
|
fnode->hw_strobe_gpio = -1;
|
|
fnode->hw_strobe_state_active =
|
|
pinctrl_lookup_state(fnode->strobe_pinctrl,
|
|
"strobe_enable");
|
|
if (IS_ERR_OR_NULL(fnode->hw_strobe_state_active)) {
|
|
pr_err("No active pin for hardware strobe, rc=%ld\n",
|
|
PTR_ERR(fnode->hw_strobe_state_active));
|
|
fnode->hw_strobe_state_active = NULL;
|
|
}
|
|
|
|
fnode->hw_strobe_state_suspend =
|
|
pinctrl_lookup_state(fnode->strobe_pinctrl,
|
|
"strobe_disable");
|
|
if (IS_ERR_OR_NULL(fnode->hw_strobe_state_suspend)) {
|
|
pr_err("No suspend pin for hardware strobe, rc=%ld\n",
|
|
PTR_ERR(fnode->hw_strobe_state_suspend));
|
|
fnode->hw_strobe_state_suspend = NULL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_led_parse_strobe_sel_dt(struct qpnp_flash_led *led,
|
|
struct flash_node_data *fnode,
|
|
struct device_node *node)
|
|
{
|
|
int rc;
|
|
u32 val;
|
|
u8 hw_strobe = 0, edge_trigger = 0, active_high = 0;
|
|
|
|
fnode->strobe_sel = SW_STROBE;
|
|
rc = of_property_read_u32(node, "qcom,strobe-sel", &val);
|
|
if (rc < 0) {
|
|
if (rc != -EINVAL) {
|
|
pr_err("Unable to read qcom,strobe-sel property\n");
|
|
return rc;
|
|
}
|
|
} else {
|
|
if (val < SW_STROBE || val > LPG_STROBE) {
|
|
pr_err("Incorrect strobe selection specified %d\n",
|
|
val);
|
|
return -EINVAL;
|
|
}
|
|
fnode->strobe_sel = (u8)val;
|
|
}
|
|
|
|
/*
|
|
* LPG strobe is allowed only for LED3 and HW strobe option should be
|
|
* option 2 or 3.
|
|
*/
|
|
if (fnode->strobe_sel == LPG_STROBE) {
|
|
if (led->pdata->hw_strobe_option ==
|
|
FLASH_LED_HW_STROBE_OPTION_1) {
|
|
pr_err("Incorrect strobe option for LPG strobe\n");
|
|
return -EINVAL;
|
|
}
|
|
if (fnode->id != LED3) {
|
|
pr_err("Incorrect LED chosen for LPG strobe\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (fnode->strobe_sel == HW_STROBE) {
|
|
edge_trigger = of_property_read_bool(node,
|
|
"qcom,hw-strobe-edge-trigger");
|
|
active_high = !of_property_read_bool(node,
|
|
"qcom,hw-strobe-active-low");
|
|
hw_strobe = 1;
|
|
} else if (fnode->strobe_sel == LPG_STROBE) {
|
|
/* LPG strobe requires level trigger and active high */
|
|
edge_trigger = 0;
|
|
active_high = 1;
|
|
hw_strobe = 1;
|
|
}
|
|
|
|
fnode->strobe_ctrl = (hw_strobe << 2) | (edge_trigger << 1) |
|
|
active_high;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_led_parse_label_dt(struct flash_node_data *fnode,
|
|
struct device_node *node)
|
|
{
|
|
const char *temp_string;
|
|
int rc;
|
|
|
|
rc = of_property_read_string(node, "label", &temp_string);
|
|
if (!rc) {
|
|
if (!strcmp(temp_string, "flash")) {
|
|
fnode->type = FLASH_LED_TYPE_FLASH;
|
|
} else if (!strcmp(temp_string, "torch")) {
|
|
fnode->type = FLASH_LED_TYPE_TORCH;
|
|
} else {
|
|
pr_err("Wrong flash LED type\n");
|
|
return rc;
|
|
}
|
|
} else {
|
|
pr_err("Unable to read flash LED label\n");
|
|
return rc;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int qpnp_flash_led_parse_each_led_dt(struct qpnp_flash_led *led,
|
|
struct flash_node_data *fnode, struct device_node *node)
|
|
{
|
|
int rc, min_ma;
|
|
u32 val;
|
|
|
|
fnode->pdev = led->pdev;
|
|
fnode->cdev.brightness_set = qpnp_flash_led_brightness_set;
|
|
fnode->cdev.brightness_get = qpnp_flash_led_brightness_get;
|
|
|
|
rc = of_property_read_string(node, "qcom,led-name", &fnode->cdev.name);
|
|
if (rc < 0) {
|
|
pr_err("Unable to read flash LED names\n");
|
|
return rc;
|
|
}
|
|
|
|
rc = qpnp_flash_led_parse_label_dt(fnode, node);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = of_property_read_u32(node, "qcom,id", &val);
|
|
if (!rc) {
|
|
fnode->id = (u8)val;
|
|
|
|
if (led->pmic_type == PMI632 && fnode->id > LED2) {
|
|
pr_err("Flash node id = %d not supported\n", fnode->id);
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
pr_err("Unable to read flash LED ID\n");
|
|
return rc;
|
|
}
|
|
|
|
rc = of_property_read_string(node, "qcom,default-led-trigger",
|
|
&fnode->cdev.default_trigger);
|
|
if (rc < 0) {
|
|
pr_err("Unable to read trigger name\n");
|
|
return rc;
|
|
}
|
|
|
|
fnode->default_ires_ua = fnode->ires_ua = FLASH_LED_IRES_DEFAULT_UA;
|
|
fnode->default_ires_idx = fnode->ires_idx = FLASH_LED_IRES_DEFAULT_VAL;
|
|
rc = of_property_read_u32(node, "qcom,ires-ua", &val);
|
|
if (!rc) {
|
|
fnode->default_ires_ua = fnode->ires_ua = val;
