android_kernel_xiaomi_sm8350/lib/radix-tree.c
Toshiyuki Okajima ac15ee691f radix_tree: radix_tree_gang_lookup_tag_slot() may never return
Executed command: fsstress -d /mnt -n 600 -p 850

  crash> bt
  PID: 7947   TASK: ffff880160546a70  CPU: 0   COMMAND: "fsstress"
   #0 [ffff8800dfc07d00] machine_kexec at ffffffff81030db9
   #1 [ffff8800dfc07d70] crash_kexec at ffffffff810a7952
   #2 [ffff8800dfc07e40] oops_end at ffffffff814aa7c8
   #3 [ffff8800dfc07e70] die_nmi at ffffffff814aa969
   #4 [ffff8800dfc07ea0] do_nmi_callback at ffffffff8102b07b
   #5 [ffff8800dfc07f10] do_nmi at ffffffff814aa514
   #6 [ffff8800dfc07f50] nmi at ffffffff814a9d60
      [exception RIP: __lookup_tag+100]
      RIP: ffffffff812274b4  RSP: ffff88016056b998  RFLAGS: 00000287
      RAX: 0000000000000000  RBX: 0000000000000002  RCX: 0000000000000006
      RDX: 000000000000001d  RSI: ffff88016056bb18  RDI: ffff8800c85366e0
      RBP: ffff88016056b9c8   R8: ffff88016056b9e8   R9: 0000000000000000
      R10: 000000000000000e  R11: ffff8800c8536908  R12: 0000000000000010
      R13: 0000000000000040  R14: ffffffffffffffc0  R15: ffff8800c85366e0
      ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
  <NMI exception stack>
   #7 [ffff88016056b998] __lookup_tag at ffffffff812274b4
   #8 [ffff88016056b9d0] radix_tree_gang_lookup_tag_slot at ffffffff81227605
   #9 [ffff88016056ba20] find_get_pages_tag at ffffffff810fc110
  #10 [ffff88016056ba80] pagevec_lookup_tag at ffffffff81105e85
  #11 [ffff88016056baa0] write_cache_pages at ffffffff81104c47
  #12 [ffff88016056bbd0] generic_writepages at ffffffff81105014
  #13 [ffff88016056bbe0] do_writepages at ffffffff81105055
  #14 [ffff88016056bbf0] __filemap_fdatawrite_range at ffffffff810fb2cb
  #15 [ffff88016056bc40] filemap_write_and_wait_range at ffffffff810fb32a
  #16 [ffff88016056bc70] generic_file_direct_write at ffffffff810fb3dc
  #17 [ffff88016056bce0] __generic_file_aio_write at ffffffff810fcee5
  #18 [ffff88016056bda0] generic_file_aio_write at ffffffff810fd085
  #19 [ffff88016056bdf0] do_sync_write at ffffffff8114f9ea
  #20 [ffff88016056bf00] vfs_write at ffffffff8114fcf8
  #21 [ffff88016056bf30] sys_write at ffffffff81150691
  #22 [ffff88016056bf80] system_call_fastpath at ffffffff8100c0b2

I think this root cause is the following:

 radix_tree_range_tag_if_tagged() always tags the root tag with settag
 if the root tag is set with iftag even if there are no iftag tags
 in the specified range (Of course, there are some iftag tags
 outside the specified range).

===============================================================================
[[[Detailed description]]]

(1) Why cannot radix_tree_gang_lookup_tag_slot() return forever?

__lookup_tag():
 - Return with 0.
 - Return with the index which is not bigger than the old one as the
   input parameter.

Therefore the following "while" repeats forever because the above
conditions cause "ret" not to be updated and the cur_index cannot be
changed into the bigger one.

(So, radix_tree_gang_lookup_tag_slot() cannot return forever.)

radix_tree_gang_lookup_tag_slot():
1178         while (ret < max_items) {
1179                 unsigned int slots_found;
1180                 unsigned long next_index;       /* Index of next search */
1181
1182                 if (cur_index > max_index)
1183                         break;
1184                 slots_found = __lookup_tag(node, results + ret,
1185                                 cur_index, max_items - ret, &next_index,
tag);
1186                 ret += slots_found;
			// cannot update ret because slots_found == 0.
			// so, this while loops forever.
1187                 if (next_index == 0)
1188                         break;
1189                 cur_index = next_index;
1190         }

(2) Why does __lookup_tag() return with 0 and doesn't update the index?

Assuming the following:
  - the one of the slot in radix_tree_node is NULL.
  - the one of the tag which corresponds to the slot sets with
    PAGECACHE_TAG_TOWRITE or other.
  - In a certain height(!=0), the corresponding index is 0.

a) __lookup_tag() notices that the tag is set.

1005 static unsigned int
1006 __lookup_tag(struct radix_tree_node *slot, void ***results, unsigned long index,
1007         unsigned int max_items, unsigned long *next_index, unsigned int tag)
1008 {
1009         unsigned int nr_found = 0;
1010         unsigned int shift, height;
1011
1012         height = slot->height;
1013         if (height == 0)
1014                 goto out;
1015         shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1016
1017         while (height > 0) {
1018                 unsigned long i = (index >> shift) & RADIX_TREE_MAP_MASK ;
1019
1020                 for (;;) {
1021                         if (tag_get(slot, tag, i))
1022                                 break;
 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* the index is not updated yet.

b) __lookup_tag() notices that the slot is NULL.

1023                         index &= ~((1UL << shift) - 1);
1024                         index += 1UL << shift;
1025                         if (index == 0)
1026                                 goto out;       /* 32-bit wraparound */
1027                         i++;
1028                         if (i == RADIX_TREE_MAP_SIZE)
1029                                 goto out;
1030                 }
1031                 height--;
1032                 if (height == 0) {      /* Bottom level: grab some items */
...
1055                 }
1056                 shift -= RADIX_TREE_MAP_SHIFT;
1057                 slot = rcu_dereference_raw(slot->slots[i]);
1058                 if (slot == NULL)
1059                         break;
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

c) __lookup_tag() doesn't update the index and return with 0.

