android_kernel_xiaomi_sm8350/arch/arm/mach-mx2/clock_imx27.c
Valentin Longchamp 679bfef0e3 MXC: fix reset for mx31, mx35 and mx27 SoCs
The clock name for the watchdog devices was not set consistently
with mx21 on these platforms, resulting in the reset not to work.

Signed-off-by: Valentin Longchamp <valentin.longchamp@epfl.ch>
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
2009-10-13 10:24:10 +02:00

763 lines
22 KiB
C

/*
* Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright 2008 Juergen Beisert, kernel@pengutronix.de
* Copyright 2008 Martin Fuzzey, mfuzzey@gmail.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <asm/clkdev.h>
#include <asm/div64.h>
#include <mach/clock.h>
#include <mach/common.h>
#include <mach/hardware.h>
/* Register offsets */
#define CCM_CSCR (IO_ADDRESS(CCM_BASE_ADDR) + 0x0)
#define CCM_MPCTL0 (IO_ADDRESS(CCM_BASE_ADDR) + 0x4)
#define CCM_MPCTL1 (IO_ADDRESS(CCM_BASE_ADDR) + 0x8)
#define CCM_SPCTL0 (IO_ADDRESS(CCM_BASE_ADDR) + 0xC)
#define CCM_SPCTL1 (IO_ADDRESS(CCM_BASE_ADDR) + 0x10)
#define CCM_OSC26MCTL (IO_ADDRESS(CCM_BASE_ADDR) + 0x14)
#define CCM_PCDR0 (IO_ADDRESS(CCM_BASE_ADDR) + 0x18)
#define CCM_PCDR1 (IO_ADDRESS(CCM_BASE_ADDR) + 0x1c)
#define CCM_PCCR0 (IO_ADDRESS(CCM_BASE_ADDR) + 0x20)
#define CCM_PCCR1 (IO_ADDRESS(CCM_BASE_ADDR) + 0x24)
#define CCM_CCSR (IO_ADDRESS(CCM_BASE_ADDR) + 0x28)
#define CCM_PMCTL (IO_ADDRESS(CCM_BASE_ADDR) + 0x2c)
#define CCM_PMCOUNT (IO_ADDRESS(CCM_BASE_ADDR) + 0x30)
#define CCM_WKGDCTL (IO_ADDRESS(CCM_BASE_ADDR) + 0x34)
#define CCM_CSCR_UPDATE_DIS (1 << 31)
#define CCM_CSCR_SSI2 (1 << 23)
#define CCM_CSCR_SSI1 (1 << 22)
#define CCM_CSCR_VPU (1 << 21)
#define CCM_CSCR_MSHC (1 << 20)
#define CCM_CSCR_SPLLRES (1 << 19)
#define CCM_CSCR_MPLLRES (1 << 18)
#define CCM_CSCR_SP (1 << 17)
#define CCM_CSCR_MCU (1 << 16)
#define CCM_CSCR_OSC26MDIV (1 << 4)
#define CCM_CSCR_OSC26M (1 << 3)
#define CCM_CSCR_FPM (1 << 2)
#define CCM_CSCR_SPEN (1 << 1)
#define CCM_CSCR_MPEN (1 << 0)
/* i.MX27 TO 2+ */
#define CCM_CSCR_ARM_SRC (1 << 15)
#define CCM_SPCTL1_LF (1 << 15)
#define CCM_SPCTL1_BRMO (1 << 6)
static struct clk mpll_main1_clk, mpll_main2_clk;
static int clk_pccr_enable(struct clk *clk)
{
unsigned long reg;
if (!clk->enable_reg)
return 0;
reg = __raw_readl(clk->enable_reg);
reg |= 1 << clk->enable_shift;
__raw_writel(reg, clk->enable_reg);
return 0;
}
static void clk_pccr_disable(struct clk *clk)
{
unsigned long reg;
if (!clk->enable_reg)
return;
reg = __raw_readl(clk->enable_reg);
reg &= ~(1 << clk->enable_shift);
__raw_writel(reg, clk->enable_reg);
}
static int clk_spll_enable(struct clk *clk)
{
unsigned long reg;
reg = __raw_readl(CCM_CSCR);
reg |= CCM_CSCR_SPEN;
__raw_writel(reg, CCM_CSCR);
while (!(__raw_readl(CCM_SPCTL1) & CCM_SPCTL1_LF));
return 0;
}
static void clk_spll_disable(struct clk *clk)
{
unsigned long reg;
reg = __raw_readl(CCM_CSCR);
reg &= ~CCM_CSCR_SPEN;
__raw_writel(reg, CCM_CSCR);
}
static int clk_cpu_set_parent(struct clk *clk, struct clk *parent)
{
int cscr = __raw_readl(CCM_CSCR);
if (clk->parent == parent)
return 0;
if (mx27_revision() >= CHIP_REV_2_0) {
if (parent == &mpll_main1_clk) {
cscr |= CCM_CSCR_ARM_SRC;
} else {
if (parent == &mpll_main2_clk)
cscr &= ~CCM_CSCR_ARM_SRC;
else
return -EINVAL;
}
__raw_writel(cscr, CCM_CSCR);
clk->parent = parent;
return 0;
}
return -ENODEV;
}
static unsigned long round_rate_cpu(struct clk *clk, unsigned long rate)