|
|
fnode->default_ires_idx = fnode->ires_idx =
|
|
FLASH_LED_IRES_BASE - (val - FLASH_LED_IRES_MIN_UA) /
|
|
FLASH_LED_IRES_DIVISOR;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read current resolution rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
min_ma = fnode->ires_ua / 1000;
|
|
rc = of_property_read_u32(node, "qcom,max-current", &val);
|
|
if (!rc) {
|
|
if (val < min_ma)
|
|
val = min_ma;
|
|
fnode->max_current = val;
|
|
fnode->cdev.max_brightness = val;
|
|
} else {
|
|
pr_err("Unable to read max current, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = of_property_read_u32(node, "qcom,current-ma", &val);
|
|
if (!rc) {
|
|
if (val < min_ma || val > fnode->max_current)
|
|
pr_warn("Invalid operational current specified, capping it\n");
|
|
if (val < min_ma)
|
|
val = min_ma;
|
|
if (val > fnode->max_current)
|
|
val = fnode->max_current;
|
|
fnode->current_ma = val;
|
|
fnode->cdev.brightness = val;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read operational current, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
fnode->duration = FLASH_LED_SAFETY_TMR_DISABLED;
|
|
rc = of_property_read_u32(node, "qcom,duration-ms", &val);
|
|
if (!rc) {
|
|
fnode->duration = get_safety_timer_code(val);
|
|
if (fnode->duration)
|
|
fnode->duration |= FLASH_LED_SAFETY_TMR_ENABLE;
|
|
} else if (rc == -EINVAL) {
|
|
if (fnode->type == FLASH_LED_TYPE_FLASH) {
|
|
pr_err("Timer duration is required for flash LED\n");
|
|
return rc;
|
|
}
|
|
} else {
|
|
pr_err("Unable to read timer duration\n");
|
|
return rc;
|
|
}
|
|
|
|
fnode->hdrm_val = FLASH_LED_HDRM_VOL_DEFAULT_MV;
|
|
rc = of_property_read_u32(node, "qcom,hdrm-voltage-mv", &val);
|
|
if (!rc) {
|
|
val = (val - FLASH_LED_HDRM_VOL_BASE_MV) /
|
|
FLASH_LED_HDRM_VOL_STEP_MV;
|
|
fnode->hdrm_val = (val << FLASH_LED_HDRM_VOL_SHIFT) &
|
|
FLASH_LED_HDRM_VOL_MASK;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read headroom voltage\n");
|
|
return rc;
|
|
}
|
|
|
|
rc = of_property_read_u32(node, "qcom,hdrm-vol-hi-lo-win-mv", &val);
|
|
if (!rc) {
|
|
fnode->hdrm_val |= (val / FLASH_LED_HDRM_VOL_STEP_MV) &
|
|
~FLASH_LED_HDRM_VOL_MASK;
|
|
} else if (rc == -EINVAL) {
|
|
fnode->hdrm_val |= FLASH_LED_HDRM_VOL_HI_LO_WIN_DEFAULT_MV;
|
|
} else {
|
|
pr_err("Unable to read hdrm hi-lo window voltage\n");
|
|
return rc;
|
|
}
|
|
|
|
rc = qpnp_flash_led_parse_strobe_sel_dt(led, fnode, node);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = led_classdev_register(&led->pdev->dev, &fnode->cdev);
|
|
if (rc < 0) {
|
|
pr_err("Unable to register led node %d\n", fnode->id);
|
|
return rc;
|
|
}
|
|
|
|
fnode->cdev.dev->of_node = node;
|
|
fnode->strobe_pinctrl = devm_pinctrl_get(fnode->cdev.dev);
|
|
if (IS_ERR_OR_NULL(fnode->strobe_pinctrl)) {
|
|
pr_debug("No pinctrl defined for %s, err=%ld\n",
|
|
fnode->cdev.name, PTR_ERR(fnode->strobe_pinctrl));
|
|
fnode->strobe_pinctrl = NULL;
|
|
}
|
|
|
|
if (fnode->strobe_sel == HW_STROBE)
|
|
return qpnp_flash_led_parse_hw_strobe_dt(fnode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_led_parse_and_register_switch(struct qpnp_flash_led *led,
|
|
struct flash_switch_data *snode,
|
|
struct device_node *node)
|
|
{
|
|
int rc = 0, num;
|
|
char reg_name[16], reg_sup_name[16];
|
|
|
|
rc = of_property_read_string(node, "qcom,led-name", &snode->cdev.name);
|
|
if (rc < 0) {
|
|
pr_err("Failed to read switch node name, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = sscanf(snode->cdev.name, "led:switch_%d", &num);
|
|
if (!rc) {
|
|
pr_err("No number for switch device?\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
rc = of_property_read_string(node, "qcom,default-led-trigger",
|
|
&snode->cdev.default_trigger);
|
|
if (rc < 0) {
|
|
pr_err("Unable to read trigger name, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = of_property_read_u32(node, "qcom,led-mask", &snode->led_mask);
|
|
if (rc < 0) {
|
|
pr_err("Unable to read led mask rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
snode->symmetry_en = of_property_read_bool(node, "qcom,symmetry-en");
|
|
|
|
if (snode->led_mask < 1 || snode->led_mask > 7) {
|
|
pr_err("Invalid value for led-mask\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