1060         }
1061 out:
1062         *next_index = index;
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1063         return nr_found;
1064 }

(3) Why is the slot NULL even if the tag is set?

Because radix_tree_range_tag_if_tagged() always sets the root tag with
PAGECACHE_TAG_TOWRITE if the root tag is set with PAGECACHE_TAG_DIRTY,
even if there is no tag which can be set with PAGECACHE_TAG_TOWRITE
in the specified range (from *first_indexp to last_index). Of course,
some PAGECACHE_TAG_DIRTY nodes must exist outside the specified range.
(radix_tree_range_tag_if_tagged() is called only from tag_pages_for_writeback())

 640 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root
*root,
 641                 unsigned long *first_indexp, unsigned long last_index,
 642                 unsigned long nr_to_tag,
 643                 unsigned int iftag, unsigned int settag)
 644 {
 645         unsigned int height = root->height;
 646         struct radix_tree_path path[height];
 647         struct radix_tree_path *pathp = path;
 648         struct radix_tree_node *slot;
 649         unsigned int shift;
 650         unsigned long tagged = 0;
 651         unsigned long index = *first_indexp;
 652
 653         last_index = min(last_index, radix_tree_maxindex(height));
 654         if (index > last_index)
 655                 return 0;
 656         if (!nr_to_tag)
 657                 return 0;
 658         if (!root_tag_get(root, iftag)) {
 659                 *first_indexp = last_index + 1;
 660                 return 0;
 661         }
 662         if (height == 0) {
 663                 *first_indexp = last_index + 1;
 664                 root_tag_set(root, settag);
 665                 return 1;
 666         }
...
 733         root_tag_set(root, settag);
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 734         *first_indexp = index;
 735
 736         return tagged;
 737 }

As the result, there is no radix_tree_node which is set with
PAGECACHE_TAG_TOWRITE but the root tag(radix_tree_root) is set with
PAGECACHE_TAG_TOWRITE.

[figure: inside radix_tree]
(Please see the figure with typewriter font)
===========================================
          [roottag = DIRTY]
                 |             tag=0:NOTHING
         tag[0 0 0 1]              1:DIRTY
            [x x x +]              2:WRITEBACK
                   |               3:DIRTY,WRITEBACK
                   p               4:TOWRITE
             <--->                 5:DIRTY,TOWRITE ...
     specified range (index: 0 to 2)

* There is no DIRTY tag within the specified range.
 (But there is a DIRTY tag outside that range.)

            | | | | | | | | |
    after calling tag_pages_for_writeback()
            | | | | | | | | |
            v v v v v v v v v

          [roottag = DIRTY,TOWRITE]
                 |                 p is "page".
         tag[0 0 0 1]              x is NULL.
            [x x x +]              +- is a pointer to "page".
                   |
                   p

* But TOWRITE tag is set on the root tag.
============================================

After that, radix_tree_extend() via radix_tree_insert() is called
when the page is added.
This function sets the new radix_tree_node with PAGECACHE_TAG_TOWRITE
to succeed the status of the root tag.

 246 static int radix_tree_extend(struct radix_tree_root *root, unsigned long
index)
 247 {
 248         struct radix_tree_node *node;
 249         unsigned int height;
 250         int tag;
 251
 252         /* Figure out what the height should be.  */
 253         height = root->height + 1;
 254         while (index > radix_tree_maxindex(height))
 255                 height++;
 256
 257         if (root->rnode == NULL) {
 258                 root->height = height;
 259                 goto out;
 260         }
 261
 262         do {
 263                 unsigned int newheight;
 264                 if (!(node = radix_tree_node_alloc(root)))
 265                         return -ENOMEM;
 266
 267                 /* Increase the height.  */
 268                 node->slots[0] = radix_tree_indirect_to_ptr(root->rnode);
 269
 270                 /* Propagate the aggregated tag info into the new root */
 271                 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 272                         if (root_tag_get(root, tag))
 273                                 tag_set(node, tag, 0);
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 274                 }

===========================================
          [roottag = DIRTY,TOWRITE]
                 |     :
         tag[0 0 0 1] [0 0 0 0]
            [x x x +] [+ x x x]
                   |   |
                   p   p (new page)

            | | | | | | | | |
    after calling radix_tree_insert
            | | | | | | | | |
            v v v v v v v v v

          [roottag = DIRTY,TOWRITE]
                 |
         tag [5 0 0 0]    *  DIRTY and TOWRITE tags are
             [+ + x x]       succeeded to the new node.
              | |
  tag [0 0 0 1] [0 0 0 0]
      [x x x +] [+ x x x]
             |   |
             p   p
============================================

After that, the index 3 page is released by remove_from_page_cache().
Then we can make the situation that the tag is set with PAGECACHE_TAG_TOWRITE
and that the slot which corresponds to the tag is NULL.
===========================================
          [roottag = DIRTY,TOWRITE]
                 |
         tag [5 0 0 0]
             [+ + x x]
              | |
  tag [0 0 0 1] [0 0 0 0]
      [x x x +] [+ x x x]
             |   |
             p   p
         (remove)

            | | | | | | | | |
    after calling remove_page_cache
            | | | | | | | | |
            v v v v v v v v v

          [roottag = DIRTY,TOWRITE]
                 |
         tag [4 0 0 0]      * Only DIRTY tag is cleared
             [x + x x]        because no TOWRITE tag is existed
                |             in the bottom node.
                [0 0 0 0]
                [+ x x x]
                 |
                 p
============================================

To solve this problem

Change to that radix_tree_tag_if_tagged() doesn't tag the root tag
if it doesn't set any tags within the specified range.