{
int div;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
div = parent_rate / rate;
if (parent_rate % rate)
div++;
if (div > 4)
div = 4;
return parent_rate / div;
}
static int set_rate_cpu(struct clk *clk, unsigned long rate)
{
unsigned int div;
uint32_t reg;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
div = parent_rate / rate;
if (div > 4 || div < 1 || ((parent_rate / div) != rate))
return -EINVAL;
div--;
reg = __raw_readl(CCM_CSCR);
if (mx27_revision() >= CHIP_REV_2_0) {
reg &= ~(3 << 12);
reg |= div << 12;
reg &= ~(CCM_CSCR_FPM | CCM_CSCR_SPEN);
__raw_writel(reg | CCM_CSCR_UPDATE_DIS, CCM_CSCR);
} else {
printk(KERN_ERR "Can't set CPU frequency!\n");
}
return 0;
}
static unsigned long round_rate_per(struct clk *clk, unsigned long rate)
{
u32 div;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
div = parent_rate / rate;
if (parent_rate % rate)
div++;
if (div > 64)
div = 64;
return parent_rate / div;
}
static int set_rate_per(struct clk *clk, unsigned long rate)
{
u32 reg;
u32 div;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
if (clk->id < 0 || clk->id > 3)
return -EINVAL;
div = parent_rate / rate;
if (div > 64 || div < 1 || ((parent_rate / div) != rate))
return -EINVAL;
div--;
reg = __raw_readl(CCM_PCDR1) & ~(0x3f << (clk->id << 3));
reg |= div << (clk->id << 3);
__raw_writel(reg, CCM_PCDR1);
return 0;
}
static unsigned long get_rate_usb(struct clk *clk)
{
unsigned long usb_pdf;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
usb_pdf = (__raw_readl(CCM_CSCR) >> 28) & 0x7;
return parent_rate / (usb_pdf + 1U);
}
static unsigned long get_rate_ssix(struct clk *clk, unsigned long pdf)
{
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
if (mx27_revision() >= CHIP_REV_2_0)
pdf += 4; /* MX27 TO2+ */
else
pdf = (pdf < 2) ? 124UL : pdf; /* MX21 & MX27 TO1 */
return 2UL * parent_rate / pdf;
}
static unsigned long get_rate_ssi1(struct clk *clk)
{
return get_rate_ssix(clk, (__raw_readl(CCM_PCDR0) >> 16) & 0x3f);
}
static unsigned long get_rate_ssi2(struct clk *clk)
{
return get_rate_ssix(clk, (__raw_readl(CCM_PCDR0) >> 26) & 0x3f);
}
static unsigned long get_rate_nfc(struct clk *clk)
{
unsigned long nfc_pdf;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
if (mx27_revision() >= CHIP_REV_2_0)
nfc_pdf = (__raw_readl(CCM_PCDR0) >> 6) & 0xf;
else
nfc_pdf = (__raw_readl(CCM_PCDR0) >> 12) & 0xf;
return parent_rate / (nfc_pdf + 1);
}
static unsigned long get_rate_vpu(struct clk *clk)
{
unsigned long vpu_pdf;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
if (mx27_revision() >= CHIP_REV_2_0) {
vpu_pdf = (__raw_readl(CCM_PCDR0) >> 10) & 0x3f;
vpu_pdf += 4;
} else {
vpu_pdf = (__raw_readl(CCM_PCDR0) >> 8) & 0xf;
vpu_pdf = (vpu_pdf < 2) ? 124 : vpu_pdf;
}
return 2UL * parent_rate / vpu_pdf;
}
static unsigned long round_rate_parent(struct clk *clk, unsigned long rate)
{
return clk->parent->round_rate(clk->parent, rate);
}
static unsigned long get_rate_parent(struct clk *clk)
{
return clk_get_rate(clk->parent);
}
static int set_rate_parent(struct clk *clk, unsigned long rate)
{
return clk->parent->set_rate(clk->parent, rate);
}
/* in Hz */
static unsigned long external_high_reference = 26000000;
static unsigned long get_rate_high_reference(struct clk *clk)
{
return external_high_reference;
}
/* in Hz */
static unsigned long external_low_reference = 32768;
static unsigned long get_rate_low_reference(struct clk *clk)
