android_kernel_xiaomi_sm8350/arch/powerpc/boot/4xx.c
Roel Kluin e080296751 [POWERPC] 4xx: logical/bitand typo in powerpc/boot/4xx.c
logical/bitand typo

Signed-off-by: Roel Kluin <12o3l@tiscali.nl>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
2008-01-25 07:13:39 -06:00

611 lines
15 KiB
C

/*
* Copyright 2007 David Gibson, IBM Corporation.
*
* Based on earlier code:
* Matt Porter <mporter@kernel.crashing.org>
* Copyright 2002-2005 MontaVista Software Inc.
*
* Eugene Surovegin <eugene.surovegin@zultys.com> or <ebs@ebshome.net>
* Copyright (c) 2003, 2004 Zultys Technologies
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <stddef.h>
#include "types.h"
#include "string.h"
#include "stdio.h"
#include "ops.h"
#include "reg.h"
#include "dcr.h"
/* Read the 4xx SDRAM controller to get size of system memory. */
void ibm4xx_sdram_fixup_memsize(void)
{
int i;
unsigned long memsize, bank_config;
memsize = 0;
for (i = 0; i < ARRAY_SIZE(sdram_bxcr); i++) {
bank_config = SDRAM0_READ(sdram_bxcr[i]);
if (bank_config & SDRAM_CONFIG_BANK_ENABLE)
memsize += SDRAM_CONFIG_BANK_SIZE(bank_config);
}
dt_fixup_memory(0, memsize);
}
/* Read the 440SPe MQ controller to get size of system memory. */
#define DCRN_MQ0_B0BAS 0x40
#define DCRN_MQ0_B1BAS 0x41
#define DCRN_MQ0_B2BAS 0x42
#define DCRN_MQ0_B3BAS 0x43
static u64 ibm440spe_decode_bas(u32 bas)
{
u64 base = ((u64)(bas & 0xFFE00000u)) << 2;
/* open coded because I'm paranoid about invalid values */
switch ((bas >> 4) & 0xFFF) {
case 0:
return 0;
case 0xffc:
return base + 0x000800000ull;
case 0xff8:
return base + 0x001000000ull;
case 0xff0:
return base + 0x002000000ull;
case 0xfe0:
return base + 0x004000000ull;
case 0xfc0:
return base + 0x008000000ull;
case 0xf80:
return base + 0x010000000ull;
case 0xf00:
return base + 0x020000000ull;
case 0xe00:
return base + 0x040000000ull;
case 0xc00:
return base + 0x080000000ull;
case 0x800:
return base + 0x100000000ull;
}
printf("Memory BAS value 0x%08x unsupported !\n", bas);
return 0;
}
void ibm440spe_fixup_memsize(void)
{
u64 banktop, memsize = 0;
/* Ultimately, we should directly construct the memory node
* so we are able to handle holes in the memory address space
*/
banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B0BAS));
if (banktop > memsize)
memsize = banktop;
banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B1BAS));
if (banktop > memsize)
memsize = banktop;
banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B2BAS));
if (banktop > memsize)
memsize = banktop;
banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B3BAS));
if (banktop > memsize)
memsize = banktop;
dt_fixup_memory(0, memsize);
}
/* 4xx DDR1/2 Denali memory controller support */
/* DDR0 registers */
#define DDR0_02 2
#define DDR0_08 8
#define DDR0_10 10
#define DDR0_14 14
#define DDR0_42 42
#define DDR0_43 43
/* DDR0_02 */
#define DDR_START 0x1
#define DDR_START_SHIFT 0
#define DDR_MAX_CS_REG 0x3
