android_kernel_xiaomi_sm8350/msm/vidc/hfi_common.c

5142 lines
126 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2012-2019, The Linux Foundation. All rights reserved.
*/
#include <asm/dma-iommu.h>
#include <asm/memory.h>
#include <linux/clk/qcom.h>
#include <linux/coresight-stm.h>
#include <linux/delay.h>
#include <linux/hash.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/pm_qos.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/platform_device.h>
#include <linux/soc/qcom/llcc-qcom.h>
#include <soc/qcom/cx_ipeak.h>
#include <soc/qcom/scm.h>
#include <soc/qcom/socinfo.h>
#include <linux/soc/qcom/smem.h>
#include <soc/qcom/subsystem_restart.h>
#include <linux/dma-mapping.h>
#include <linux/fastcvpd.h>
#include <linux/reset.h>
#include "hfi_packetization.h"
#include "msm_vidc_debug.h"
#include "hfi_common.h"
#include "hfi_io_common.h"
#define FIRMWARE_SIZE 0X00A00000
#define REG_ADDR_OFFSET_BITMASK 0x000FFFFF
#define QDSS_IOVA_START 0x80001000
#define MIN_PAYLOAD_SIZE 3
static struct hal_device_data hal_ctxt;
#define TZBSP_MEM_PROTECT_VIDEO_VAR 0x8
struct tzbsp_memprot {
u32 cp_start;
u32 cp_size;
u32 cp_nonpixel_start;
u32 cp_nonpixel_size;
};
struct tzbsp_resp {
int ret;
};
#define TZBSP_VIDEO_SET_STATE 0xa
/* Poll interval in uS */
#define POLL_INTERVAL_US 50
enum tzbsp_video_state {
TZBSP_VIDEO_STATE_SUSPEND = 0,
TZBSP_VIDEO_STATE_RESUME = 1,
TZBSP_VIDEO_STATE_RESTORE_THRESHOLD = 2,
};
struct tzbsp_video_set_state_req {
u32 state; /* should be tzbsp_video_state enum value */
u32 spare; /* reserved for future, should be zero */
};
const struct msm_vidc_bus_data DEFAULT_BUS_VOTE = {
.data = NULL,
.data_count = 0,
};
const int max_packets = 1000;
static void venus_hfi_pm_handler(struct work_struct *work);
static DECLARE_DELAYED_WORK(venus_hfi_pm_work, venus_hfi_pm_handler);
static inline int __resume(struct venus_hfi_device *device);
static inline int __suspend(struct venus_hfi_device *device);
static int __enable_regulators(struct venus_hfi_device *device);
static inline int __prepare_enable_clks(struct venus_hfi_device *device);
static void __flush_debug_queue(struct venus_hfi_device *device, u8 *packet);
static int __initialize_packetization(struct venus_hfi_device *device);
static struct hal_session *__get_session(struct venus_hfi_device *device,
u32 session_id);
static bool __is_session_valid(struct venus_hfi_device *device,
struct hal_session *session, const char *func);
static int __set_clocks(struct venus_hfi_device *device, u32 freq);
static int __iface_cmdq_write(struct venus_hfi_device *device,
void *pkt);
static int __load_fw(struct venus_hfi_device *device);
static void __unload_fw(struct venus_hfi_device *device);
static int __tzbsp_set_video_state(enum tzbsp_video_state state);
static int __enable_subcaches(struct venus_hfi_device *device);
static int __set_subcaches(struct venus_hfi_device *device);
static int __release_subcaches(struct venus_hfi_device *device);
static int __disable_subcaches(struct venus_hfi_device *device);
static int __power_collapse(struct venus_hfi_device *device, bool force);
static int venus_hfi_noc_error_info(void *dev);
static int __set_ubwc_config(struct venus_hfi_device *device);
static void __power_off_common(struct venus_hfi_device *device);
static int __prepare_pc_common(struct venus_hfi_device *device);
static void __raise_interrupt_common(struct venus_hfi_device *device);
static bool __watchdog_common(u32 intr_status);
static void __noc_error_info_common(struct venus_hfi_device *device);
static void __core_clear_interrupt_common(struct venus_hfi_device *device);
static inline int __boot_firmware_common(struct venus_hfi_device *device);
static void __setup_ucregion_memory_map_common(struct venus_hfi_device *device);
struct venus_hfi_vpu_ops vpu4_ops = {
.interrupt_init = __interrupt_init_ar50,
.setup_ucregion_memmap = __setup_ucregion_memory_map_common,
.clock_config_on_enable = NULL,
.reset_ahb2axi_bridge = NULL,
.power_off = __power_off_common,
.prepare_pc = __prepare_pc_common,
.raise_interrupt = __raise_interrupt_common,
.watchdog = __watchdog_common,
.noc_error_info = __noc_error_info_common,
.core_clear_interrupt = __core_clear_interrupt_common,
.boot_firmware = __boot_firmware_common,
};
struct venus_hfi_vpu_ops iris1_ops = {
.interrupt_init = __interrupt_init_iris1,
.setup_ucregion_memmap = __setup_ucregion_memory_map_iris1,
.clock_config_on_enable = __clock_config_on_enable_iris1,
.reset_ahb2axi_bridge = __reset_ahb2axi_bridge_common,
.power_off = __power_off_common,
.prepare_pc = __prepare_pc_common,
.raise_interrupt = __raise_interrupt_common,
.watchdog = __watchdog_common,
.noc_error_info = __noc_error_info_common,
.core_clear_interrupt = __core_clear_interrupt_common,
.boot_firmware = __boot_firmware_common,
};
struct venus_hfi_vpu_ops iris2_ops = {
.interrupt_init = __interrupt_init_iris2,
.setup_ucregion_memmap = __setup_ucregion_memory_map_iris2,
.clock_config_on_enable = NULL,
.reset_ahb2axi_bridge = __reset_ahb2axi_bridge_common,
.power_off = __power_off_iris2,
.prepare_pc = __prepare_pc_iris2,
.raise_interrupt = __raise_interrupt_iris2,
.watchdog = __watchdog_iris2,
.noc_error_info = __noc_error_info_iris2,
.core_clear_interrupt = __core_clear_interrupt_iris2,
.boot_firmware = __boot_firmware_iris2,
};
/**
* Utility function to enforce some of our assumptions. Spam calls to this
* in hotspots in code to double check some of the assumptions that we hold.