{
return external_low_reference;
}
static unsigned long get_rate_fpm(struct clk *clk)
{
return clk_get_rate(clk->parent) * 1024;
}
static unsigned long get_rate_mpll(struct clk *clk)
{
return mxc_decode_pll(__raw_readl(CCM_MPCTL0),
clk_get_rate(clk->parent));
}
static unsigned long get_rate_mpll_main(struct clk *clk)
{
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
/* i.MX27 TO2:
* clk->id == 0: arm clock source path 1 which is from 2 * MPLL / 2
* clk->id == 1: arm clock source path 2 which is from 2 * MPLL / 3
*/
if (mx27_revision() >= CHIP_REV_2_0 && clk->id == 1)
return 2UL * parent_rate / 3UL;
return parent_rate;
}
static unsigned long get_rate_spll(struct clk *clk)
{
uint32_t reg;
unsigned long rate;
rate = clk_get_rate(clk->parent);
reg = __raw_readl(CCM_SPCTL0);
/* On TO2 we have to write the value back. Otherwise we
* read 0 from this register the next time.
*/
if (mx27_revision() >= CHIP_REV_2_0)
__raw_writel(reg, CCM_SPCTL0);
return mxc_decode_pll(reg, rate);
}
static unsigned long get_rate_cpu(struct clk *clk)
{
u32 div;
unsigned long rate;
if (mx27_revision() >= CHIP_REV_2_0)
div = (__raw_readl(CCM_CSCR) >> 12) & 0x3;
else
div = (__raw_readl(CCM_CSCR) >> 13) & 0x7;
rate = clk_get_rate(clk->parent);
return rate / (div + 1);
}
static unsigned long get_rate_ahb(struct clk *clk)
{
unsigned long rate, bclk_pdf;
if (mx27_revision() >= CHIP_REV_2_0)
bclk_pdf = (__raw_readl(CCM_CSCR) >> 8) & 0x3;
else
bclk_pdf = (__raw_readl(CCM_CSCR) >> 9) & 0xf;
rate = clk_get_rate(clk->parent);
return rate / (bclk_pdf + 1);
}
static unsigned long get_rate_ipg(struct clk *clk)
{
unsigned long rate, ipg_pdf;
if (mx27_revision() >= CHIP_REV_2_0)
return clk_get_rate(clk->parent);
else
ipg_pdf = (__raw_readl(CCM_CSCR) >> 8) & 1;
rate = clk_get_rate(clk->parent);
return rate / (ipg_pdf + 1);
}
static unsigned long get_rate_per(struct clk *clk)
{
unsigned long perclk_pdf, parent_rate;
parent_rate = clk_get_rate(clk->parent);
if (clk->id < 0 || clk->id > 3)
return 0;
perclk_pdf = (__raw_readl(CCM_PCDR1) >> (clk->id << 3)) & 0x3f;
return parent_rate / (perclk_pdf + 1);
}
/*
* the high frequency external clock reference
* Default case is 26MHz. Could be changed at runtime
* with a call to change_external_high_reference()
*/
static struct clk ckih_clk = {
.get_rate = get_rate_high_reference,
};
static struct clk mpll_clk = {
.parent = &ckih_clk,
.get_rate = get_rate_mpll,
};
/* For i.MX27 TO2, it is the MPLL path 1 of ARM core
* It provides the clock source whose rate is same as MPLL
*/
static struct clk mpll_main1_clk = {
.id = 0,
.parent = &mpll_clk,
.get_rate = get_rate_mpll_main,
};
/* For i.MX27 TO2, it is the MPLL path 2 of ARM core
* It provides the clock source whose rate is same MPLL * 2 / 3
*/
static struct clk mpll_main2_clk = {
.id = 1,
.parent = &mpll_clk,
.get_rate = get_rate_mpll_main,
};
static struct clk ahb_clk = {
.parent = &mpll_main2_clk,
.get_rate = get_rate_ahb,
};
static struct clk ipg_clk = {
.parent = &ahb_clk,
.get_rate = get_rate_ipg,
};
static struct clk cpu_clk = {
.parent = &mpll_main2_clk,
.set_parent = clk_cpu_set_parent,
.round_rate = round_rate_cpu,
.get_rate = get_rate_cpu,
.set_rate = set_rate_cpu,
};
static struct clk spll_clk = {
.parent = &ckih_clk,
.get_rate = get_rate_spll,
.enable = clk_spll_enable,
.disable = clk_spll_disable,
};
/*
* the low frequency external clock reference
* Default case is 32.768kHz.