scnprintf(reg_name, sizeof(reg_name), "switch%d-supply", num);
|
|
if (of_find_property(led->pdev->dev.of_node, reg_name, NULL)) {
|
|
scnprintf(reg_sup_name, sizeof(reg_sup_name), "switch%d", num);
|
|
snode->vreg = devm_regulator_get(&led->pdev->dev, reg_sup_name);
|
|
if (IS_ERR_OR_NULL(snode->vreg)) {
|
|
rc = PTR_ERR(snode->vreg);
|
|
if (rc != -EPROBE_DEFER)
|
|
pr_err("Failed to get regulator, rc=%d\n", rc);
|
|
snode->vreg = NULL;
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
snode->pdev = led->pdev;
|
|
snode->cdev.brightness_set = qpnp_flash_led_brightness_set;
|
|
snode->cdev.brightness_get = qpnp_flash_led_brightness_get;
|
|
rc = led_classdev_register(&led->pdev->dev, &snode->cdev);
|
|
if (rc < 0) {
|
|
pr_err("Unable to register led switch node\n");
|
|
return rc;
|
|
}
|
|
|
|
snode->cdev.dev->of_node = node;
|
|
|
|
snode->led_en_pinctrl = devm_pinctrl_get(snode->cdev.dev);
|
|
if (IS_ERR_OR_NULL(snode->led_en_pinctrl)) {
|
|
pr_debug("No pinctrl defined for %s, err=%ld\n",
|
|
snode->cdev.name, PTR_ERR(snode->led_en_pinctrl));
|
|
snode->led_en_pinctrl = NULL;
|
|
}
|
|
|
|
if (snode->led_en_pinctrl) {
|
|
snode->gpio_state_active =
|
|
pinctrl_lookup_state(snode->led_en_pinctrl,
|
|
"led_enable");
|
|
if (IS_ERR_OR_NULL(snode->gpio_state_active)) {
|
|
pr_err("Cannot lookup LED active state\n");
|
|
devm_pinctrl_put(snode->led_en_pinctrl);
|
|
snode->led_en_pinctrl = NULL;
|
|
return PTR_ERR(snode->gpio_state_active);
|
|
}
|
|
|
|
snode->gpio_state_suspend =
|
|
pinctrl_lookup_state(snode->led_en_pinctrl,
|
|
"led_disable");
|
|
if (IS_ERR_OR_NULL(snode->gpio_state_suspend)) {
|
|
pr_err("Cannot lookup LED disable state\n");
|
|
devm_pinctrl_put(snode->led_en_pinctrl);
|
|
snode->led_en_pinctrl = NULL;
|
|
return PTR_ERR(snode->gpio_state_suspend);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_code_from_table(int *table, int len, int value)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
if (value == table[i])
|
|
break;
|
|
}
|
|
|
|
if (i == len) {
|
|
pr_err("Couldn't find %d from table\n", value);
|
|
return -ENODATA;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
static int qpnp_flash_led_parse_thermal_config_dt(struct qpnp_flash_led *led,
|
|
struct device_node *node)
|
|
{
|
|
int rc;
|
|
u32 val;
|
|
|
|
led->pdata->thermal_derate_en =
|
|
of_property_read_bool(node, "qcom,thermal-derate-en");
|
|
|
|
if (led->pdata->thermal_derate_en) {
|
|
led->pdata->thermal_derate_current =
|
|
devm_kcalloc(&led->pdev->dev,
|
|
FLASH_LED_THERMAL_OTST_LEVELS,
|
|
sizeof(int), GFP_KERNEL);
|
|
if (!led->pdata->thermal_derate_current)
|
|
return -ENOMEM;
|
|
|
|
rc = of_property_read_u32_array(node,
|
|
"qcom,thermal-derate-current",
|
|
led->pdata->thermal_derate_current,
|
|
FLASH_LED_THERMAL_OTST_LEVELS);
|
|
if (rc < 0) {
|
|
pr_err("Unable to read thermal current limits, rc=%d\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
led->pdata->otst_ramp_bkup_en =
|
|
!of_property_read_bool(node, "qcom,otst-ramp-back-up-dis");
|
|
|
|
led->pdata->thermal_derate_slow = -EINVAL;
|
|
rc = of_property_read_u32(node, "qcom,thermal-derate-slow", &val);
|
|
if (!rc) {
|
|
if (val < 0 || val > THERMAL_DERATE_SLOW_MAX) {
|
|
pr_err("Invalid thermal_derate_slow %d\n", val);
|
|
return -EINVAL;
|
|
}
|
|
|
|
led->pdata->thermal_derate_slow =
|
|
get_code_from_table(thermal_derate_slow_table,
|
|
ARRAY_SIZE(thermal_derate_slow_table), val);
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read thermal derate slow, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
led->pdata->thermal_derate_fast = -EINVAL;
|
|
rc = of_property_read_u32(node, "qcom,thermal-derate-fast", &val);
|
|
if (!rc) {
|
|
if (val < 0 || val > THERMAL_DERATE_FAST_MAX) {
|
|
pr_err("Invalid thermal_derate_fast %d\n", val);
|
|
return -EINVAL;
|
|
}
|
|
|
|
led->pdata->thermal_derate_fast =
|
|
get_code_from_table(thermal_derate_fast_table,
|
|
ARRAY_SIZE(thermal_derate_fast_table), val);
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read thermal derate fast, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
led->pdata->thermal_debounce = -EINVAL;
|
|
rc = of_property_read_u32(node, "qcom,thermal-debounce", &val);
|
|
if (!rc) {
|
|
if (val < 0 || val > THERMAL_DEBOUNCE_TIME_MAX) {
|
|