Like this.
============================================
 640 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root
*root,
 641                 unsigned long *first_indexp, unsigned long last_index,
 642                 unsigned long nr_to_tag,
 643                 unsigned int iftag, unsigned int settag)
 644 {
 650         unsigned long tagged = 0;
...
 733 	     if (tagged)
^^^^^^^^^^^^^^^^^^^^^^^^
 734            root_tag_set(root, settag);
 735         *first_indexp = index;
 736
 737         return tagged;
 738 }

============================================

Signed-off-by: Toshiyuki Okajima <toshi.okajima@jp.fujitsu.com>
Acked-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-26 10:50:04 +10:00

1421 lines
37 KiB
C

/*
* Copyright (C) 2001 Momchil Velikov
* Portions Copyright (C) 2001 Christoph Hellwig
* Copyright (C) 2005 SGI, Christoph Lameter
* Copyright (C) 2006 Nick Piggin
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/radix-tree.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/string.h>
#include <linux/bitops.h>
#include <linux/rcupdate.h>
#ifdef __KERNEL__
#define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
#else
#define RADIX_TREE_MAP_SHIFT 3 /* For more stressful testing */
#endif
#define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
#define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)
#define RADIX_TREE_TAG_LONGS \
((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
struct radix_tree_node {
unsigned int height; /* Height from the bottom */
unsigned int count;
struct rcu_head rcu_head;
void __rcu *slots[RADIX_TREE_MAP_SIZE];
unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
};
struct radix_tree_path {
struct radix_tree_node *node;
int offset;
};
#define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
#define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
RADIX_TREE_MAP_SHIFT))
/*
* The height_to_maxindex array needs to be one deeper than the maximum
* path as height 0 holds only 1 entry.
*/
static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
/*
* Radix tree node cache.
*/
static struct kmem_cache *radix_tree_node_cachep;
/*
* Per-cpu pool of preloaded nodes
*/
struct radix_tree_preload {
int nr;
struct radix_tree_node *nodes[RADIX_TREE_MAX_PATH];
};
static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
static inline void *ptr_to_indirect(void *ptr)
{
return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
}
static inline void *indirect_to_ptr(void *ptr)
{
return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
}
static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
{
return root->gfp_mask & __GFP_BITS_MASK;
}
static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
int offset)
{
__set_bit(offset, node->tags[tag]);
}
static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
int offset)
{
__clear_bit(offset, node->tags[tag]);
}
static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
int offset)
{
return test_bit(offset, node->tags[tag]);
}
static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
{
root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
}
static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
{
root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
}
static inline void root_tag_clear_all(struct radix_tree_root *root)
{
root->gfp_mask &= __GFP_BITS_MASK;
}
static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
{
return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
}
/*
* Returns 1 if any slot in the node has this tag set.
* Otherwise returns 0.
*/
static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
{
int idx;
for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
if (node->tags[tag][idx])
return 1;
}
return 0;
}
/*
* This assumes that the caller has performed appropriate preallocation, and
* that the caller has pinned this thread of control to the current CPU.
*/
static struct radix_tree_node *
radix_tree_node_alloc(struct radix_tree_root *root)
{
struct radix_tree_node *ret = NULL;
gfp_t gfp_mask = root_gfp_mask(root);
if (!(gfp_mask & __GFP_WAIT)) {
struct radix_tree_preload *rtp;
/*
* Provided the caller has preloaded here, we will always
* succeed in getting a node here (and never reach
* kmem_cache_alloc)
*/
rtp = &__get_cpu_var(radix_tree_preloads);
if (rtp->nr) {
ret = rtp->nodes[rtp->nr - 1];
rtp->nodes[rtp->nr - 1] = NULL;
rtp->nr--;
}
}
if (ret == NULL)
ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
BUG_ON(radix_tree_is_indirect_ptr(ret));
return ret;
}
static void radix_tree_node_rcu_free(struct rcu_head *head)
{
struct radix_tree_node *node =
container_of(head, struct radix_tree_node, rcu_head);
int i;
/*
* must only free zeroed nodes into the slab. radix_tree_shrink
* can leave us with a non-NULL entry in the first slot, so clear
* that here to make sure.
*/
for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
tag_clear(node, i, 0);
node->slots[0] = NULL;
node->count = 0;
kmem_cache_free(radix_tree_node_cachep, node);
}
static inline void
radix_tree_node_free(struct radix_tree_node *node)
{
call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
}
/*
* Load up this CPU's radix_tree_node buffer with sufficient objects to
* ensure that the addition of a single element in the tree cannot fail. On
* success, return zero, with preemption disabled. On error, return -ENOMEM
* with preemption not disabled.
*
* To make use of this facility, the radix tree must be initialised without
* __GFP_WAIT being passed to INIT_RADIX_TREE().
*/
int radix_tree_preload(gfp_t gfp_mask)
{
struct radix_tree_preload *rtp;
struct radix_tree_node *node;
int ret = -ENOMEM;
preempt_disable();
rtp = &__get_cpu_var(radix_tree_preloads);
while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
preempt_enable();
node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
if (node == NULL)
goto out;