*/
static inline void __strict_check(struct venus_hfi_device *device)
{
msm_vidc_res_handle_fatal_hw_error(device->res,
!mutex_is_locked(&device->lock));
}
static inline void __set_state(struct venus_hfi_device *device,
enum venus_hfi_state state)
{
device->state = state;
}
static inline bool __core_in_valid_state(struct venus_hfi_device *device)
{
return device->state != VENUS_STATE_DEINIT;
}
static inline bool is_sys_cache_present(struct venus_hfi_device *device)
{
return device->res->sys_cache_present;
}
static void __dump_packet(u8 *packet, enum vidc_msg_prio log_level)
{
u32 c = 0, packet_size = *(u32 *)packet;
const int row_size = 32;
/*
* row must contain enough for 0xdeadbaad * 8 to be converted into
* "de ad ba ab " * 8 + '\0'
*/
char row[3 * 32];
for (c = 0; c * row_size < packet_size; ++c) {
int bytes_to_read = ((c + 1) * row_size > packet_size) ?
packet_size % row_size : row_size;
hex_dump_to_buffer(packet + c * row_size, bytes_to_read,
row_size, 4, row, sizeof(row), false);
dprintk(log_level, "%s\n", row);
}
}
static void __sim_modify_cmd_packet(u8 *packet, struct venus_hfi_device *device)
{
struct hfi_cmd_sys_session_init_packet *sys_init;
struct hal_session *session = NULL;
u8 i;
phys_addr_t fw_bias = 0;
if (!device || !packet) {
dprintk(VIDC_ERR, "Invalid Param\n");
return;
} else if (!device->hal_data->firmware_base
|| is_iommu_present(device->res)) {
return;
}
fw_bias = device->hal_data->firmware_base;
sys_init = (struct hfi_cmd_sys_session_init_packet *)packet;
session = __get_session(device, sys_init->session_id);
if (!session) {
dprintk(VIDC_ERR, "%s :Invalid session id: %x\n",
__func__, sys_init->session_id);
return;
}
switch (sys_init->packet_type) {
case HFI_CMD_SESSION_EMPTY_BUFFER:
if (session->is_decoder) {
struct hfi_cmd_session_empty_buffer_compressed_packet
*pkt = (struct
hfi_cmd_session_empty_buffer_compressed_packet
*) packet;
pkt->packet_buffer -= fw_bias;
} else {
struct
hfi_cmd_session_empty_buffer_uncompressed_plane0_packet
*pkt = (struct
hfi_cmd_session_empty_buffer_uncompressed_plane0_packet
*) packet;
pkt->packet_buffer -= fw_bias;
}
break;
case HFI_CMD_SESSION_FILL_BUFFER:
{
struct hfi_cmd_session_fill_buffer_packet *pkt =
(struct hfi_cmd_session_fill_buffer_packet *)packet;
pkt->packet_buffer -= fw_bias;
break;
}
case HFI_CMD_SESSION_SET_BUFFERS:
{
struct hfi_cmd_session_set_buffers_packet *pkt =
(struct hfi_cmd_session_set_buffers_packet *)packet;
if (pkt->buffer_type == HFI_BUFFER_OUTPUT ||
pkt->buffer_type == HFI_BUFFER_OUTPUT2) {
struct hfi_buffer_info *buff;
buff = (struct hfi_buffer_info *) pkt->rg_buffer_info;
buff->buffer_addr -= fw_bias;
if (buff->extra_data_addr >= fw_bias)
buff->extra_data_addr -= fw_bias;
} else {
for (i = 0; i < pkt->num_buffers; i++)
pkt->rg_buffer_info[i] -= fw_bias;
}
break;
}
case HFI_CMD_SESSION_RELEASE_BUFFERS:
{
struct hfi_cmd_session_release_buffer_packet *pkt =
(struct hfi_cmd_session_release_buffer_packet *)packet;
if (pkt->buffer_type == HFI_BUFFER_OUTPUT ||
pkt->buffer_type == HFI_BUFFER_OUTPUT2) {
struct hfi_buffer_info *buff;
buff = (struct hfi_buffer_info *) pkt->rg_buffer_info;
buff->buffer_addr -= fw_bias;
buff->extra_data_addr -= fw_bias;
} else {
for (i = 0; i < pkt->num_buffers; i++)
pkt->rg_buffer_info[i] -= fw_bias;
}
break;
}
case HFI_CMD_SESSION_REGISTER_BUFFERS:
{
struct hfi_cmd_session_register_buffers_packet *pkt =
(struct hfi_cmd_session_register_buffers_packet *)
packet;
struct hfi_buffer_mapping_type *buf =
(struct hfi_buffer_mapping_type *)pkt->buffer;
for (i = 0; i < pkt->num_buffers; i++)
buf[i].device_addr -= fw_bias;
break;
}
default:
break;
}
}
static int __dsp_send_hfi_queue(struct venus_hfi_device *device)
{
int rc;
if (!device->res->cvp_internal)
return 0;
if (!device->dsp_iface_q_table.mem_data.dma_handle) {
dprintk(VIDC_ERR, "%s: invalid dsm_handle\n", __func__);
return -EINVAL;
}
if (device->dsp_flags & DSP_INIT) {
dprintk(VIDC_HIGH, "%s: dsp already inited\n", __func__);
return 0;
}
dprintk(VIDC_HIGH, "%s: hfi queue %#llx size %d\n",
__func__, device->dsp_iface_q_table.mem_data.dma_handle,
device->dsp_iface_q_table.mem_data.size);
rc = fastcvpd_video_send_cmd_hfi_queue(
(phys_addr_t *)device->dsp_iface_q_table.mem_data.dma_handle,
device->dsp_iface_q_table.mem_data.size);
if (rc) {
dprintk(VIDC_ERR, "%s: dsp init failed\n", __func__);
return rc;
}
device->dsp_flags |= DSP_INIT;
dprintk(VIDC_HIGH, "%s: dsp inited\n", __func__);
return rc;
}
static int __dsp_suspend(struct venus_hfi_device *device, bool force, u32 flags)
{
int rc;
struct hal_session *temp;
if (!device->res->cvp_internal)
return 0;
if (!(device->dsp_flags & DSP_INIT))
return 0;