pr_err("Invalid thermal_debounce %d\n", val);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (val >= 0 && val < 16)
|
|
led->pdata->thermal_debounce = 0;
|
|
else
|
|
led->pdata->thermal_debounce = ilog2(val) - 3;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read thermal debounce, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
led->pdata->thermal_hysteresis = -EINVAL;
|
|
rc = of_property_read_u32(node, "qcom,thermal-hysteresis", &val);
|
|
if (!rc) {
|
|
if (led->pmic_type == PM660L)
|
|
val = THERMAL_HYST_TEMP_TO_VAL(val, 20);
|
|
else
|
|
val = THERMAL_HYST_TEMP_TO_VAL(val, 15);
|
|
|
|
if (val < 0 || val > THERMAL_DERATE_HYSTERESIS_MAX) {
|
|
pr_err("Invalid thermal_derate_hysteresis %d\n", val);
|
|
return -EINVAL;
|
|
}
|
|
|
|
led->pdata->thermal_hysteresis = val;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read thermal hysteresis, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
led->pdata->thermal_thrsh1 = -EINVAL;
|
|
rc = of_property_read_u32(node, "qcom,thermal-thrsh1", &val);
|
|
if (!rc) {
|
|
led->pdata->thermal_thrsh1 =
|
|
get_code_from_table(otst1_threshold_table,
|
|
ARRAY_SIZE(otst1_threshold_table), val);
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read thermal thrsh1, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
led->pdata->thermal_thrsh2 = -EINVAL;
|
|
rc = of_property_read_u32(node, "qcom,thermal-thrsh2", &val);
|
|
if (!rc) {
|
|
led->pdata->thermal_thrsh2 =
|
|
get_code_from_table(otst2_threshold_table,
|
|
ARRAY_SIZE(otst2_threshold_table), val);
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read thermal thrsh2, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
led->pdata->thermal_thrsh3 = -EINVAL;
|
|
rc = of_property_read_u32(node, "qcom,thermal-thrsh3", &val);
|
|
if (!rc) {
|
|
led->pdata->thermal_thrsh3 =
|
|
get_code_from_table(otst3_threshold_table,
|
|
ARRAY_SIZE(otst3_threshold_table), val);
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read thermal thrsh3, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_led_parse_vph_droop_config_dt(struct qpnp_flash_led *led,
|
|
struct device_node *node)
|
|
{
|
|
int rc;
|
|
u32 val;
|
|
|
|
led->pdata->vph_droop_debounce = FLASH_LED_VPH_DROOP_DEBOUNCE_DEFAULT;
|
|
rc = of_property_read_u32(node, "qcom,vph-droop-debounce-us", &val);
|
|
if (!rc) {
|
|
led->pdata->vph_droop_debounce =
|
|
VPH_DROOP_DEBOUNCE_US_TO_VAL(val);
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read VPH droop debounce, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
if (led->pdata->vph_droop_debounce > FLASH_LED_DEBOUNCE_MAX) {
|
|
pr_err("Invalid VPH droop debounce specified\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (led->pmic_type == PMI632)
|
|
led->pdata->vph_droop_threshold =
|
|
BHARGER_FLASH_LED_VPH_DROOP_THRESH_DEFAULT;
|
|
else
|
|
led->pdata->vph_droop_threshold =
|
|
FLASH_LED_VPH_DROOP_THRESH_DEFAULT;
|
|
|
|
rc = of_property_read_u32(node, "qcom,vph-droop-threshold-mv", &val);
|
|
if (!rc) {
|
|
led->pdata->vph_droop_threshold =
|
|
get_vph_droop_thresh_code(val);
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read VPH droop threshold, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
if (led->pdata->vph_droop_threshold > FLASH_LED_VPH_DROOP_THRESH_MAX) {
|
|
pr_err("Invalid VPH droop threshold specified\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
led->pdata->vph_droop_hysteresis =
|
|
FLASH_LED_VPH_DROOP_HYST_DEFAULT;
|
|
rc = of_property_read_u32(node, "qcom,vph-droop-hysteresis-mv", &val);
|
|
if (!rc) {
|
|
led->pdata->vph_droop_hysteresis =
|
|
VPH_DROOP_HYST_MV_TO_VAL(val);
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read VPH droop hysteresis, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
if (led->pdata->vph_droop_hysteresis > FLASH_LED_HYSTERESIS_MAX) {
|
|
pr_err("Invalid VPH droop hysteresis specified\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
led->pdata->vph_droop_hysteresis <<= FLASH_LED_VPH_DROOP_HYST_SHIFT;
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_led_parse_iclamp_config_dt(struct qpnp_flash_led *led,
|
|
struct device_node *node)
|
|
{
|
|
int rc;
|
|
u32 val;
|
|
|
|
rc = of_property_read_u32(node, "qcom,led1n2-iclamp-low-ma", &val);
|
|
if (!rc) {
|
|