preempt_disable();
rtp = &__get_cpu_var(radix_tree_preloads);
if (rtp->nr < ARRAY_SIZE(rtp->nodes))
rtp->nodes[rtp->nr++] = node;
else
kmem_cache_free(radix_tree_node_cachep, node);
}
ret = 0;
out:
return ret;
}
EXPORT_SYMBOL(radix_tree_preload);
/*
* Return the maximum key which can be store into a
* radix tree with height HEIGHT.
*/
static inline unsigned long radix_tree_maxindex(unsigned int height)
{
return height_to_maxindex[height];
}
/*
* Extend a radix tree so it can store key @index.
*/
static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
{
struct radix_tree_node *node;
unsigned int height;
int tag;
/* Figure out what the height should be. */
height = root->height + 1;
while (index > radix_tree_maxindex(height))
height++;
if (root->rnode == NULL) {
root->height = height;
goto out;
}
do {
unsigned int newheight;
if (!(node = radix_tree_node_alloc(root)))
return -ENOMEM;
/* Increase the height. */
node->slots[0] = indirect_to_ptr(root->rnode);
/* Propagate the aggregated tag info into the new root */
for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
if (root_tag_get(root, tag))
tag_set(node, tag, 0);
}
newheight = root->height+1;
node->height = newheight;
node->count = 1;
node = ptr_to_indirect(node);
rcu_assign_pointer(root->rnode, node);
root->height = newheight;
} while (height > root->height);
out:
return 0;
}
/**
* radix_tree_insert - insert into a radix tree
* @root: radix tree root
* @index: index key
* @item: item to insert
*
* Insert an item into the radix tree at position @index.
*/
int radix_tree_insert(struct radix_tree_root *root,
unsigned long index, void *item)
{
struct radix_tree_node *node = NULL, *slot;
unsigned int height, shift;
int offset;
int error;
BUG_ON(radix_tree_is_indirect_ptr(item));
/* Make sure the tree is high enough. */
if (index > radix_tree_maxindex(root->height)) {
error = radix_tree_extend(root, index);
if (error)
return error;
}
slot = indirect_to_ptr(root->rnode);
height = root->height;
shift = (height-1) * RADIX_TREE_MAP_SHIFT;
offset = 0; /* uninitialised var warning */
while (height > 0) {
if (slot == NULL) {
/* Have to add a child node. */
if (!(slot = radix_tree_node_alloc(root)))
return -ENOMEM;
slot->height = height;
if (node) {
rcu_assign_pointer(node->slots[offset], slot);
node->count++;
} else
rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
}
/* Go a level down */
offset = (index >> shift) & RADIX_TREE_MAP_MASK;
node = slot;
slot = node->slots[offset];
shift -= RADIX_TREE_MAP_SHIFT;
height--;
}
if (slot != NULL)
return -EEXIST;
if (node) {
node->count++;
rcu_assign_pointer(node->slots[offset], item);
BUG_ON(tag_get(node, 0, offset));
BUG_ON(tag_get(node, 1, offset));
} else {
rcu_assign_pointer(root->rnode, item);
BUG_ON(root_tag_get(root, 0));
BUG_ON(root_tag_get(root, 1));
}
return 0;
}
EXPORT_SYMBOL(radix_tree_insert);
/*
* is_slot == 1 : search for the slot.
* is_slot == 0 : search for the node.
*/
static void *radix_tree_lookup_element(struct radix_tree_root *root,
unsigned long index, int is_slot)
{
unsigned int height, shift;
struct radix_tree_node *node, **slot;
node = rcu_dereference_raw(root->rnode);
if (node == NULL)
return NULL;
if (!radix_tree_is_indirect_ptr(node)) {
if (index > 0)
return NULL;
return is_slot ? (void *)&root->rnode : node;
}
node = indirect_to_ptr(node);
height = node->height;
if (index > radix_tree_maxindex(height))
return NULL;
shift = (height-1) * RADIX_TREE_MAP_SHIFT;
do {
slot = (struct radix_tree_node **)
(node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
node = rcu_dereference_raw(*slot);
if (node == NULL)
return NULL;
shift -= RADIX_TREE_MAP_SHIFT;
height--;
} while (height > 0);
return is_slot ? (void *)slot : indirect_to_ptr(node);
}
/**
* radix_tree_lookup_slot - lookup a slot in a radix tree
* @root: radix tree root
* @index: index key
*
* Returns: the slot corresponding to the position @index in the
* radix tree @root. This is useful for update-if-exists operations.
*
* This function can be called under rcu_read_lock iff the slot is not
* modified by radix_tree_replace_slot, otherwise it must be called
* exclusive from other writers. Any dereference of the slot must be done
* using radix_tree_deref_slot.
*/
void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
{
return (void **)radix_tree_lookup_element(root, index, 1);
}
EXPORT_SYMBOL(radix_tree_lookup_slot);
/**
* radix_tree_lookup - perform lookup operation on a radix tree
* @root: radix tree root
* @index: index key
*
* Lookup the item at the position @index in the radix tree @root.
*
* This function can be called under rcu_read_lock, however the caller
* must manage lifetimes of leaf nodes (eg. RCU may also be used to free
* them safely). No RCU barriers are required to access or modify the
* returned item, however.
*/
void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
{
return radix_tree_lookup_element(root, index, 0);
}
EXPORT_SYMBOL(radix_tree_lookup);
/**
* radix_tree_tag_set - set a tag on a radix tree node
* @root: radix tree root
* @index: index key
* @tag: tag index
*
* Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
* corresponding to @index in the radix tree. From
* the root all the way down to the leaf node.
*
* Returns the address of the tagged item. Setting a tag on a not-present
* item is a bug.
*/
void *radix_tree_tag_set(struct radix_tree_root *root,
unsigned long index, unsigned int tag)
{
unsigned int height, shift;
struct radix_tree_node *slot;
height = root->height;
BUG_ON(index > radix_tree_maxindex(height));
slot = indirect_to_ptr(root->rnode);
shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
while (height > 0) {
int offset;
offset = (index >> shift) & RADIX_TREE_MAP_MASK;
if (!tag_get(slot, tag, offset))
tag_set(slot, tag, offset);
slot = slot->slots[offset];
BUG_ON(slot == NULL);
shift -= RADIX_TREE_MAP_SHIFT;
height--;
}