#define DDR_MAX_CS_REG_SHIFT 24
#define DDR_MAX_COL_REG 0xf
#define DDR_MAX_COL_REG_SHIFT 16
#define DDR_MAX_ROW_REG 0xf
#define DDR_MAX_ROW_REG_SHIFT 8
/* DDR0_08 */
#define DDR_DDR2_MODE 0x1
#define DDR_DDR2_MODE_SHIFT 0
/* DDR0_10 */
#define DDR_CS_MAP 0x3
#define DDR_CS_MAP_SHIFT 8
/* DDR0_14 */
#define DDR_REDUC 0x1
#define DDR_REDUC_SHIFT 16
/* DDR0_42 */
#define DDR_APIN 0x7
#define DDR_APIN_SHIFT 24
/* DDR0_43 */
#define DDR_COL_SZ 0x7
#define DDR_COL_SZ_SHIFT 8
#define DDR_BANK8 0x1
#define DDR_BANK8_SHIFT 0
#define DDR_GET_VAL(val, mask, shift) (((val) >> (shift)) & (mask))
void ibm4xx_denali_fixup_memsize(void)
{
u32 val, max_cs, max_col, max_row;
u32 cs, col, row, bank, dpath;
unsigned long memsize;
val = SDRAM0_READ(DDR0_02);
if (!DDR_GET_VAL(val, DDR_START, DDR_START_SHIFT))
fatal("DDR controller is not initialized\n");
/* get maximum cs col and row values */
max_cs = DDR_GET_VAL(val, DDR_MAX_CS_REG, DDR_MAX_CS_REG_SHIFT);
max_col = DDR_GET_VAL(val, DDR_MAX_COL_REG, DDR_MAX_COL_REG_SHIFT);
max_row = DDR_GET_VAL(val, DDR_MAX_ROW_REG, DDR_MAX_ROW_REG_SHIFT);
/* get CS value */
val = SDRAM0_READ(DDR0_10);
val = DDR_GET_VAL(val, DDR_CS_MAP, DDR_CS_MAP_SHIFT);
cs = 0;
while (val) {
if (val & 0x1)
cs++;
val = val >> 1;
}
if (!cs)
fatal("No memory installed\n");
if (cs > max_cs)
fatal("DDR wrong CS configuration\n");
/* get data path bytes */
val = SDRAM0_READ(DDR0_14);
if (DDR_GET_VAL(val, DDR_REDUC, DDR_REDUC_SHIFT))
dpath = 8; /* 64 bits */
else
dpath = 4; /* 32 bits */
/* get address pins (rows) */
val = SDRAM0_READ(DDR0_42);
row = DDR_GET_VAL(val, DDR_APIN, DDR_APIN_SHIFT);
if (row > max_row)
fatal("DDR wrong APIN configuration\n");
row = max_row - row;
/* get collomn size and banks */
val = SDRAM0_READ(DDR0_43);
col = DDR_GET_VAL(val, DDR_COL_SZ, DDR_COL_SZ_SHIFT);
if (col > max_col)
fatal("DDR wrong COL configuration\n");
col = max_col - col;
if (DDR_GET_VAL(val, DDR_BANK8, DDR_BANK8_SHIFT))
bank = 8; /* 8 banks */
else
bank = 4; /* 4 banks */
memsize = cs * (1 << (col+row)) * bank * dpath;
dt_fixup_memory(0, memsize);
}
#define SPRN_DBCR0_40X 0x3F2
#define SPRN_DBCR0_44X 0x134
#define DBCR0_RST_SYSTEM 0x30000000
void ibm44x_dbcr_reset(void)
{
unsigned long tmp;
asm volatile (
"mfspr %0,%1\n"
"oris %0,%0,%2@h\n"
"mtspr %1,%0"
: "=&r"(tmp) : "i"(SPRN_DBCR0_44X), "i"(DBCR0_RST_SYSTEM)
);
}
void ibm40x_dbcr_reset(void)
{
unsigned long tmp;
asm volatile (
"mfspr %0,%1\n"
"oris %0,%0,%2@h\n"
"mtspr %1,%0"
: "=&r"(tmp) : "i"(SPRN_DBCR0_40X), "i"(DBCR0_RST_SYSTEM)
);
}
#define EMAC_RESET 0x20000000
void ibm4xx_quiesce_eth(u32 *emac0, u32 *emac1)
{
/* Quiesce the MAL and EMAC(s) since PIBS/OpenBIOS don't
* do this for us
*/
if (emac0)
*emac0 = EMAC_RESET;
if (emac1)
*emac1 = EMAC_RESET;
mtdcr(DCRN_MAL0_CFG, MAL_RESET);
while (mfdcr(DCRN_MAL0_CFG) & MAL_RESET)
; /* loop until reset takes effect */
}
/* Read 4xx EBC bus bridge registers to get mappings of the peripheral