led->pdata->led1n2_iclamp_low_ma = val;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read led1n2_iclamp_low current, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = of_property_read_u32(node, "qcom,led1n2-iclamp-mid-ma", &val);
|
|
if (!rc) {
|
|
led->pdata->led1n2_iclamp_mid_ma = val;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read led1n2_iclamp_mid current, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = of_property_read_u32(node, "qcom,led3-iclamp-low-ma", &val);
|
|
if (!rc) {
|
|
led->pdata->led3_iclamp_low_ma = val;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read led3_iclamp_low current, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = of_property_read_u32(node, "qcom,led3-iclamp-mid-ma", &val);
|
|
if (!rc) {
|
|
led->pdata->led3_iclamp_mid_ma = val;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read led3_iclamp_mid current, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_led_parse_lmh_config_dt(struct qpnp_flash_led *led,
|
|
struct device_node *node)
|
|
{
|
|
int rc;
|
|
u32 val;
|
|
|
|
led->pdata->lmh_ocv_threshold_uv =
|
|
FLASH_LED_LMH_OCV_THRESH_DEFAULT_UV;
|
|
rc = of_property_read_u32(node, "qcom,lmh-ocv-threshold-uv", &val);
|
|
if (!rc) {
|
|
led->pdata->lmh_ocv_threshold_uv = val;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to parse lmh ocv threshold, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
led->pdata->lmh_rbatt_threshold_uohm =
|
|
FLASH_LED_LMH_RBATT_THRESH_DEFAULT_UOHM;
|
|
rc = of_property_read_u32(node, "qcom,lmh-rbatt-threshold-uohm", &val);
|
|
if (!rc) {
|
|
led->pdata->lmh_rbatt_threshold_uohm = val;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to parse lmh rbatt threshold, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
led->pdata->lmh_level = FLASH_LED_LMH_LEVEL_DEFAULT;
|
|
rc = of_property_read_u32(node, "qcom,lmh-level", &val);
|
|
if (!rc) {
|
|
led->pdata->lmh_level = val;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to parse lmh_level, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
led->pdata->lmh_mitigation_sel = FLASH_LED_LMH_MITIGATION_SEL_DEFAULT;
|
|
rc = of_property_read_u32(node, "qcom,lmh-mitigation-sel", &val);
|
|
if (!rc) {
|
|
led->pdata->lmh_mitigation_sel = val;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to parse lmh_mitigation_sel, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
if (led->pdata->lmh_mitigation_sel > FLASH_LED_MITIGATION_SEL_MAX) {
|
|
pr_err("Invalid lmh_mitigation_sel specified\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_led_parse_iled_threshold_dt(struct qpnp_flash_led *led,
|
|
struct device_node *node)
|
|
{
|
|
int rc;
|
|
u32 val;
|
|
|
|
led->pdata->iled_thrsh_val = FLASH_LED_CHGR_MITIGATION_THRSH_DEFAULT;
|
|
rc = of_property_read_u32(node, "qcom,iled-thrsh-ma", &val);
|
|
if (!rc) {
|
|
led->pdata->iled_thrsh_val = MITIGATION_THRSH_MA_TO_VAL(val);
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to parse iled_thrsh_val, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
if (led->pdata->iled_thrsh_val > FLASH_LED_CHGR_MITIGATION_THRSH_MAX) {
|
|
pr_err("Invalid iled_thrsh_val specified\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_led_parse_chgr_mitigation_dt(struct qpnp_flash_led *led,
|
|
struct device_node *node)
|
|
{
|
|
int rc;
|
|
u32 val;
|
|
|
|
if (led->pmic_type == PMI632)
|
|
led->pdata->chgr_mitigation_sel =
|
|
FLASH_DISABLE_CHARGER_MITIGATION;
|
|
else
|
|
led->pdata->chgr_mitigation_sel = FLASH_SW_CHARGER_MITIGATION;
|
|
|
|
rc = of_property_read_u32(node, "qcom,chgr-mitigation-sel", &val);
|
|
if (!rc) {
|
|
led->pdata->chgr_mitigation_sel = val;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to parse chgr_mitigation_sel, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
if (led->pdata->chgr_mitigation_sel > FLASH_LED_MITIGATION_SEL_MAX) {
|
|
pr_err("Invalid chgr_mitigation_sel specified\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_led_parse_battery_prop_dt(struct qpnp_flash_led *led,
|
|
struct device_node *node)
|
|
{
|
|
int rc;
|
|
u32 val;
|
|
|
|
led->pdata->ibatt_ocp_threshold_ua =
|
|
FLASH_LED_IBATT_OCP_THRESH_DEFAULT_UA;
|
|
rc = of_property_read_u32(node, "qcom,ibatt-ocp-threshold-ua", &val);
|
|
if (!rc) {
|
|