if (device->dsp_flags & DSP_SUSPEND)
return 0;
list_for_each_entry(temp, &device->sess_head, list) {
/* if forceful suspend, don't check session pause info */
if (force)
continue;
if (temp->domain == HAL_VIDEO_DOMAIN_CVP) {
/* don't suspend if cvp session is not paused */
if (!(temp->flags & SESSION_PAUSE)) {
dprintk(VIDC_HIGH,
"%s: cvp session %x not paused\n",
__func__, hash32_ptr(temp));
return -EBUSY;
}
}
}
dprintk(VIDC_HIGH, "%s: suspend dsp\n", __func__);
rc = fastcvpd_video_suspend(flags);
if (rc) {
dprintk(VIDC_ERR, "%s: dsp suspend failed with error %d\n",
__func__, rc);
return -EINVAL;
}
device->dsp_flags |= DSP_SUSPEND;
dprintk(VIDC_HIGH, "%s: dsp suspended\n", __func__);
return 0;
}
static int __dsp_resume(struct venus_hfi_device *device, u32 flags)
{
int rc;
if (!device->res->cvp_internal)
return 0;
if (!(device->dsp_flags & DSP_SUSPEND)) {
dprintk(VIDC_HIGH, "%s: dsp not suspended\n", __func__);
return 0;
}
dprintk(VIDC_HIGH, "%s: resume dsp\n", __func__);
rc = fastcvpd_video_resume(flags);
if (rc) {
dprintk(VIDC_ERR,
"%s: dsp resume failed with error %d\n",
__func__, rc);
return rc;
}
device->dsp_flags &= ~DSP_SUSPEND;
dprintk(VIDC_HIGH, "%s: dsp resumed\n", __func__);
return rc;
}
static int __dsp_shutdown(struct venus_hfi_device *device, u32 flags)
{
int rc;
if (!device->res->cvp_internal)
return 0;
if (!(device->dsp_flags & DSP_INIT)) {
dprintk(VIDC_HIGH, "%s: dsp not inited\n", __func__);
return 0;
}
dprintk(VIDC_HIGH, "%s: shutdown dsp\n", __func__);
rc = fastcvpd_video_shutdown(flags);
if (rc) {
dprintk(VIDC_ERR,
"%s: dsp shutdown failed with error %d\n",
__func__, rc);
WARN_ON(1);
}
device->dsp_flags &= ~DSP_INIT;
dprintk(VIDC_HIGH, "%s: dsp shutdown successful\n", __func__);
return rc;
}
static int __session_pause(struct venus_hfi_device *device,
struct hal_session *session)
{
int rc = 0;
/* ignore if session paused already */
if (session->flags & SESSION_PAUSE)
return 0;
session->flags |= SESSION_PAUSE;
dprintk(VIDC_HIGH, "%s: cvp session %x paused\n", __func__,
hash32_ptr(session));
return rc;
}
static int __session_resume(struct venus_hfi_device *device,
struct hal_session *session)
{
int rc = 0;
/* ignore if session already resumed */
if (!(session->flags & SESSION_PAUSE))
return 0;
session->flags &= ~SESSION_PAUSE;
dprintk(VIDC_HIGH, "%s: cvp session %x resumed\n", __func__,
hash32_ptr(session));
rc = __resume(device);
if (rc) {
dprintk(VIDC_ERR, "%s: resume failed\n", __func__);
goto exit;
}
if (device->dsp_flags & DSP_SUSPEND) {
dprintk(VIDC_ERR, "%s: dsp not resumed\n", __func__);
rc = -EINVAL;
goto exit;
}
exit:
return rc;
}
static int venus_hfi_session_pause(void *sess)
{
int rc;
struct hal_session *session = sess;
struct venus_hfi_device *device;
if (!session || !session->device) {
dprintk(VIDC_ERR, "%s: invalid params\n", __func__);
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
rc = __session_pause(device, session);
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_resume(void *sess)
{
int rc;
struct hal_session *session = sess;
struct venus_hfi_device *device;
if (!session || !session->device) {
dprintk(VIDC_ERR, "%s: invalid params\n", __func__);
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
rc = __session_resume(device, session);
mutex_unlock(&device->lock);
return rc;
}
static int __acquire_regulator(struct regulator_info *rinfo,
struct venus_hfi_device *device)
{
int rc = 0;
if (rinfo->has_hw_power_collapse) {
rc = regulator_set_mode(rinfo->regulator,
REGULATOR_MODE_NORMAL);
if (rc) {
/*
* This is somewhat fatal, but nothing we can do
* about it. We can't disable the regulator w/o
* getting it back under s/w control
*/
dprintk(VIDC_ERR,
"Failed to acquire regulator control: %s\n",
rinfo->name);
} else {
dprintk(VIDC_HIGH,
"Acquire regulator control from HW: %s\n",
rinfo->name);
}
}
if (!regulator_is_enabled(rinfo->regulator)) {
dprintk(VIDC_ERR, "Regulator is not enabled %s\n",
rinfo->name);
msm_vidc_res_handle_fatal_hw_error(device->res, true);
}
return rc;
}
static int __hand_off_regulator(struct regulator_info *rinfo)
{
int rc = 0;
if (rinfo->has_hw_power_collapse) {
rc = regulator_set_mode(rinfo->regulator,
REGULATOR_MODE_FAST);
if (rc) {
dprintk(VIDC_ERR,
"Failed to hand off regulator control: %s\n",
rinfo->name);
} else {
dprintk(VIDC_HIGH,
"Hand off regulator control to HW: %s\n",
rinfo->name);
}
}
return rc;
}
static int __hand_off_regulators(struct venus_hfi_device *device)
{
struct regulator_info *rinfo;
int rc = 0, c = 0;
venus_hfi_for_each_regulator(device, rinfo) {
rc = __hand_off_regulator(rinfo);
/*
* If one regulator hand off failed, driver should take
* the control for other regulators back.