* banks into the OPB address space */
void ibm4xx_fixup_ebc_ranges(const char *ebc)
{
void *devp;
u32 bxcr;
u32 ranges[EBC_NUM_BANKS*4];
u32 *p = ranges;
int i;
for (i = 0; i < EBC_NUM_BANKS; i++) {
mtdcr(DCRN_EBC0_CFGADDR, EBC_BXCR(i));
bxcr = mfdcr(DCRN_EBC0_CFGDATA);
if ((bxcr & EBC_BXCR_BU) != EBC_BXCR_BU_OFF) {
*p++ = i;
*p++ = 0;
*p++ = bxcr & EBC_BXCR_BAS;
*p++ = EBC_BXCR_BANK_SIZE(bxcr);
}
}
devp = finddevice(ebc);
if (! devp)
fatal("Couldn't locate EBC node %s\n\r", ebc);
setprop(devp, "ranges", ranges, (p - ranges) * sizeof(u32));
}
/* Calculate 440GP clocks */
void ibm440gp_fixup_clocks(unsigned int sys_clk, unsigned int ser_clk)
{
u32 sys0 = mfdcr(DCRN_CPC0_SYS0);
u32 cr0 = mfdcr(DCRN_CPC0_CR0);
u32 cpu, plb, opb, ebc, tb, uart0, uart1, m;
u32 opdv = CPC0_SYS0_OPDV(sys0);
u32 epdv = CPC0_SYS0_EPDV(sys0);
if (sys0 & CPC0_SYS0_BYPASS) {
/* Bypass system PLL */
cpu = plb = sys_clk;
} else {
if (sys0 & CPC0_SYS0_EXTSL)
/* PerClk */
m = CPC0_SYS0_FWDVB(sys0) * opdv * epdv;
else
/* CPU clock */
m = CPC0_SYS0_FBDV(sys0) * CPC0_SYS0_FWDVA(sys0);
cpu = sys_clk * m / CPC0_SYS0_FWDVA(sys0);
plb = sys_clk * m / CPC0_SYS0_FWDVB(sys0);
}
opb = plb / opdv;
ebc = opb / epdv;
/* FIXME: Check if this is for all 440GP, or just Ebony */
if ((mfpvr() & 0xf0000fff) == 0x40000440)
/* Rev. B 440GP, use external system clock */
tb = sys_clk;
else
/* Rev. C 440GP, errata force us to use internal clock */
tb = cpu;
if (cr0 & CPC0_CR0_U0EC)
/* External UART clock */
uart0 = ser_clk;
else
/* Internal UART clock */
uart0 = plb / CPC0_CR0_UDIV(cr0);
if (cr0 & CPC0_CR0_U1EC)
/* External UART clock */
uart1 = ser_clk;
else
/* Internal UART clock */
uart1 = plb / CPC0_CR0_UDIV(cr0);
printf("PPC440GP: SysClk = %dMHz (%x)\n\r",
(sys_clk + 500000) / 1000000, sys_clk);
dt_fixup_cpu_clocks(cpu, tb, 0);
dt_fixup_clock("/plb", plb);
dt_fixup_clock("/plb/opb", opb);
dt_fixup_clock("/plb/opb/ebc", ebc);
dt_fixup_clock("/plb/opb/serial@40000200", uart0);
dt_fixup_clock("/plb/opb/serial@40000300", uart1);
}
#define SPRN_CCR1 0x378
static inline u32 __fix_zero(u32 v, u32 def)
{
return v ? v : def;
}
static unsigned int __ibm440eplike_fixup_clocks(unsigned int sys_clk,
unsigned int tmr_clk,
int per_clk_from_opb)
{
/* PLL config */
u32 pllc = CPR0_READ(DCRN_CPR0_PLLC);
u32 plld = CPR0_READ(DCRN_CPR0_PLLD);
/* Dividers */
u32 fbdv = __fix_zero((plld >> 24) & 0x1f, 32);
u32 fwdva = __fix_zero((plld >> 16) & 0xf, 16);
u32 fwdvb = __fix_zero((plld >> 8) & 7, 8);
u32 lfbdv = __fix_zero(plld & 0x3f, 64);
u32 pradv0 = __fix_zero((CPR0_READ(DCRN_CPR0_PRIMAD) >> 24) & 7, 8);
u32 prbdv0 = __fix_zero((CPR0_READ(DCRN_CPR0_PRIMBD) >> 24) & 7, 8);
u32 opbdv0 = __fix_zero((CPR0_READ(DCRN_CPR0_OPBD) >> 24) & 3, 4);
u32 perdv0 = __fix_zero((CPR0_READ(DCRN_CPR0_PERD) >> 24) & 3, 4);
/* Input clocks for primary dividers */
u32 clk_a, clk_b;
/* Resulting clocks */
u32 cpu, plb, opb, ebc, vco;
/* Timebase */
u32 ccr1, tb = tmr_clk;