led->pdata->ibatt_ocp_threshold_ua = val;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to parse ibatt_ocp threshold, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
led->pdata->rpara_uohm = FLASH_LED_RPARA_DEFAULT_UOHM;
|
|
rc = of_property_read_u32(node, "qcom,rparasitic-uohm", &val);
|
|
if (!rc) {
|
|
led->pdata->rpara_uohm = val;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to parse rparasitic, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void qpnp_flash_led_parse_fault_detection_dt(struct qpnp_flash_led *led,
|
|
struct device_node *node)
|
|
{
|
|
bool short_circuit_det, open_circuit_det, vph_droop_det;
|
|
|
|
short_circuit_det =
|
|
of_property_read_bool(node, "qcom,short-circuit-det");
|
|
open_circuit_det = of_property_read_bool(node, "qcom,open-circuit-det");
|
|
vph_droop_det = of_property_read_bool(node, "qcom,vph-droop-det");
|
|
led->pdata->current_derate_en_cfg = (vph_droop_det << 2) |
|
|
(open_circuit_det << 1) | short_circuit_det;
|
|
}
|
|
|
|
static int qpnp_flash_led_parse_warmup_delay_dt(struct qpnp_flash_led *led,
|
|
struct device_node *node)
|
|
{
|
|
int rc;
|
|
u32 val;
|
|
|
|
led->pdata->warmup_delay = FLASH_LED_WARMUP_DELAY_DEFAULT;
|
|
rc = of_property_read_u32(node, "qcom,warmup-delay-us", &val);
|
|
if (!rc) {
|
|
led->pdata->warmup_delay =
|
|
val >> FLASH_LED_ISC_WARMUP_DELAY_SHIFT;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read WARMUP delay, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void qpnp_flash_led_parse_irqs_dt(struct qpnp_flash_led *led,
|
|
struct device_node *node)
|
|
|
|
{
|
|
led->pdata->all_ramp_up_done_irq =
|
|
of_irq_get_byname(node, "all-ramp-up-done-irq");
|
|
if (led->pdata->all_ramp_up_done_irq < 0)
|
|
pr_debug("all-ramp-up-done-irq not used\n");
|
|
|
|
led->pdata->all_ramp_down_done_irq =
|
|
of_irq_get_byname(node, "all-ramp-down-done-irq");
|
|
if (led->pdata->all_ramp_down_done_irq < 0)
|
|
pr_debug("all-ramp-down-done-irq not used\n");
|
|
|
|
led->pdata->led_fault_irq =
|
|
of_irq_get_byname(node, "led-fault-irq");
|
|
if (led->pdata->led_fault_irq < 0)
|
|
pr_debug("led-fault-irq not used\n");
|
|
}
|
|
|
|
static int qpnp_flash_led_isc_delay_dt(struct qpnp_flash_led *led,
|
|
struct device_node *node)
|
|
{
|
|
int rc;
|
|
u32 val;
|
|
|
|
led->pdata->isc_delay = FLASH_LED_ISC_DELAY_DEFAULT;
|
|
rc = of_property_read_u32(node, "qcom,isc-delay-us", &val);
|
|
if (!rc) {
|
|
led->pdata->isc_delay =
|
|
val >> FLASH_LED_ISC_WARMUP_DELAY_SHIFT;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to read ISC delay, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_led_parse_common_dt(struct qpnp_flash_led *led,
|
|
struct device_node *node)
|
|
{
|
|
int rc;
|
|
u32 val;
|
|
|
|
rc = of_property_read_u32(node, "reg", &val);
|
|
if (rc < 0) {
|
|
pr_err("Couldn't find reg in node %s, rc = %d\n",
|
|
node->full_name, rc);
|
|
return rc;
|
|
}
|
|
|
|
led->base = val;
|
|
led->pdata->hdrm_auto_mode_en = of_property_read_bool(node,
|
|
"qcom,hdrm-auto-mode");
|
|
rc = qpnp_flash_led_isc_delay_dt(led, node);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_parse_warmup_delay_dt(led, node);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
qpnp_flash_led_parse_fault_detection_dt(led, node);
|
|
|
|
rc = qpnp_flash_led_parse_thermal_config_dt(led, node);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_parse_vph_droop_config_dt(led, node);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_parse_iclamp_config_dt(led, node);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
led->pdata->hw_strobe_option = -EINVAL;
|
|
rc = of_property_read_u32(node, "qcom,hw-strobe-option", &val);
|
|
if (!rc) {
|
|
led->pdata->hw_strobe_option = val;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to parse hw strobe option, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
led->pdata->vled_max_uv = FLASH_LED_VLED_MAX_DEFAULT_UV;
|
|
rc = of_property_read_u32(node, "qcom,vled-max-uv", &val);
|
|
if (!rc) {
|
|
led->pdata->vled_max_uv = val;
|
|
} else if (rc != -EINVAL) {
|
|
pr_err("Unable to parse vled_max voltage, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
val = FLASH_LED_RAMP_STEP_DEFAULT_NS;
|
|
rc = of_property_read_u32(node, "qcom,ramp-up-step", &val);
|
|