*/
if (rc)
goto err_reg_handoff_failed;
c++;
}
return rc;
err_reg_handoff_failed:
venus_hfi_for_each_regulator_reverse_continue(device, rinfo, c)
__acquire_regulator(rinfo, device);
return rc;
}
static int __write_queue(struct vidc_iface_q_info *qinfo, u8 *packet,
bool *rx_req_is_set)
{
struct hfi_queue_header *queue;
u32 packet_size_in_words, new_write_idx;
u32 empty_space, read_idx, write_idx;
u32 *write_ptr;
if (!qinfo || !packet) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
} else if (!qinfo->q_array.align_virtual_addr) {
dprintk(VIDC_ERR, "Queues have already been freed\n");
return -EINVAL;
}
queue = (struct hfi_queue_header *) qinfo->q_hdr;
if (!queue) {
dprintk(VIDC_ERR, "queue not present\n");
return -ENOENT;
}
if (msm_vidc_debug & VIDC_PKT) {
dprintk(VIDC_PKT, "%s: %pK\n", __func__, qinfo);
__dump_packet(packet, VIDC_PKT);
}
packet_size_in_words = (*(u32 *)packet) >> 2;
if (!packet_size_in_words || packet_size_in_words >
qinfo->q_array.mem_size>>2) {
dprintk(VIDC_ERR, "Invalid packet size\n");
return -ENODATA;
}
read_idx = queue->qhdr_read_idx;
write_idx = queue->qhdr_write_idx;
empty_space = (write_idx >= read_idx) ?
((qinfo->q_array.mem_size>>2) - (write_idx - read_idx)) :
(read_idx - write_idx);
if (empty_space <= packet_size_in_words) {
queue->qhdr_tx_req = 1;
dprintk(VIDC_ERR, "Insufficient size (%d) to write (%d)\n",
empty_space, packet_size_in_words);
return -ENOTEMPTY;
}
queue->qhdr_tx_req = 0;
new_write_idx = write_idx + packet_size_in_words;
write_ptr = (u32 *)((qinfo->q_array.align_virtual_addr) +
(write_idx << 2));
if (write_ptr < (u32 *)qinfo->q_array.align_virtual_addr ||
write_ptr > (u32 *)(qinfo->q_array.align_virtual_addr +
qinfo->q_array.mem_size)) {
dprintk(VIDC_ERR, "Invalid write index");
return -ENODATA;
}
if (new_write_idx < (qinfo->q_array.mem_size >> 2)) {
memcpy(write_ptr, packet, packet_size_in_words << 2);
} else {
new_write_idx -= qinfo->q_array.mem_size >> 2;
memcpy(write_ptr, packet, (packet_size_in_words -
new_write_idx) << 2);
memcpy((void *)qinfo->q_array.align_virtual_addr,
packet + ((packet_size_in_words - new_write_idx) << 2),
new_write_idx << 2);
}
/*
* Memory barrier to make sure packet is written before updating the
* write index
*/
mb();
queue->qhdr_write_idx = new_write_idx;
if (rx_req_is_set)
*rx_req_is_set = queue->qhdr_rx_req == 1;
/*
* Memory barrier to make sure write index is updated before an
* interrupt is raised on venus.
*/
mb();
return 0;
}
static void __hal_sim_modify_msg_packet(u8 *packet,
struct venus_hfi_device *device)
{
struct hfi_msg_sys_session_init_done_packet *init_done;
struct hal_session *session = NULL;
phys_addr_t fw_bias = 0;
if (!device || !packet) {
dprintk(VIDC_ERR, "Invalid Param\n");
return;
} else if (!device->hal_data->firmware_base
|| is_iommu_present(device->res)) {
return;
}
fw_bias = device->hal_data->firmware_base;
init_done = (struct hfi_msg_sys_session_init_done_packet *)packet;
session = __get_session(device, init_done->session_id);
if (!session) {
dprintk(VIDC_ERR, "%s: Invalid session id: %x\n",
__func__, init_done->session_id);
return;
}
switch (init_done->packet_type) {
case HFI_MSG_SESSION_FILL_BUFFER_DONE:
if (session->is_decoder) {
struct
hfi_msg_session_fbd_uncompressed_plane0_packet
*pkt_uc = (struct
hfi_msg_session_fbd_uncompressed_plane0_packet
*) packet;
pkt_uc->packet_buffer += fw_bias;
} else {
struct
hfi_msg_session_fill_buffer_done_compressed_packet
*pkt = (struct
hfi_msg_session_fill_buffer_done_compressed_packet
*) packet;
pkt->packet_buffer += fw_bias;
}
break;
case HFI_MSG_SESSION_EMPTY_BUFFER_DONE:
{
struct hfi_msg_session_empty_buffer_done_packet *pkt =
(struct hfi_msg_session_empty_buffer_done_packet *)packet;
pkt->packet_buffer += fw_bias;
break;
}
default:
break;
}
}
static int __read_queue(struct vidc_iface_q_info *qinfo, u8 *packet,
u32 *pb_tx_req_is_set)
{
struct hfi_queue_header *queue;
u32 packet_size_in_words, new_read_idx;
u32 *read_ptr;
u32 receive_request = 0;
u32 read_idx, write_idx;
int rc = 0;
if (!qinfo || !packet || !pb_tx_req_is_set) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
} else if (!qinfo->q_array.align_virtual_addr) {
dprintk(VIDC_ERR, "Queues have already been freed\n");
return -EINVAL;
}
/*
* Memory barrier to make sure data is valid before
*reading it
*/
mb();
queue = (struct hfi_queue_header *) qinfo->q_hdr;
if (!queue) {
dprintk(VIDC_ERR, "Queue memory is not allocated\n");
return -ENOMEM;
}
/*
* Do not set receive request for debug queue, if set,
* Venus generates interrupt for debug messages even
* when there is no response message available.