if (pllc & 0x40000000) {
u32 m;
/* Feedback path */
switch ((pllc >> 24) & 7) {
case 0:
/* PLLOUTx */
m = ((pllc & 0x20000000) ? fwdvb : fwdva) * lfbdv;
break;
case 1:
/* CPU */
m = fwdva * pradv0;
break;
case 5:
/* PERClk */
m = fwdvb * prbdv0 * opbdv0 * perdv0;
break;
default:
printf("WARNING ! Invalid PLL feedback source !\n");
goto bypass;
}
m *= fbdv;
vco = sys_clk * m;
clk_a = vco / fwdva;
clk_b = vco / fwdvb;
} else {
bypass:
/* Bypass system PLL */
vco = 0;
clk_a = clk_b = sys_clk;
}
cpu = clk_a / pradv0;
plb = clk_b / prbdv0;
opb = plb / opbdv0;
ebc = (per_clk_from_opb ? opb : plb) / perdv0;
/* Figure out timebase. Either CPU or default TmrClk */
ccr1 = mfspr(SPRN_CCR1);
/* If passed a 0 tmr_clk, force CPU clock */
if (tb == 0) {
ccr1 &= ~0x80u;
mtspr(SPRN_CCR1, ccr1);
}
if ((ccr1 & 0x0080) == 0)
tb = cpu;
dt_fixup_cpu_clocks(cpu, tb, 0);
dt_fixup_clock("/plb", plb);
dt_fixup_clock("/plb/opb", opb);
dt_fixup_clock("/plb/opb/ebc", ebc);
return plb;
}
static void eplike_fixup_uart_clk(int index, const char *path,
unsigned int ser_clk,
unsigned int plb_clk)
{
unsigned int sdr;
unsigned int clock;
switch (index) {
case 0:
sdr = SDR0_READ(DCRN_SDR0_UART0);
break;
case 1:
sdr = SDR0_READ(DCRN_SDR0_UART1);
break;
case 2:
sdr = SDR0_READ(DCRN_SDR0_UART2);
break;
case 3:
sdr = SDR0_READ(DCRN_SDR0_UART3);
break;
default:
return;
}
if (sdr & 0x00800000u)
clock = ser_clk;
else
clock = plb_clk / __fix_zero(sdr & 0xff, 256);
dt_fixup_clock(path, clock);
}
void ibm440ep_fixup_clocks(unsigned int sys_clk,
unsigned int ser_clk,
unsigned int tmr_clk)
{
unsigned int plb_clk = __ibm440eplike_fixup_clocks(sys_clk, tmr_clk, 0);
/* serial clocks beed fixup based on int/ext */
eplike_fixup_uart_clk(0, "/plb/opb/serial@ef600300", ser_clk, plb_clk);
eplike_fixup_uart_clk(1, "/plb/opb/serial@ef600400", ser_clk, plb_clk);
eplike_fixup_uart_clk(2, "/plb/opb/serial@ef600500", ser_clk, plb_clk);
eplike_fixup_uart_clk(3, "/plb/opb/serial@ef600600", ser_clk, plb_clk);
}
void ibm440gx_fixup_clocks(unsigned int sys_clk,
unsigned int ser_clk,
unsigned int tmr_clk)
{
unsigned int plb_clk = __ibm440eplike_fixup_clocks(sys_clk, tmr_clk, 1);
/* serial clocks beed fixup based on int/ext */
eplike_fixup_uart_clk(0, "/plb/opb/serial@40000200", ser_clk, plb_clk);
eplike_fixup_uart_clk(1, "/plb/opb/serial@40000300", ser_clk, plb_clk);
}
void ibm440spe_fixup_clocks(unsigned int sys_clk,
unsigned int ser_clk,
unsigned int tmr_clk)
{
unsigned int plb_clk = __ibm440eplike_fixup_clocks(sys_clk, tmr_clk, 1);
/* serial clocks beed fixup based on int/ext */
eplike_fixup_uart_clk(0, "/plb/opb/serial@10000200", ser_clk, plb_clk);
eplike_fixup_uart_clk(1, "/plb/opb/serial@10000300", ser_clk, plb_clk);
eplike_fixup_uart_clk(2, "/plb/opb/serial@10000600", ser_clk, plb_clk);
}
void ibm405gp_fixup_clocks(unsigned int sys_clk, unsigned int ser_clk)
{
u32 pllmr = mfdcr(DCRN_CPC0_PLLMR);
u32 cpc0_cr0 = mfdcr(DCRN_405_CPC0_CR0);