if (!rc && (val < FLASH_LED_RAMP_STEP_MIN_NS || val > FLASH_LED_RAMP_STEP_MAX_NS)) {
|
|
pr_err("Invalid ramp-up-step %d\n", val);
|
|
return -EINVAL;
|
|
} else if (rc && rc != -EINVAL) {
|
|
pr_err("Unable to read ramp-up-step, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
led->pdata->ramp_up_step = ilog2(val / 100) - 1;
|
|
|
|
val = FLASH_LED_RAMP_STEP_DEFAULT_NS;
|
|
rc = of_property_read_u32(node, "qcom,ramp-down-step", &val);
|
|
if (!rc && (val < FLASH_LED_RAMP_STEP_MIN_NS || val > FLASH_LED_RAMP_STEP_MAX_NS)) {
|
|
pr_err("Invalid ramp-down-step %d\n", val);
|
|
return -EINVAL;
|
|
} else if (rc && rc != -EINVAL) {
|
|
pr_err("Unable to read ramp-down-step, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
led->pdata->ramp_down_step = ilog2(val / 100) - 1;
|
|
|
|
rc = qpnp_flash_led_parse_battery_prop_dt(led, node);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_parse_lmh_config_dt(led, node);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_parse_chgr_mitigation_dt(led, node);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = qpnp_flash_led_parse_iled_threshold_dt(led, node);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
led->pdata->bst_pwm_ovrhd_uv = FLASH_BST_PWM_OVRHD_MIN_UV;
|
|
rc = of_property_read_u32(node, "qcom,bst-pwm-ovrhd-uv", &val);
|
|
if (!rc) {
|
|
if (val >= FLASH_BST_PWM_OVRHD_MIN_UV &&
|
|
val <= FLASH_BST_PWM_OVRHD_MAX_UV)
|
|
led->pdata->bst_pwm_ovrhd_uv = val;
|
|
}
|
|
|
|
qpnp_flash_led_parse_irqs_dt(led, node);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_led_register_interrupts(struct qpnp_flash_led *led)
|
|
{
|
|
int rc;
|
|
|
|
/* setup irqs */
|
|
if (led->pdata->all_ramp_up_done_irq >= 0) {
|
|
rc = devm_request_threaded_irq(&led->pdev->dev,
|
|
led->pdata->all_ramp_up_done_irq,
|
|
NULL, qpnp_flash_led_irq_handler,
|
|
IRQF_ONESHOT,
|
|
"qpnp_flash_led_all_ramp_up_done_irq", led);
|
|
if (rc < 0) {
|
|
pr_err("Unable to request all_ramp_up_done(%d) IRQ(err:%d)\n",
|
|
led->pdata->all_ramp_up_done_irq, rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
if (led->pdata->all_ramp_down_done_irq >= 0) {
|
|
rc = devm_request_threaded_irq(&led->pdev->dev,
|
|
led->pdata->all_ramp_down_done_irq,
|
|
NULL, qpnp_flash_led_irq_handler,
|
|
IRQF_ONESHOT,
|
|
"qpnp_flash_led_all_ramp_down_done_irq", led);
|
|
if (rc < 0) {
|
|
pr_err("Unable to request all_ramp_down_done(%d) IRQ(err:%d)\n",
|
|
led->pdata->all_ramp_down_done_irq, rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
if (led->pdata->led_fault_irq >= 0) {
|
|
rc = devm_request_threaded_irq(&led->pdev->dev,
|
|
led->pdata->led_fault_irq,
|
|
NULL, qpnp_flash_led_irq_handler,
|
|
IRQF_ONESHOT,
|
|
"qpnp_flash_led_fault_irq", led);
|
|
if (rc < 0) {
|
|
pr_err("Unable to request led_fault(%d) IRQ(err:%d)\n",
|
|
led->pdata->led_fault_irq, rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qpnp_flash_led_probe(struct platform_device *pdev)
|
|
{
|
|
struct qpnp_flash_led *led;
|
|
struct device_node *node, *temp;
|
|
const char *temp_string;
|
|
int rc, i = 0, j = 0;
|
|
|
|
node = pdev->dev.of_node;
|
|
if (!node) {
|
|
pr_err("No flash LED nodes defined\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
led = devm_kzalloc(&pdev->dev, sizeof(struct qpnp_flash_led),
|
|
GFP_KERNEL);
|
|
if (!led)
|
|
return -ENOMEM;
|
|
|
|
led->regmap = dev_get_regmap(pdev->dev.parent, NULL);
|
|
if (!led->regmap) {
|
|
pr_err("Couldn't get parent's regmap\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
led->pmic_type = (u8)of_device_get_match_data(&pdev->dev);
|
|
|
|
if (led->pmic_type == PM6150L)
|
|
led->wa_flags |= PM6150L_IRES_WA;
|
|
|
|
led->pdev = pdev;
|
|
led->pdata = devm_kzalloc(&pdev->dev,
|
|
sizeof(struct flash_led_platform_data), GFP_KERNEL);
|
|
if (!led->pdata)
|
|
return -ENOMEM;
|
|
|
|
led->iio_channels = devm_kcalloc(&pdev->dev,
|
|
ARRAY_SIZE(flash_iio_prop_names),
|
|
sizeof(struct iio_channel *), GFP_KERNEL);
|
|
if (!led->iio_channels)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_init(&led->lock);
|
|
|
|
rc = qpnp_flash_led_parse_common_dt(led, node);
|
|
if (rc < 0) {
|
|
pr_err("Failed to parse common flash LED device tree rc=%d\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
|
|
for_each_available_child_of_node(node, temp) {
|
|