* In general debug queue will not become full as it
* is being emptied out for every interrupt from Venus.
* Venus will anyway generates interrupt if it is full.
*/
if (queue->qhdr_type & HFI_Q_ID_CTRL_TO_HOST_MSG_Q)
receive_request = 1;
read_idx = queue->qhdr_read_idx;
write_idx = queue->qhdr_write_idx;
if (read_idx == write_idx) {
queue->qhdr_rx_req = receive_request;
/*
* mb() to ensure qhdr is updated in main memory
* so that venus reads the updated header values
*/
mb();
*pb_tx_req_is_set = 0;
dprintk(VIDC_LOW,
"%s queue is empty, rx_req = %u, tx_req = %u, read_idx = %u\n",
receive_request ? "message" : "debug",
queue->qhdr_rx_req, queue->qhdr_tx_req,
queue->qhdr_read_idx);
return -ENODATA;
}
read_ptr = (u32 *)((qinfo->q_array.align_virtual_addr) +
(read_idx << 2));
if (read_ptr < (u32 *)qinfo->q_array.align_virtual_addr ||
read_ptr > (u32 *)(qinfo->q_array.align_virtual_addr +
qinfo->q_array.mem_size - sizeof(*read_ptr))) {
dprintk(VIDC_ERR, "Invalid read index\n");
return -ENODATA;
}
packet_size_in_words = (*read_ptr) >> 2;
if (!packet_size_in_words) {
dprintk(VIDC_ERR, "Zero packet size\n");
return -ENODATA;
}
new_read_idx = read_idx + packet_size_in_words;
if (((packet_size_in_words << 2) <= VIDC_IFACEQ_VAR_HUGE_PKT_SIZE) &&
read_idx <= (qinfo->q_array.mem_size >> 2)) {
if (new_read_idx < (qinfo->q_array.mem_size >> 2)) {
memcpy(packet, read_ptr,
packet_size_in_words << 2);
} else {
new_read_idx -= (qinfo->q_array.mem_size >> 2);
memcpy(packet, read_ptr,
(packet_size_in_words - new_read_idx) << 2);
memcpy(packet + ((packet_size_in_words -
new_read_idx) << 2),
(u8 *)qinfo->q_array.align_virtual_addr,
new_read_idx << 2);
}
} else {
dprintk(VIDC_ERR,
"BAD packet received, read_idx: %#x, pkt_size: %d\n",
read_idx, packet_size_in_words << 2);
dprintk(VIDC_ERR, "Dropping this packet\n");
new_read_idx = write_idx;
rc = -ENODATA;
}
if (new_read_idx != write_idx)
queue->qhdr_rx_req = 0;
else
queue->qhdr_rx_req = receive_request;
queue->qhdr_read_idx = new_read_idx;
/*
* mb() to ensure qhdr is updated in main memory
* so that venus reads the updated header values
*/
mb();
*pb_tx_req_is_set = (queue->qhdr_tx_req == 1) ? 1 : 0;
if ((msm_vidc_debug & VIDC_PKT) &&
!(queue->qhdr_type & HFI_Q_ID_CTRL_TO_HOST_DEBUG_Q)) {
dprintk(VIDC_PKT, "%s: %pK\n", __func__, qinfo);
__dump_packet(packet, VIDC_PKT);
}
return rc;
}
static int __smem_alloc(struct venus_hfi_device *dev,
struct vidc_mem_addr *mem, u32 size, u32 align,
u32 flags, u32 usage)
{
struct msm_smem *alloc = &mem->mem_data;
int rc = 0;
if (!dev || !mem || !size) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
dprintk(VIDC_HIGH, "start to alloc size: %d, flags: %d\n", size, flags);
rc = msm_smem_alloc(
size, align, flags, usage, 1, (void *)dev->res,
MSM_VIDC_UNKNOWN, alloc);
if (rc) {
dprintk(VIDC_ERR, "Alloc failed\n");
rc = -ENOMEM;
goto fail_smem_alloc;
}
dprintk(VIDC_HIGH, "%s: ptr = %pK, size = %d\n", __func__,
alloc->kvaddr, size);
mem->mem_size = alloc->size;
mem->align_virtual_addr = alloc->kvaddr;
mem->align_device_addr = alloc->device_addr;
return rc;
fail_smem_alloc:
return rc;
}
static void __smem_free(struct venus_hfi_device *dev, struct msm_smem *mem)
{
if (!dev || !mem) {
dprintk(VIDC_ERR, "invalid param %pK %pK\n", dev, mem);
return;
}
msm_smem_free(mem);
}
void __write_register(struct venus_hfi_device *device,
u32 reg, u32 value)
{
u32 hwiosymaddr = reg;
u8 *base_addr;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %pK\n", device);
return;
}
__strict_check(device);
if (!device->power_enabled) {
dprintk(VIDC_ERR,
"HFI Write register failed : Power is OFF\n");
msm_vidc_res_handle_fatal_hw_error(device->res, true);
return;
}
base_addr = device->hal_data->register_base;
dprintk(VIDC_LOW, "Base addr: %pK, writing to: %#x, Value: %#x...\n",
base_addr, hwiosymaddr, value);
base_addr += hwiosymaddr;
writel_relaxed(value, base_addr);
/*
* Memory barrier to make sure value is written into the register.
*/
wmb();
}
int __read_register(struct venus_hfi_device *device, u32 reg)
{
int rc = 0;
u8 *base_addr;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %pK\n", device);
return -EINVAL;
}
__strict_check(device);
if (!device->power_enabled) {
dprintk(VIDC_ERR,
"HFI Read register failed : Power is OFF\n");
msm_vidc_res_handle_fatal_hw_error(device->res, true);
return -EINVAL;
}
base_addr = device->hal_data->register_base;
rc = readl_relaxed(base_addr + reg);
/*
* Memory barrier to make sure value is read correctly from the
* register.