/* set the root's tag bit */
if (slot && !root_tag_get(root, tag))
root_tag_set(root, tag);
return slot;
}
EXPORT_SYMBOL(radix_tree_tag_set);
/**
* radix_tree_tag_clear - clear a tag on a radix tree node
* @root: radix tree root
* @index: index key
* @tag: tag index
*
* Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
* corresponding to @index in the radix tree. If
* this causes the leaf node to have no tags set then clear the tag in the
* next-to-leaf node, etc.
*
* Returns the address of the tagged item on success, else NULL. ie:
* has the same return value and semantics as radix_tree_lookup().
*/
void *radix_tree_tag_clear(struct radix_tree_root *root,
unsigned long index, unsigned int tag)
{
/*
* The radix tree path needs to be one longer than the maximum path
* since the "list" is null terminated.
*/
struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
struct radix_tree_node *slot = NULL;
unsigned int height, shift;
height = root->height;
if (index > radix_tree_maxindex(height))
goto out;
shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
pathp->node = NULL;
slot = indirect_to_ptr(root->rnode);
while (height > 0) {
int offset;
if (slot == NULL)
goto out;
offset = (index >> shift) & RADIX_TREE_MAP_MASK;
pathp[1].offset = offset;
pathp[1].node = slot;
slot = slot->slots[offset];
pathp++;
shift -= RADIX_TREE_MAP_SHIFT;
height--;
}
if (slot == NULL)
goto out;
while (pathp->node) {
if (!tag_get(pathp->node, tag, pathp->offset))
goto out;
tag_clear(pathp->node, tag, pathp->offset);
if (any_tag_set(pathp->node, tag))
goto out;
pathp--;
}
/* clear the root's tag bit */
if (root_tag_get(root, tag))
root_tag_clear(root, tag);
out:
return slot;
}
EXPORT_SYMBOL(radix_tree_tag_clear);
/**
* radix_tree_tag_get - get a tag on a radix tree node
* @root: radix tree root
* @index: index key
* @tag: tag index (< RADIX_TREE_MAX_TAGS)
*
* Return values:
*
* 0: tag not present or not set
* 1: tag set
*
* Note that the return value of this function may not be relied on, even if
* the RCU lock is held, unless tag modification and node deletion are excluded
* from concurrency.
*/
int radix_tree_tag_get(struct radix_tree_root *root,
unsigned long index, unsigned int tag)
{
unsigned int height, shift;
struct radix_tree_node *node;
int saw_unset_tag = 0;
/* check the root's tag bit */
if (!root_tag_get(root, tag))
return 0;
node = rcu_dereference_raw(root->rnode);
if (node == NULL)
return 0;
if (!radix_tree_is_indirect_ptr(node))
return (index == 0);
node = indirect_to_ptr(node);
height = node->height;
if (index > radix_tree_maxindex(height))
return 0;
shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
for ( ; ; ) {
int offset;
if (node == NULL)
return 0;
offset = (index >> shift) & RADIX_TREE_MAP_MASK;
/*
* This is just a debug check. Later, we can bale as soon as
* we see an unset tag.
*/
if (!tag_get(node, tag, offset))
saw_unset_tag = 1;
if (height == 1)
return !!tag_get(node, tag, offset);
node = rcu_dereference_raw(node->slots[offset]);
shift -= RADIX_TREE_MAP_SHIFT;
height--;
}
}
EXPORT_SYMBOL(radix_tree_tag_get);
/**
* radix_tree_range_tag_if_tagged - for each item in given range set given
* tag if item has another tag set
* @root: radix tree root
* @first_indexp: pointer to a starting index of a range to scan
* @last_index: last index of a range to scan
* @nr_to_tag: maximum number items to tag
* @iftag: tag index to test
* @settag: tag index to set if tested tag is set
*
* This function scans range of radix tree from first_index to last_index
* (inclusive). For each item in the range if iftag is set, the function sets
* also settag. The function stops either after tagging nr_to_tag items or
* after reaching last_index.
*
* The tags must be set from the leaf level only and propagated back up the
* path to the root. We must do this so that we resolve the full path before
* setting any tags on intermediate nodes. If we set tags as we descend, then
* we can get to the leaf node and find that the index that has the iftag
* set is outside the range we are scanning. This reults in dangling tags and
* can lead to problems with later tag operations (e.g. livelocks on lookups).
*
* The function returns number of leaves where the tag was set and sets
* *first_indexp to the first unscanned index.
* WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
* be prepared to handle that.
*/
unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
unsigned long *first_indexp, unsigned long last_index,
unsigned long nr_to_tag,
unsigned int iftag, unsigned int settag)
{
unsigned int height = root->height;
struct radix_tree_path path[height];
struct radix_tree_path *pathp = path;
struct radix_tree_node *slot;
unsigned int shift;
unsigned long tagged = 0;
unsigned long index = *first_indexp;
last_index = min(last_index, radix_tree_maxindex(height));
if (index > last_index)
return 0;
if (!nr_to_tag)
return 0;
if (!root_tag_get(root, iftag)) {
*first_indexp = last_index + 1;
return 0;
}
if (height == 0) {
*first_indexp = last_index + 1;
root_tag_set(root, settag);
return 1;
}
shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
slot = indirect_to_ptr(root->rnode);
/*
* we fill the path from (root->height - 2) to 0, leaving the index at
* (root->height - 1) as a terminator. Zero the node in the terminator
* so that we can use this to end walk loops back up the path.
*/
path[height - 1].node = NULL;
for (;;) {
int offset;
offset = (index >> shift) & RADIX_TREE_MAP_MASK;
if (!slot->slots[offset])
goto next;
if (!tag_get(slot, iftag, offset))
goto next;
if (height > 1) {
/* Go down one level */
height--;
shift -= RADIX_TREE_MAP_SHIFT;
path[height - 1].node = slot;
path[height - 1].offset = offset;
slot = slot->slots[offset];
continue;
}
/* tag the leaf */
tagged++;
tag_set(slot, settag, offset);
/* walk back up the path tagging interior nodes */
pathp = &path[0];
while (pathp->node) {