rc = of_property_read_string(temp, "label", &temp_string);
|
|
if (rc < 0) {
|
|
pr_err("Failed to parse label, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
if (!strcmp("switch", temp_string)) {
|
|
led->num_snodes++;
|
|
} else if (!strcmp("flash", temp_string) ||
|
|
!strcmp("torch", temp_string)) {
|
|
led->num_fnodes++;
|
|
} else {
|
|
pr_err("Invalid label for led node\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (!led->num_fnodes) {
|
|
pr_err("No LED nodes defined\n");
|
|
return -ECHILD;
|
|
}
|
|
|
|
led->fnode = devm_kcalloc(&pdev->dev, led->num_fnodes,
|
|
sizeof(*led->fnode), GFP_KERNEL);
|
|
if (!led->fnode)
|
|
return -ENOMEM;
|
|
|
|
led->snode = devm_kcalloc(&pdev->dev, led->num_snodes,
|
|
sizeof(*led->snode), GFP_KERNEL);
|
|
if (!led->snode)
|
|
return -ENOMEM;
|
|
|
|
temp = NULL;
|
|
i = 0;
|
|
j = 0;
|
|
for_each_available_child_of_node(node, temp) {
|
|
rc = of_property_read_string(temp, "label", &temp_string);
|
|
if (rc < 0) {
|
|
pr_err("Failed to parse label, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
if (!strcmp("flash", temp_string) ||
|
|
!strcmp("torch", temp_string)) {
|
|
rc = qpnp_flash_led_parse_each_led_dt(led,
|
|
&led->fnode[i], temp);
|
|
if (rc < 0) {
|
|
pr_err("Unable to parse flash node %d rc=%d\n",
|
|
i, rc);
|
|
goto error_led_register;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
if (!strcmp("switch", temp_string)) {
|
|
rc = qpnp_flash_led_parse_and_register_switch(led,
|
|
&led->snode[j], temp);
|
|
if (rc < 0) {
|
|
pr_err("Unable to parse and register switch node, rc=%d\n",
|
|
rc);
|
|
goto error_switch_register;
|
|
}
|
|
j++;
|
|
}
|
|
}
|
|
|
|
rc = qpnp_flash_led_register_interrupts(led);
|
|
if (rc < 0)
|
|
goto error_switch_register;
|
|
|
|
rc = qpnp_flash_led_init_settings(led);
|
|
if (rc < 0) {
|
|
pr_err("Failed to initialize flash LED, rc=%d\n", rc);
|
|
goto error_switch_register;
|
|
}
|
|
|
|
for (i = 0; i < led->num_snodes; i++) {
|
|
for (j = 0; j < ARRAY_SIZE(qpnp_flash_led_attrs); j++) {
|
|
rc = sysfs_create_file(&led->snode[i].cdev.dev->kobj,
|
|
&qpnp_flash_led_attrs[j].attr);
|
|
if (rc < 0) {
|
|
pr_err("sysfs creation failed, rc=%d\n", rc);
|
|
goto sysfs_fail;
|
|
}
|
|
}
|
|
}
|
|
|
|
dev_set_drvdata(&pdev->dev, led);
|
|
|
|
return 0;
|
|
|
|
sysfs_fail:
|
|
for (--j; j >= 0; j--)
|
|
sysfs_remove_file(&led->snode[i].cdev.dev->kobj,
|
|
&qpnp_flash_led_attrs[j].attr);
|
|
|
|
for (--i; i >= 0; i--) {
|
|
for (j = 0; j < ARRAY_SIZE(qpnp_flash_led_attrs); j++)
|
|
sysfs_remove_file(&led->snode[i].cdev.dev->kobj,
|
|
&qpnp_flash_led_attrs[j].attr);
|
|
}
|
|
|
|
i = led->num_snodes;
|
|
error_switch_register:
|
|
while (i > 0)
|
|
led_classdev_unregister(&led->snode[--i].cdev);
|
|
i = led->num_fnodes;
|
|
error_led_register:
|
|
while (i > 0)
|
|
led_classdev_unregister(&led->fnode[--i].cdev);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int qpnp_flash_led_remove(struct platform_device *pdev)
|
|
{
|
|
struct qpnp_flash_led *led = dev_get_drvdata(&pdev->dev);
|
|
int i, j;
|
|
|
|
for (i = 0; i < led->num_snodes; i++) {
|
|
for (j = 0; j < ARRAY_SIZE(qpnp_flash_led_attrs); j++)
|
|
sysfs_remove_file(&led->snode[i].cdev.dev->kobj,
|
|
&qpnp_flash_led_attrs[j].attr);
|
|
|
|
if (led->snode[i].regulator_on)
|
|
qpnp_flash_led_regulator_enable(led,
|
|
&led->snode[i], false);
|
|
}
|
|
|
|
while (i > 0)
|
|
led_classdev_unregister(&led->snode[--i].cdev);
|
|
|
|
i = led->num_fnodes;
|
|
while (i > 0)
|
|
led_classdev_unregister(&led->fnode[--i].cdev);
|
|
|
|
power_supply_unreg_notifier(&led->nb);
|
|
return 0;
|
|
}
|
|
|
|
const struct of_device_id qpnp_flash_led_match_table[] = {
|
|
{ .compatible = "qcom,pm6150l-flash-led-v2", .data = (void *)PM6150L},
|
|
{ .compatible = "qcom,pmi632-flash-led-v2", .data = (void *)PMI632},
|
|
{ },
|
|
};
|
|
|
|
static struct platform_driver qpnp_flash_led_driver = {
|
|
.driver = {
|
|
.name = "qcom,qpnp-flash-led-v2",
|
|
.of_match_table = qpnp_flash_led_match_table,
|
|
},
|
|
.probe = qpnp_flash_led_probe,
|
|
.remove = qpnp_flash_led_remove,
|
|
};
|
|
|
|
module_platform_driver(qpnp_flash_led_driver);
|
|
|
|
MODULE_DESCRIPTION("QPNP Flash LED driver v2");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_ALIAS("leds:leds-qpnp-flash-v2");
|