*/
static struct clk ckil_clk = {
.get_rate = get_rate_low_reference,
};
/* Output of frequency pre multiplier */
static struct clk fpm_clk = {
.parent = &ckil_clk,
.get_rate = get_rate_fpm,
};
#define PCCR0 CCM_PCCR0
#define PCCR1 CCM_PCCR1
#define DEFINE_CLOCK(name, i, er, es, gr, s, p) \
static struct clk name = { \
.id = i, \
.enable_reg = er, \
.enable_shift = es, \
.get_rate = gr, \
.enable = clk_pccr_enable, \
.disable = clk_pccr_disable, \
.secondary = s, \
.parent = p, \
}
#define DEFINE_CLOCK1(name, i, er, es, getsetround, s, p) \
static struct clk name = { \
.id = i, \
.enable_reg = er, \
.enable_shift = es, \
.get_rate = get_rate_##getsetround, \
.set_rate = set_rate_##getsetround, \
.round_rate = round_rate_##getsetround, \
.enable = clk_pccr_enable, \
.disable = clk_pccr_disable, \
.secondary = s, \
.parent = p, \
}
/* Forward declaration to keep the following list in order */
static struct clk slcdc_clk1, sahara2_clk1, rtic_clk1, fec_clk1, emma_clk1,
dma_clk1, lcdc_clk2, vpu_clk1;
/* All clocks we can gate through PCCRx in the order of PCCRx bits */
DEFINE_CLOCK(ssi2_clk1, 1, PCCR0, 0, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(ssi1_clk1, 0, PCCR0, 1, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(slcdc_clk, 0, PCCR0, 2, NULL, &slcdc_clk1, &ahb_clk);
DEFINE_CLOCK(sdhc3_clk1, 0, PCCR0, 3, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(sdhc2_clk1, 0, PCCR0, 4, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(sdhc1_clk1, 0, PCCR0, 5, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(scc_clk, 0, PCCR0, 6, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(sahara2_clk, 0, PCCR0, 7, NULL, &sahara2_clk1, &ahb_clk);
DEFINE_CLOCK(rtic_clk, 0, PCCR0, 8, NULL, &rtic_clk1, &ahb_clk);
DEFINE_CLOCK(rtc_clk, 0, PCCR0, 9, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(pwm_clk1, 0, PCCR0, 11, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(owire_clk, 0, PCCR0, 12, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(mstick_clk1, 0, PCCR0, 13, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(lcdc_clk1, 0, PCCR0, 14, NULL, &lcdc_clk2, &ipg_clk);
DEFINE_CLOCK(kpp_clk, 0, PCCR0, 15, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(iim_clk, 0, PCCR0, 16, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(i2c2_clk, 1, PCCR0, 17, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(i2c1_clk, 0, PCCR0, 18, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(gpt6_clk1, 0, PCCR0, 29, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(gpt5_clk1, 0, PCCR0, 20, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(gpt4_clk1, 0, PCCR0, 21, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(gpt3_clk1, 0, PCCR0, 22, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(gpt2_clk1, 0, PCCR0, 23, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(gpt1_clk1, 0, PCCR0, 24, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(gpio_clk, 0, PCCR0, 25, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(fec_clk, 0, PCCR0, 26, NULL, &fec_clk1, &ahb_clk);