/* stop if we find a node with the tag already set */
if (tag_get(pathp->node, settag, pathp->offset))
break;
tag_set(pathp->node, settag, pathp->offset);
pathp++;
}
next:
/* Go to next item at level determined by 'shift' */
index = ((index >> shift) + 1) << shift;
/* Overflow can happen when last_index is ~0UL... */
if (index > last_index || !index)
break;
if (tagged >= nr_to_tag)
break;
while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
/*
* We've fully scanned this node. Go up. Because
* last_index is guaranteed to be in the tree, what
* we do below cannot wander astray.
*/
slot = path[height - 1].node;
height++;
shift += RADIX_TREE_MAP_SHIFT;
}
}
/*
* We need not to tag the root tag if there is no tag which is set with
* settag within the range from *first_indexp to last_index.
*/
if (tagged > 0)
root_tag_set(root, settag);
*first_indexp = index;
return tagged;
}
EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
/**
* radix_tree_next_hole - find the next hole (not-present entry)
* @root: tree root
* @index: index key
* @max_scan: maximum range to search
*
* Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
* indexed hole.
*
* Returns: the index of the hole if found, otherwise returns an index
* outside of the set specified (in which case 'return - index >= max_scan'
* will be true). In rare cases of index wrap-around, 0 will be returned.
*
* radix_tree_next_hole may be called under rcu_read_lock. However, like
* radix_tree_gang_lookup, this will not atomically search a snapshot of
* the tree at a single point in time. For example, if a hole is created
* at index 5, then subsequently a hole is created at index 10,
* radix_tree_next_hole covering both indexes may return 10 if called
* under rcu_read_lock.
*/
unsigned long radix_tree_next_hole(struct radix_tree_root *root,
unsigned long index, unsigned long max_scan)
{
unsigned long i;
for (i = 0; i < max_scan; i++) {
if (!radix_tree_lookup(root, index))
break;
index++;
if (index == 0)
break;
}
return index;
}
EXPORT_SYMBOL(radix_tree_next_hole);
/**
* radix_tree_prev_hole - find the prev hole (not-present entry)
* @root: tree root
* @index: index key
* @max_scan: maximum range to search
*
* Search backwards in the range [max(index-max_scan+1, 0), index]
* for the first hole.
*
* Returns: the index of the hole if found, otherwise returns an index
* outside of the set specified (in which case 'index - return >= max_scan'
* will be true). In rare cases of wrap-around, ULONG_MAX will be returned.
*
* radix_tree_next_hole may be called under rcu_read_lock. However, like
* radix_tree_gang_lookup, this will not atomically search a snapshot of
* the tree at a single point in time. For example, if a hole is created
* at index 10, then subsequently a hole is created at index 5,
* radix_tree_prev_hole covering both indexes may return 5 if called under
* rcu_read_lock.
*/
unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
unsigned long index, unsigned long max_scan)
{
unsigned long i;
for (i = 0; i < max_scan; i++) {
if (!radix_tree_lookup(root, index))
break;
index--;
if (index == ULONG_MAX)
break;
}
return index;
}
EXPORT_SYMBOL(radix_tree_prev_hole);
static unsigned int
__lookup(struct radix_tree_node *slot, void ***results, unsigned long index,
unsigned int max_items, unsigned long *next_index)
{
unsigned int nr_found = 0;
unsigned int shift, height;
unsigned long i;
height = slot->height;
if (height == 0)
goto out;
shift = (height-1) * RADIX_TREE_MAP_SHIFT;
for ( ; height > 1; height--) {
i = (index >> shift) & RADIX_TREE_MAP_MASK;
for (;;) {
if (slot->slots[i] != NULL)
break;
index &= ~((1UL << shift) - 1);
index += 1UL << shift;
if (index == 0)
goto out; /* 32-bit wraparound */
i++;
if (i == RADIX_TREE_MAP_SIZE)
goto out;
}
shift -= RADIX_TREE_MAP_SHIFT;
slot = rcu_dereference_raw(slot->slots[i]);
if (slot == NULL)
goto out;
}
/* Bottom level: grab some items */
for (i = index & RADIX_TREE_MAP_MASK; i < RADIX_TREE_MAP_SIZE; i++) {
index++;
if (slot->slots[i]) {
results[nr_found++] = &(slot->slots[i]);
if (nr_found == max_items)
goto out;
}
}
out:
*next_index = index;
return nr_found;
}
/**
* radix_tree_gang_lookup - perform multiple lookup on a radix tree
* @root: radix tree root
* @results: where the results of the lookup are placed
* @first_index: start the lookup from this key
* @max_items: place up to this many items at *results
*
* Performs an index-ascending scan of the tree for present items. Places
* them at *@results and returns the number of items which were placed at
* *@results.
*
* The implementation is naive.
*
* Like radix_tree_lookup, radix_tree_gang_lookup may be called under
* rcu_read_lock. In this case, rather than the returned results being
* an atomic snapshot of the tree at a single point in time, the semantics
* of an RCU protected gang lookup are as though multiple radix_tree_lookups
* have been issued in individual locks, and results stored in 'results'.
*/
unsigned int
radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
unsigned long first_index, unsigned int max_items)
{
unsigned long max_index;
struct radix_tree_node *node;
unsigned long cur_index = first_index;
unsigned int ret;
node = rcu_dereference_raw(root->rnode);
if (!node)
return 0;
if (!radix_tree_is_indirect_ptr(node)) {
if (first_index > 0)
return 0;
results[0] = node;
return 1;
}
node = indirect_to_ptr(node);
max_index = radix_tree_maxindex(node->height);
ret = 0;
while (ret < max_items) {
unsigned int nr_found, slots_found, i;
unsigned long next_index; /* Index of next search */
if (cur_index > max_index)
break;
slots_found = __lookup(node, (void ***)results + ret, cur_index,
max_items - ret, &next_index);
nr_found = 0;
for (i = 0; i < slots_found; i++) {
struct radix_tree_node *slot;
slot = *(((void ***)results)[ret + i]);
if (!slot)
continue;
results[ret + nr_found] =