u32 cpc0_cr1 = mfdcr(DCRN_405_CPC0_CR1);
u32 psr = mfdcr(DCRN_405_CPC0_PSR);
u32 cpu, plb, opb, ebc, tb, uart0, uart1, m;
u32 fwdv, fwdvb, fbdv, cbdv, opdv, epdv, ppdv, udiv;
fwdv = (8 - ((pllmr & 0xe0000000) >> 29));
fbdv = (pllmr & 0x1e000000) >> 25;
if (fbdv == 0)
fbdv = 16;
cbdv = ((pllmr & 0x00060000) >> 17) + 1; /* CPU:PLB */
opdv = ((pllmr & 0x00018000) >> 15) + 1; /* PLB:OPB */
ppdv = ((pllmr & 0x00001800) >> 13) + 1; /* PLB:PCI */
epdv = ((pllmr & 0x00001800) >> 11) + 2; /* PLB:EBC */
udiv = ((cpc0_cr0 & 0x3e) >> 1) + 1;
/* check for 405GPr */
if ((mfpvr() & 0xfffffff0) == (0x50910951 & 0xfffffff0)) {
fwdvb = 8 - (pllmr & 0x00000007);
if (!(psr & 0x00001000)) /* PCI async mode enable == 0 */
if (psr & 0x00000020) /* New mode enable */
m = fwdvb * 2 * ppdv;
else
m = fwdvb * cbdv * ppdv;
else if (psr & 0x00000020) /* New mode enable */
if (psr & 0x00000800) /* PerClk synch mode */
m = fwdvb * 2 * epdv;
else
m = fbdv * fwdv;
else if (epdv == fbdv)
m = fbdv * cbdv * epdv;
else
m = fbdv * fwdvb * cbdv;
cpu = sys_clk * m / fwdv;
plb = sys_clk * m / (fwdvb * cbdv);
} else {
m = fwdv * fbdv * cbdv;
cpu = sys_clk * m / fwdv;
plb = cpu / cbdv;
}
opb = plb / opdv;
ebc = plb / epdv;
if (cpc0_cr0 & 0x80)
/* uart0 uses the external clock */
uart0 = ser_clk;
else
uart0 = cpu / udiv;
if (cpc0_cr0 & 0x40)
/* uart1 uses the external clock */
uart1 = ser_clk;
else
uart1 = cpu / udiv;
/* setup the timebase clock to tick at the cpu frequency */
cpc0_cr1 = cpc0_cr1 & ~0x00800000;
mtdcr(DCRN_405_CPC0_CR1, cpc0_cr1);
tb = cpu;
dt_fixup_cpu_clocks(cpu, tb, 0);
dt_fixup_clock("/plb", plb);
dt_fixup_clock("/plb/opb", opb);
dt_fixup_clock("/plb/ebc", ebc);
dt_fixup_clock("/plb/opb/serial@ef600300", uart0);
dt_fixup_clock("/plb/opb/serial@ef600400", uart1);
}
void ibm405ep_fixup_clocks(unsigned int sys_clk)
{
u32 pllmr0 = mfdcr(DCRN_CPC0_PLLMR0);
u32 pllmr1 = mfdcr(DCRN_CPC0_PLLMR1);
u32 cpc0_ucr = mfdcr(DCRN_CPC0_UCR);
u32 cpu, plb, opb, ebc, uart0, uart1;
u32 fwdva, fwdvb, fbdv, cbdv, opdv, epdv;
u32 pllmr0_ccdv, tb, m;
fwdva = 8 - ((pllmr1 & 0x00070000) >> 16);
fwdvb = 8 - ((pllmr1 & 0x00007000) >> 12);
fbdv = (pllmr1 & 0x00f00000) >> 20;
if (fbdv == 0)
fbdv = 16;
cbdv = ((pllmr0 & 0x00030000) >> 16) + 1; /* CPU:PLB */
epdv = ((pllmr0 & 0x00000300) >> 8) + 2; /* PLB:EBC */
opdv = ((pllmr0 & 0x00003000) >> 12) + 1; /* PLB:OPB */
m = fbdv * fwdvb;
pllmr0_ccdv = ((pllmr0 & 0x00300000) >> 20) + 1;
if (pllmr1 & 0x80000000)
cpu = sys_clk * m / (fwdva * pllmr0_ccdv);
else
cpu = sys_clk / pllmr0_ccdv;
plb = cpu / cbdv;
opb = plb / opdv;
ebc = plb / epdv;
tb = cpu;
uart0 = cpu / (cpc0_ucr & 0x0000007f);
uart1 = cpu / ((cpc0_ucr & 0x00007f00) >> 8);
dt_fixup_cpu_clocks(cpu, tb, 0);
dt_fixup_clock("/plb", plb);
dt_fixup_clock("/plb/opb", opb);
dt_fixup_clock("/plb/ebc", ebc);
dt_fixup_clock("/plb/opb/serial@ef600300", uart0);
dt_fixup_clock("/plb/opb/serial@ef600400", uart1);
}