*/
rmb();
dprintk(VIDC_LOW, "Base addr: %pK, read from: %#x, value: %#x...\n",
base_addr, reg, rc);
return rc;
}
static void __set_registers(struct venus_hfi_device *device)
{
struct reg_set *reg_set;
int i;
if (!device->res) {
dprintk(VIDC_ERR,
"device resources null, cannot set registers\n");
return;
}
reg_set = &device->res->reg_set;
for (i = 0; i < reg_set->count; i++) {
__write_register(device, reg_set->reg_tbl[i].reg,
reg_set->reg_tbl[i].value);
}
}
static int __vote_bandwidth(struct bus_info *bus, unsigned long freq)
{
int rc = 0;
uint64_t ab = 0;
/* Bus Driver expects values in Bps */
ab = freq * 1000;
dprintk(VIDC_PERF, "Voting bus %s to ab %llu\n", bus->name, ab);
rc = msm_bus_scale_update_bw(bus->client, ab, 0);
if (rc)
dprintk(VIDC_ERR, "Failed voting bus %s to ab %llu, rc=%d\n",
bus->name, ab, rc);
return rc;
}
int __unvote_buses(struct venus_hfi_device *device)
{
int rc = 0;
struct bus_info *bus = NULL;
kfree(device->bus_vote.data);
device->bus_vote.data = NULL;
device->bus_vote.data_count = 0;
venus_hfi_for_each_bus(device, bus) {
rc = __vote_bandwidth(bus, 0);
if (rc)
goto err_unknown_device;
}
err_unknown_device:
return rc;
}
static int __vote_buses(struct venus_hfi_device *device,
struct vidc_bus_vote_data *data, int num_data)
{
int rc = 0;
struct bus_info *bus = NULL;
struct vidc_bus_vote_data *new_data = NULL;
unsigned long freq = 0;
if (!num_data) {
dprintk(VIDC_LOW, "No vote data available\n");
goto no_data_count;
} else if (!data) {
dprintk(VIDC_ERR, "Invalid voting data\n");
return -EINVAL;
}
new_data = kmemdup(data, num_data * sizeof(*new_data), GFP_KERNEL);
if (!new_data) {
dprintk(VIDC_ERR, "Can't alloc memory to cache bus votes\n");
rc = -ENOMEM;
goto err_no_mem;
}
no_data_count:
kfree(device->bus_vote.data);
device->bus_vote.data = new_data;
device->bus_vote.data_count = num_data;
venus_hfi_for_each_bus(device, bus) {
if (bus && bus->client) {
if (!bus->is_prfm_mode)
freq = device->bus_vote.calc_bw
(bus, &device->bus_vote);
else
freq = bus->range[1];
/* ensure freq is within limits */
freq = clamp_t(typeof(freq), freq,
bus->range[0], bus->range[1]);
rc = __vote_bandwidth(bus, freq);
} else {
dprintk(VIDC_ERR, "No BUS to Vote\n");
}
}
err_no_mem:
return rc;
}
static int venus_hfi_vote_buses(void *dev, struct vidc_bus_vote_data *d, int n)
{
int rc = 0;
struct venus_hfi_device *device = dev;
if (!device)
return -EINVAL;
mutex_lock(&device->lock);
rc = __vote_buses(device, d, n);
mutex_unlock(&device->lock);
return rc;
}
static int __core_set_resource(struct venus_hfi_device *device,
struct vidc_resource_hdr *resource_hdr, void *resource_value)
{
struct hfi_cmd_sys_set_resource_packet *pkt;
u8 packet[VIDC_IFACEQ_VAR_SMALL_PKT_SIZE];
int rc = 0;
if (!device || !resource_hdr || !resource_value) {
dprintk(VIDC_ERR, "set_res: Invalid Params\n");
return -EINVAL;
}
pkt = (struct hfi_cmd_sys_set_resource_packet *) packet;
rc = call_hfi_pkt_op(device, sys_set_resource,
pkt, resource_hdr, resource_value);
if (rc) {
dprintk(VIDC_ERR, "set_res: failed to create packet\n");
goto err_create_pkt;
}
rc = __iface_cmdq_write(device, pkt);
if (rc)
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int __core_release_resource(struct venus_hfi_device *device,
struct vidc_resource_hdr *resource_hdr)
{
struct hfi_cmd_sys_release_resource_packet *pkt;
u8 packet[VIDC_IFACEQ_VAR_SMALL_PKT_SIZE];
int rc = 0;
if (!device || !resource_hdr) {
dprintk(VIDC_ERR, "release_res: Invalid Params\n");
return -EINVAL;
}
pkt = (struct hfi_cmd_sys_release_resource_packet *) packet;
rc = call_hfi_pkt_op(device, sys_release_resource,
pkt, resource_hdr);
if (rc) {
dprintk(VIDC_ERR, "release_res: failed to create packet\n");
goto err_create_pkt;
}
rc = __iface_cmdq_write(device, pkt);
if (rc)
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int __tzbsp_set_video_state(enum tzbsp_video_state state)
{
struct tzbsp_video_set_state_req cmd = {0};
int tzbsp_rsp = 0;
int rc = 0;
struct scm_desc desc = {0};
desc.args[0] = cmd.state = state;
desc.args[1] = cmd.spare = 0;
desc.arginfo = SCM_ARGS(2);
rc = scm_call2(SCM_SIP_FNID(SCM_SVC_BOOT,
TZBSP_VIDEO_SET_STATE), &desc);
tzbsp_rsp = desc.ret[0];
if (rc) {
dprintk(VIDC_ERR, "Failed scm_call %d\n", rc);
return rc;
}
dprintk(VIDC_LOW, "Set state %d, resp %d\n", state, tzbsp_rsp);
if (tzbsp_rsp) {
dprintk(VIDC_ERR,
"Failed to set video core state to suspend: %d\n",
tzbsp_rsp);
return -EINVAL;
}
return 0;
}