indirect_to_ptr(rcu_dereference_raw(slot));
nr_found++;
}
ret += nr_found;
if (next_index == 0)
break;
cur_index = next_index;
}
return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup);
/**
* radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
* @root: radix tree root
* @results: where the results of the lookup are placed
* @first_index: start the lookup from this key
* @max_items: place up to this many items at *results
*
* Performs an index-ascending scan of the tree for present items. Places
* their slots at *@results and returns the number of items which were
* placed at *@results.
*
* The implementation is naive.
*
* Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
* be dereferenced with radix_tree_deref_slot, and if using only RCU
* protection, radix_tree_deref_slot may fail requiring a retry.
*/
unsigned int
radix_tree_gang_lookup_slot(struct radix_tree_root *root, void ***results,
unsigned long first_index, unsigned int max_items)
{
unsigned long max_index;
struct radix_tree_node *node;
unsigned long cur_index = first_index;
unsigned int ret;
node = rcu_dereference_raw(root->rnode);
if (!node)
return 0;
if (!radix_tree_is_indirect_ptr(node)) {
if (first_index > 0)
return 0;
results[0] = (void **)&root->rnode;
return 1;
}
node = indirect_to_ptr(node);
max_index = radix_tree_maxindex(node->height);
ret = 0;
while (ret < max_items) {
unsigned int slots_found;
unsigned long next_index; /* Index of next search */
if (cur_index > max_index)
break;
slots_found = __lookup(node, results + ret, cur_index,
max_items - ret, &next_index);
ret += slots_found;
if (next_index == 0)
break;
cur_index = next_index;
}
return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
/*
* FIXME: the two tag_get()s here should use find_next_bit() instead of
* open-coding the search.
*/
static unsigned int
__lookup_tag(struct radix_tree_node *slot, void ***results, unsigned long index,
unsigned int max_items, unsigned long *next_index, unsigned int tag)
{
unsigned int nr_found = 0;
unsigned int shift, height;
height = slot->height;
if (height == 0)
goto out;
shift = (height-1) * RADIX_TREE_MAP_SHIFT;
while (height > 0) {
unsigned long i = (index >> shift) & RADIX_TREE_MAP_MASK ;
for (;;) {
if (tag_get(slot, tag, i))
break;
index &= ~((1UL << shift) - 1);
index += 1UL << shift;
if (index == 0)
goto out; /* 32-bit wraparound */
i++;
if (i == RADIX_TREE_MAP_SIZE)
goto out;
}
height--;
if (height == 0) { /* Bottom level: grab some items */
unsigned long j = index & RADIX_TREE_MAP_MASK;
for ( ; j < RADIX_TREE_MAP_SIZE; j++) {
index++;
if (!tag_get(slot, tag, j))
continue;
/*
* Even though the tag was found set, we need to
* recheck that we have a non-NULL node, because
* if this lookup is lockless, it may have been
* subsequently deleted.
*
* Similar care must be taken in any place that
* lookup ->slots[x] without a lock (ie. can't
* rely on its value remaining the same).
*/
if (slot->slots[j]) {
results[nr_found++] = &(slot->slots[j]);
if (nr_found == max_items)
goto out;
}
}
}
shift -= RADIX_TREE_MAP_SHIFT;
slot = rcu_dereference_raw(slot->slots[i]);
if (slot == NULL)
break;
}
out:
*next_index = index;
return nr_found;
}
/**
* radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
* based on a tag
* @root: radix tree root
* @results: where the results of the lookup are placed
* @first_index: start the lookup from this key
* @max_items: place up to this many items at *results
* @tag: the tag index (< RADIX_TREE_MAX_TAGS)
*
* Performs an index-ascending scan of the tree for present items which
* have the tag indexed by @tag set. Places the items at *@results and
* returns the number of items which were placed at *@results.
*/
unsigned int
radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
unsigned long first_index, unsigned int max_items,
unsigned int tag)
{
struct radix_tree_node *node;
unsigned long max_index;
unsigned long cur_index = first_index;
unsigned int ret;
/* check the root's tag bit */
if (!root_tag_get(root, tag))
return 0;
node = rcu_dereference_raw(root->rnode);
if (!node)
return 0;
if (!radix_tree_is_indirect_ptr(node)) {
if (first_index > 0)
return 0;
results[0] = node;
return 1;
}
node = indirect_to_ptr(node);
max_index = radix_tree_maxindex(node->height);
ret = 0;
while (ret < max_items) {
unsigned int nr_found, slots_found, i;
unsigned long next_index; /* Index of next search */
if (cur_index > max_index)
break;
slots_found = __lookup_tag(node, (void ***)results + ret,
cur_index, max_items - ret, &next_index, tag);
nr_found = 0;
for (i = 0; i < slots_found; i++) {
struct radix_tree_node *slot;
slot = *(((void ***)results)[ret + i]);
if (!slot)
continue;
results[ret + nr_found] =
indirect_to_ptr(rcu_dereference_raw(slot));
nr_found++;
}
ret += nr_found;
if (next_index == 0)
break;
cur_index = next_index;
}
return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
/**
* radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
* radix tree based on a tag
* @root: radix tree root
* @results: where the results of the lookup are placed
* @first_index: start the lookup from this key
* @max_items: place up to this many items at *results
* @tag: the tag index (< RADIX_TREE_MAX_TAGS)
*
* Performs an index-ascending scan of the tree for present items which
* have the tag indexed by @tag set. Places the slots at *@results and
* returns the number of slots which were placed at *@results.
*/
unsigned int
radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
unsigned long first_index, unsigned int max_items,
unsigned int tag)
{
struct radix_tree_node *node;
unsigned long max_index;
unsigned long cur_index = first_index;
unsigned int ret;
/* check the root's tag bit */
if (!root_tag_get(root, tag))
return 0;
node = rcu_dereference_raw(root->rnode);
if (!node)
return 0;
if (!radix_tree_is_indirect_ptr(node)) {
if (first_index > 0)
return 0;
results[0] = (void **)&root->rnode;