DEFINE_CLOCK(emma_clk, 0, PCCR0, 27, NULL, &emma_clk1, &ahb_clk);
DEFINE_CLOCK(dma_clk, 0, PCCR0, 28, NULL, &dma_clk1, &ahb_clk);
DEFINE_CLOCK(cspi13_clk1, 0, PCCR0, 29, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(cspi2_clk1, 0, PCCR0, 30, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(cspi1_clk1, 0, PCCR0, 31, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(mstick_clk, 0, PCCR1, 2, NULL, &mstick_clk1, &ipg_clk);
DEFINE_CLOCK(nfc_clk, 0, PCCR1, 3, get_rate_nfc, NULL, &cpu_clk);
DEFINE_CLOCK(ssi2_clk, 1, PCCR1, 4, get_rate_ssi2, &ssi2_clk1, &mpll_main2_clk);
DEFINE_CLOCK(ssi1_clk, 0, PCCR1, 5, get_rate_ssi1, &ssi1_clk1, &mpll_main2_clk);
DEFINE_CLOCK(vpu_clk, 0, PCCR1, 6, get_rate_vpu, &vpu_clk1, &mpll_main2_clk);
DEFINE_CLOCK1(per4_clk, 3, PCCR1, 7, per, NULL, &mpll_main2_clk);
DEFINE_CLOCK1(per3_clk, 2, PCCR1, 8, per, NULL, &mpll_main2_clk);
DEFINE_CLOCK1(per2_clk, 1, PCCR1, 9, per, NULL, &mpll_main2_clk);
DEFINE_CLOCK1(per1_clk, 0, PCCR1, 10, per, NULL, &mpll_main2_clk);
DEFINE_CLOCK(usb_clk1, 0, PCCR1, 11, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(slcdc_clk1, 0, PCCR1, 12, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(sahara2_clk1, 0, PCCR1, 13, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(rtic_clk1, 0, PCCR1, 14, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(lcdc_clk2, 0, PCCR1, 15, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(vpu_clk1, 0, PCCR1, 16, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(fec_clk1, 0, PCCR1, 17, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(emma_clk1, 0, PCCR1, 18, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(emi_clk, 0, PCCR1, 19, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(dma_clk1, 0, PCCR1, 20, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(csi_clk1, 0, PCCR1, 21, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(brom_clk, 0, PCCR1, 22, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(ata_clk, 0, PCCR1, 23, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(wdog_clk, 0, PCCR1, 24, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(usb_clk, 0, PCCR1, 25, get_rate_usb, &usb_clk1, &spll_clk);
DEFINE_CLOCK(uart6_clk1, 0, PCCR1, 26, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(uart5_clk1, 0, PCCR1, 27, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(uart4_clk1, 0, PCCR1, 28, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(uart3_clk1, 0, PCCR1, 29, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(uart2_clk1, 0, PCCR1, 30, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(uart1_clk1, 0, PCCR1, 31, NULL, NULL, &ipg_clk);