static inline int __boot_firmware_common(struct venus_hfi_device *device)
{
int rc = 0;
u32 ctrl_init_val = 0, ctrl_status = 0, count = 0, max_tries = 1000;
ctrl_init_val = BIT(0);
if (device->res->cvp_internal)
ctrl_init_val |= BIT(1);
__write_register(device, CTRL_INIT, ctrl_init_val);
while (!ctrl_status && count < max_tries) {
ctrl_status = __read_register(device, CTRL_STATUS);
if ((ctrl_status & CTRL_ERROR_STATUS__M) == 0x4) {
dprintk(VIDC_ERR, "invalid setting for UC_REGION\n");
break;
}
usleep_range(50, 100);
count++;
}
if (count >= max_tries) {
dprintk(VIDC_ERR, "Error booting up vidc firmware\n");
rc = -ETIME;
}
return rc;
}
static int venus_hfi_suspend(void *dev)
{
int rc = 0;
struct venus_hfi_device *device = (struct venus_hfi_device *) dev;
if (!device) {
dprintk(VIDC_ERR, "%s invalid device\n", __func__);
return -EINVAL;
} else if (!device->res->sw_power_collapsible) {
return -ENOTSUPP;
}
dprintk(VIDC_HIGH, "Suspending Venus\n");
mutex_lock(&device->lock);
rc = __power_collapse(device, true);
if (rc) {
dprintk(VIDC_ERR, "%s: Venus is busy\n", __func__);
rc = -EBUSY;
}
mutex_unlock(&device->lock);
/* Cancel pending delayed works if any */
if (!rc)
cancel_delayed_work(&venus_hfi_pm_work);
return rc;
}
static int venus_hfi_flush_debug_queue(void *dev)
{
int rc = 0;
struct venus_hfi_device *device = (struct venus_hfi_device *) dev;
if (!device) {
dprintk(VIDC_ERR, "%s invalid device\n", __func__);
return -EINVAL;
}
mutex_lock(&device->lock);
if (!device->power_enabled) {
dprintk(VIDC_ERR, "%s: venus power off\n", __func__);
rc = -EINVAL;
goto exit;
}
__flush_debug_queue(device, NULL);
exit:
mutex_unlock(&device->lock);
return rc;
}
static enum hal_default_properties venus_hfi_get_default_properties(void *dev)
{
enum hal_default_properties prop = 0;
struct venus_hfi_device *device = (struct venus_hfi_device *) dev;
if (!device) {
dprintk(VIDC_ERR, "%s invalid device\n", __func__);
return -EINVAL;
}
mutex_lock(&device->lock);
prop = HAL_VIDEO_DYNAMIC_BUF_MODE;
mutex_unlock(&device->lock);
return prop;
}
static int __set_clk_rate(struct venus_hfi_device *device,
struct clock_info *cl, u64 rate)
{
int rc = 0;
u64 threshold_freq = device->res->clk_freq_threshold;
struct cx_ipeak_client *ipeak = device->res->cx_ipeak_context;
struct clk *clk = cl->clk;
if (ipeak && device->clk_freq < threshold_freq && rate >= threshold_freq) {
rc = cx_ipeak_update(ipeak, true);
if (rc) {
dprintk(VIDC_ERR,
"%s: cx_ipeak_update failed!\n", __func__);
return rc;
}
dprintk(VIDC_PERF,
"cx_ipeak_update: up, clk freq = %lu rate = %lu threshold_freq = %lu\n",
device->clk_freq, rate, threshold_freq);
}
rc = clk_set_rate(clk, rate);
if (rc) {
dprintk(VIDC_ERR,
"%s: Failed to set clock rate %llu %s: %d\n",
__func__, rate, cl->name, rc);
return rc;
}
if (ipeak && device->clk_freq >= threshold_freq && rate < threshold_freq) {
rc = cx_ipeak_update(ipeak, false);
if (rc) {
dprintk(VIDC_ERR,
"cx_ipeak_update failed! ipeak %pK\n", ipeak);
device->clk_freq = rate;
return rc;
}
dprintk(VIDC_PERF,
"cx_ipeak_update: up, clk freq = %lu rate = %lu threshold_freq = %lu\n",
device->clk_freq, rate, threshold_freq);
}
device->clk_freq = rate;
return rc;
}
static int __set_clocks(struct venus_hfi_device *device, u32 freq)
{
struct clock_info *cl;
int rc = 0;
venus_hfi_for_each_clock(device, cl) {
if (cl->has_scaling) {/* has_scaling */
rc = __set_clk_rate(device, cl, freq);
if (rc)
return rc;
trace_msm_vidc_perf_clock_scale(cl->name, freq);
dprintk(VIDC_PERF, "Scaling clock %s to %u\n",
cl->name, freq);
}
}
return 0;
}
static int venus_hfi_scale_clocks(void *dev, u32 freq)
{
int rc = 0;
struct venus_hfi_device *device = dev;
if (!device) {
dprintk(VIDC_ERR, "Invalid args: %pK\n", device);
return -EINVAL;
}
mutex_lock(&device->lock);
if (__resume(device)) {
dprintk(VIDC_ERR, "Resume from power collapse failed\n");
rc = -ENODEV;
goto exit;
}
rc = __set_clocks(device, freq);
exit:
mutex_unlock(&device->lock);
return rc;
}
static int __scale_clocks(struct venus_hfi_device *device)
{
int rc = 0;
struct allowed_clock_rates_table *allowed_clks_tbl = NULL;
u32 rate = 0;
allowed_clks_tbl = device->res->allowed_clks_tbl;
rate = device->clk_freq ? device->clk_freq :
allowed_clks_tbl[0].clock_rate;
rc = __set_clocks(device, rate);
return rc;
}
/* Writes into cmdq without raising an interrupt */
static int __iface_cmdq_write_relaxed(struct venus_hfi_device *device,
void *pkt, bool *requires_interrupt)
{
struct vidc_iface_q_info *q_info;