return 1;
}
node = indirect_to_ptr(node);
max_index = radix_tree_maxindex(node->height);
ret = 0;
while (ret < max_items) {
unsigned int slots_found;
unsigned long next_index; /* Index of next search */
if (cur_index > max_index)
break;
slots_found = __lookup_tag(node, results + ret,
cur_index, max_items - ret, &next_index, tag);
ret += slots_found;
if (next_index == 0)
break;
cur_index = next_index;
}
return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
/**
* radix_tree_shrink - shrink height of a radix tree to minimal
* @root radix tree root
*/
static inline void radix_tree_shrink(struct radix_tree_root *root)
{
/* try to shrink tree height */
while (root->height > 0) {
struct radix_tree_node *to_free = root->rnode;
void *newptr;
BUG_ON(!radix_tree_is_indirect_ptr(to_free));
to_free = indirect_to_ptr(to_free);
/*
* The candidate node has more than one child, or its child
* is not at the leftmost slot, we cannot shrink.
*/
if (to_free->count != 1)
break;
if (!to_free->slots[0])
break;
/*
* We don't need rcu_assign_pointer(), since we are simply
* moving the node from one part of the tree to another: if it
* was safe to dereference the old pointer to it
* (to_free->slots[0]), it will be safe to dereference the new
* one (root->rnode) as far as dependent read barriers go.
*/
newptr = to_free->slots[0];
if (root->height > 1)
newptr = ptr_to_indirect(newptr);
root->rnode = newptr;
root->height--;
/*
* We have a dilemma here. The node's slot[0] must not be
* NULLed in case there are concurrent lookups expecting to
* find the item. However if this was a bottom-level node,
* then it may be subject to the slot pointer being visible
* to callers dereferencing it. If item corresponding to
* slot[0] is subsequently deleted, these callers would expect
* their slot to become empty sooner or later.
*
* For example, lockless pagecache will look up a slot, deref
* the page pointer, and if the page is 0 refcount it means it
* was concurrently deleted from pagecache so try the deref
* again. Fortunately there is already a requirement for logic
* to retry the entire slot lookup -- the indirect pointer
* problem (replacing direct root node with an indirect pointer
* also results in a stale slot). So tag the slot as indirect
* to force callers to retry.
*/
if (root->height == 0)
*((unsigned long *)&to_free->slots[0]) |=
RADIX_TREE_INDIRECT_PTR;
radix_tree_node_free(to_free);
}
}
/**
* radix_tree_delete - delete an item from a radix tree
* @root: radix tree root
* @index: index key
*
* Remove the item at @index from the radix tree rooted at @root.
*
* Returns the address of the deleted item, or NULL if it was not present.
*/
void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
{
/*
* The radix tree path needs to be one longer than the maximum path
* since the "list" is null terminated.
*/
struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
struct radix_tree_node *slot = NULL;
struct radix_tree_node *to_free;
unsigned int height, shift;
int tag;
int offset;
height = root->height;
if (index > radix_tree_maxindex(height))
goto out;
slot = root->rnode;
if (height == 0) {
root_tag_clear_all(root);
root->rnode = NULL;
goto out;
}
slot = indirect_to_ptr(slot);
shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
pathp->node = NULL;
do {
if (slot == NULL)
goto out;
pathp++;
offset = (index >> shift) & RADIX_TREE_MAP_MASK;
pathp->offset = offset;
pathp->node = slot;
slot = slot->slots[offset];
shift -= RADIX_TREE_MAP_SHIFT;
height--;
} while (height > 0);
if (slot == NULL)
goto out;
/*
* Clear all tags associated with the just-deleted item
*/
for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
if (tag_get(pathp->node, tag, pathp->offset))
radix_tree_tag_clear(root, index, tag);
}
to_free = NULL;
/* Now free the nodes we do not need anymore */
while (pathp->node) {
pathp->node->slots[pathp->offset] = NULL;
pathp->node->count--;
/*
* Queue the node for deferred freeing after the
* last reference to it disappears (set NULL, above).
*/
if (to_free)
radix_tree_node_free(to_free);
if (pathp->node->count) {
if (pathp->node == indirect_to_ptr(root->rnode))
radix_tree_shrink(root);
goto out;
}
/* Node with zero slots in use so free it */
to_free = pathp->node;
pathp--;
}
root_tag_clear_all(root);
root->height = 0;
root->rnode = NULL;
if (to_free)
radix_tree_node_free(to_free);
out:
return slot;
}
EXPORT_SYMBOL(radix_tree_delete);
/**
* radix_tree_tagged - test whether any items in the tree are tagged
* @root: radix tree root
* @tag: tag to test
*/
int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
{
return root_tag_get(root, tag);
}
EXPORT_SYMBOL(radix_tree_tagged);
static void
radix_tree_node_ctor(void *node)
{
memset(node, 0, sizeof(struct radix_tree_node));
}
static __init unsigned long __maxindex(unsigned int height)
{
unsigned int width = height * RADIX_TREE_MAP_SHIFT;
int shift = RADIX_TREE_INDEX_BITS - width;
if (shift < 0)
return ~0UL;
if (shift >= BITS_PER_LONG)
return 0UL;
return ~0UL >> shift;
}
static __init void radix_tree_init_maxindex(void)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
height_to_maxindex[i] = __maxindex(i);
}
static int radix_tree_callback(struct notifier_block *nfb,
unsigned long action,
void *hcpu)
{
int cpu = (long)hcpu;
struct radix_tree_preload *rtp;
/* Free per-cpu pool of perloaded nodes */
if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
rtp = &per_cpu(radix_tree_preloads, cpu);
while (rtp->nr) {
kmem_cache_free(radix_tree_node_cachep,
rtp->nodes[rtp->nr-1]);
rtp->nodes[rtp->nr-1] = NULL;
rtp->nr--;
}
}
return NOTIFY_OK;
}
void __init radix_tree_init(void)
{
radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
sizeof(struct radix_tree_node), 0,
SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
radix_tree_node_ctor);
radix_tree_init_maxindex();
hotcpu_notifier(radix_tree_callback, 0);
}