/* Clocks we cannot directly gate, but drivers need their rates */
DEFINE_CLOCK(cspi1_clk, 0, 0, 0, NULL, &cspi1_clk1, &per2_clk);
DEFINE_CLOCK(cspi2_clk, 1, 0, 0, NULL, &cspi2_clk1, &per2_clk);
DEFINE_CLOCK(cspi3_clk, 2, 0, 0, NULL, &cspi13_clk1, &per2_clk);
DEFINE_CLOCK(sdhc1_clk, 0, 0, 0, NULL, &sdhc1_clk1, &per2_clk);
DEFINE_CLOCK(sdhc2_clk, 1, 0, 0, NULL, &sdhc2_clk1, &per2_clk);
DEFINE_CLOCK(sdhc3_clk, 2, 0, 0, NULL, &sdhc3_clk1, &per2_clk);
DEFINE_CLOCK(pwm_clk, 0, 0, 0, NULL, &pwm_clk1, &per1_clk);
DEFINE_CLOCK(gpt1_clk, 0, 0, 0, NULL, &gpt1_clk1, &per1_clk);
DEFINE_CLOCK(gpt2_clk, 1, 0, 0, NULL, &gpt2_clk1, &per1_clk);
DEFINE_CLOCK(gpt3_clk, 2, 0, 0, NULL, &gpt3_clk1, &per1_clk);
DEFINE_CLOCK(gpt4_clk, 3, 0, 0, NULL, &gpt4_clk1, &per1_clk);
DEFINE_CLOCK(gpt5_clk, 4, 0, 0, NULL, &gpt5_clk1, &per1_clk);
DEFINE_CLOCK(gpt6_clk, 5, 0, 0, NULL, &gpt6_clk1, &per1_clk);
DEFINE_CLOCK(uart1_clk, 0, 0, 0, NULL, &uart1_clk1, &per1_clk);
DEFINE_CLOCK(uart2_clk, 1, 0, 0, NULL, &uart2_clk1, &per1_clk);
DEFINE_CLOCK(uart3_clk, 2, 0, 0, NULL, &uart3_clk1, &per1_clk);
DEFINE_CLOCK(uart4_clk, 3, 0, 0, NULL, &uart4_clk1, &per1_clk);
DEFINE_CLOCK(uart5_clk, 4, 0, 0, NULL, &uart5_clk1, &per1_clk);
DEFINE_CLOCK(uart6_clk, 5, 0, 0, NULL, &uart6_clk1, &per1_clk);
DEFINE_CLOCK1(lcdc_clk, 0, 0, 0, parent, &lcdc_clk1, &per3_clk);
DEFINE_CLOCK1(csi_clk, 0, 0, 0, parent, &csi_clk1, &per4_clk);
#define _REGISTER_CLOCK(d, n, c) \
{ \
.dev_id = d, \
.con_id = n, \
.clk = &c, \
},
static struct clk_lookup lookups[] = {
_REGISTER_CLOCK("imx-uart.0", NULL, uart1_clk)
_REGISTER_CLOCK("imx-uart.1", NULL, uart2_clk)
_REGISTER_CLOCK("imx-uart.2", NULL, uart3_clk)
_REGISTER_CLOCK("imx-uart.3", NULL, uart4_clk)
_REGISTER_CLOCK("imx-uart.4", NULL, uart5_clk)
_REGISTER_CLOCK("imx-uart.5", NULL, uart6_clk)
_REGISTER_CLOCK(NULL, "gpt1", gpt1_clk)
_REGISTER_CLOCK(NULL, "gpt2", gpt2_clk)
_REGISTER_CLOCK(NULL, "gpt3", gpt3_clk)
_REGISTER_CLOCK(NULL, "gpt4", gpt4_clk)
_REGISTER_CLOCK(NULL, "gpt5", gpt5_clk)
_REGISTER_CLOCK(NULL, "gpt6", gpt6_clk)
_REGISTER_CLOCK("mxc_pwm.0", NULL, pwm_clk)
_REGISTER_CLOCK("mxc-mmc.0", NULL, sdhc1_clk)
_REGISTER_CLOCK("mxc-mmc.1", NULL, sdhc2_clk)
_REGISTER_CLOCK("mxc-mmc.2", NULL, sdhc3_clk)
_REGISTER_CLOCK("spi_imx.0", NULL, cspi1_clk)
_REGISTER_CLOCK("spi_imx.1", NULL, cspi2_clk)
_REGISTER_CLOCK("spi_imx.2", NULL, cspi3_clk)
_REGISTER_CLOCK("imx-fb.0", NULL, lcdc_clk)
_REGISTER_CLOCK(NULL, "csi", csi_clk)
_REGISTER_CLOCK("fsl-usb2-udc", "usb", usb_clk)
_REGISTER_CLOCK("fsl-usb2-udc", "usb_ahb", usb_clk1)
_REGISTER_CLOCK("mxc-ehci.0", "usb", usb_clk)
_REGISTER_CLOCK("mxc-ehci.0", "usb_ahb", usb_clk1)
_REGISTER_CLOCK("mxc-ehci.1", "usb", usb_clk)
_REGISTER_CLOCK("mxc-ehci.1", "usb_ahb", usb_clk1)
_REGISTER_CLOCK("mxc-ehci.2", "usb", usb_clk)
_REGISTER_CLOCK("mxc-ehci.2", "usb_ahb", usb_clk1)
_REGISTER_CLOCK(NULL, "ssi1", ssi1_clk)
_REGISTER_CLOCK(NULL, "ssi2", ssi2_clk)
_REGISTER_CLOCK("mxc_nand.0", NULL, nfc_clk)
_REGISTER_CLOCK(NULL, "vpu", vpu_clk)
_REGISTER_CLOCK(NULL, "dma", dma_clk)
_REGISTER_CLOCK(NULL, "rtic", rtic_clk)
_REGISTER_CLOCK(NULL, "brom", brom_clk)
_REGISTER_CLOCK(NULL, "emma", emma_clk)
_REGISTER_CLOCK(NULL, "slcdc", slcdc_clk)
_REGISTER_CLOCK("fec.0", NULL, fec_clk)
_REGISTER_CLOCK(NULL, "emi", emi_clk)
_REGISTER_CLOCK(NULL, "sahara2", sahara2_clk)
_REGISTER_CLOCK(NULL, "ata", ata_clk)
_REGISTER_CLOCK(NULL, "mstick", mstick_clk)
_REGISTER_CLOCK("imx-wdt.0", NULL, wdog_clk)
_REGISTER_CLOCK(NULL, "gpio", gpio_clk)
_REGISTER_CLOCK("imx-i2c.0", NULL, i2c1_clk)
_REGISTER_CLOCK("imx-i2c.1", NULL, i2c2_clk)
_REGISTER_CLOCK(NULL, "iim", iim_clk)
_REGISTER_CLOCK(NULL, "kpp", kpp_clk)
_REGISTER_CLOCK("mxc_w1.0", NULL, owire_clk)
_REGISTER_CLOCK(NULL, "rtc", rtc_clk)
_REGISTER_CLOCK(NULL, "scc", scc_clk)
};
/* Adjust the clock path for TO2 and later */
static void __init to2_adjust_clocks(void)
{
unsigned long cscr = __raw_readl(CCM_CSCR);
if (mx27_revision() >= CHIP_REV_2_0) {
if (cscr & CCM_CSCR_ARM_SRC)
cpu_clk.parent = &mpll_main1_clk;
if (!(cscr & CCM_CSCR_SSI2))
ssi1_clk.parent = &spll_clk;
if (!(cscr & CCM_CSCR_SSI1))
ssi1_clk.parent = &spll_clk;
if (!(cscr & CCM_CSCR_VPU))
vpu_clk.parent = &spll_clk;
} else {
cpu_clk.parent = &mpll_clk;
cpu_clk.set_parent = NULL;
cpu_clk.round_rate = NULL;
cpu_clk.set_rate = NULL;
ahb_clk.parent = &mpll_clk;
per1_clk.parent = &mpll_clk;
per2_clk.parent = &mpll_clk;
per3_clk.parent = &mpll_clk;
per4_clk.parent = &mpll_clk;
ssi1_clk.parent = &mpll_clk;
ssi2_clk.parent = &mpll_clk;
vpu_clk.parent = &mpll_clk;
}
}
/*
* must be called very early to get information about the
* available clock rate when the timer framework starts
*/
int __init mx27_clocks_init(unsigned long fref)
{
u32 cscr = __raw_readl(CCM_CSCR);
int i;
external_high_reference = fref;
/* detect clock reference for both system PLLs */
if (cscr & CCM_CSCR_MCU)
mpll_clk.parent = &ckih_clk;
else
mpll_clk.parent = &fpm_clk;
if (cscr & CCM_CSCR_SP)
spll_clk.parent = &ckih_clk;
else
spll_clk.parent = &fpm_clk;
to2_adjust_clocks();
for (i = 0; i < ARRAY_SIZE(lookups); i++)
clkdev_add(&lookups[i]);
/* Turn off all clocks we do not need */
__raw_writel(0, CCM_PCCR0);
__raw_writel((1 << 10) | (1 << 19), CCM_PCCR1);
spll_clk.disable(&spll_clk);
/* enable basic clocks */
clk_enable(&per1_clk);
clk_enable(&gpio_clk);
clk_enable(&emi_clk);
clk_enable(&iim_clk);
#ifdef CONFIG_DEBUG_LL_CONSOLE
clk_enable(&uart1_clk);
#endif
mxc_timer_init(&gpt1_clk, IO_ADDRESS(GPT1_BASE_ADDR), MXC_INT_GPT1);
return 0;
}