struct vidc_hal_cmd_pkt_hdr *cmd_packet;
int result = -E2BIG;
if (!device || !pkt) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
__strict_check(device);
if (!__core_in_valid_state(device)) {
dprintk(VIDC_ERR, "%s - fw not in init state\n", __func__);
result = -EINVAL;
goto err_q_null;
}
cmd_packet = (struct vidc_hal_cmd_pkt_hdr *)pkt;
device->last_packet_type = cmd_packet->packet_type;
q_info = &device->iface_queues[VIDC_IFACEQ_CMDQ_IDX];
if (!q_info) {
dprintk(VIDC_ERR, "cannot write to shared Q's\n");
goto err_q_null;
}
if (!q_info->q_array.align_virtual_addr) {
dprintk(VIDC_ERR, "cannot write to shared CMD Q's\n");
result = -ENODATA;
goto err_q_null;
}
__sim_modify_cmd_packet((u8 *)pkt, device);
if (__resume(device)) {
dprintk(VIDC_ERR, "%s: Power on failed\n", __func__);
goto err_q_write;
}
if (!__write_queue(q_info, (u8 *)pkt, requires_interrupt)) {
if (device->res->sw_power_collapsible) {
cancel_delayed_work(&venus_hfi_pm_work);
if (!queue_delayed_work(device->venus_pm_workq,
&venus_hfi_pm_work,
msecs_to_jiffies(
device->res->msm_vidc_pwr_collapse_delay))) {
dprintk(VIDC_LOW,
"PM work already scheduled\n");
}
}
result = 0;
} else {
dprintk(VIDC_ERR, "__iface_cmdq_write: queue full\n");
}
err_q_write:
err_q_null:
return result;
}
static void __raise_interrupt_common(struct venus_hfi_device *device)
{
__write_register(device, CPU_IC_SOFTINT,
1 << CPU_IC_SOFTINT_H2A_SHFT);
}
static int __iface_cmdq_write(struct venus_hfi_device *device, void *pkt)
{
bool needs_interrupt = false;
int rc = __iface_cmdq_write_relaxed(device, pkt, &needs_interrupt);
if (!rc && needs_interrupt)
call_venus_op(device, raise_interrupt, device);
return rc;
}
static int __iface_msgq_read(struct venus_hfi_device *device, void *pkt)
{
u32 tx_req_is_set = 0;
int rc = 0;
struct vidc_iface_q_info *q_info;
if (!pkt) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
__strict_check(device);
if (!__core_in_valid_state(device)) {
dprintk(VIDC_ERR, "%s - fw not in init state\n", __func__);
rc = -EINVAL;
goto read_error_null;
}
q_info = &device->iface_queues[VIDC_IFACEQ_MSGQ_IDX];
if (!q_info->q_array.align_virtual_addr) {
dprintk(VIDC_ERR, "cannot read from shared MSG Q's\n");
rc = -ENODATA;
goto read_error_null;
}
if (!__read_queue(q_info, (u8 *)pkt, &tx_req_is_set)) {
__hal_sim_modify_msg_packet((u8 *)pkt, device);
if (tx_req_is_set)
call_venus_op(device, raise_interrupt, device);
rc = 0;
} else
rc = -ENODATA;
read_error_null:
return rc;
}
static int __iface_dbgq_read(struct venus_hfi_device *device, void *pkt)
{
u32 tx_req_is_set = 0;
int rc = 0;
struct vidc_iface_q_info *q_info;
if (!pkt) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
__strict_check(device);
q_info = &device->iface_queues[VIDC_IFACEQ_DBGQ_IDX];
if (!q_info->q_array.align_virtual_addr) {
dprintk(VIDC_ERR, "cannot read from shared DBG Q's\n");
rc = -ENODATA;
goto dbg_error_null;
}
if (!__read_queue(q_info, (u8 *)pkt, &tx_req_is_set)) {
if (tx_req_is_set)
call_venus_op(device, raise_interrupt, device);
rc = 0;
} else
rc = -ENODATA;
dbg_error_null:
return rc;
}
static void __set_queue_hdr_defaults(struct hfi_queue_header *q_hdr)
{
q_hdr->qhdr_status = 0x1;
q_hdr->qhdr_type = VIDC_IFACEQ_DFLT_QHDR;
q_hdr->qhdr_q_size = VIDC_IFACEQ_QUEUE_SIZE / 4;
q_hdr->qhdr_pkt_size = 0;
q_hdr->qhdr_rx_wm = 0x1;
q_hdr->qhdr_tx_wm = 0x1;
q_hdr->qhdr_rx_req = 0x1;
q_hdr->qhdr_tx_req = 0x0;
q_hdr->qhdr_rx_irq_status = 0x0;
q_hdr->qhdr_tx_irq_status = 0x0;
q_hdr->qhdr_read_idx = 0x0;
q_hdr->qhdr_write_idx = 0x0;
}
static void __interface_dsp_queues_release(struct venus_hfi_device *device)
{
int i;
struct msm_smem *mem_data = &device->dsp_iface_q_table.mem_data;
struct context_bank_info *cb = mem_data->mapping_info.cb_info;
if (!device->dsp_iface_q_table.align_virtual_addr) {
dprintk(VIDC_ERR, "%s: already released\n", __func__);
return;
}
dma_unmap_single_attrs(cb->dev, mem_data->device_addr,
mem_data->size, DMA_BIDIRECTIONAL, 0);
dma_free_coherent(device->res->mem_cdsp.dev, mem_data->size,
mem_data->kvaddr, mem_data->dma_handle);
for (i = 0; i < VIDC_IFACEQ_NUMQ; i++) {
device->dsp_iface_queues[i].q_hdr = NULL;
device->dsp_iface_queues[i].q_array.align_virtual_addr = NULL;
device->dsp_iface_queues[i].q_array.align_device_addr = 0;
}
device->dsp_iface_q_table.align_virtual_addr = NULL;
device->dsp_iface_q_table.align_device_addr = 0;
}
static int __interface_dsp_queues_init(struct venus_hfi_device *dev)
{
int rc = 0;
u32 i;
struct hfi_queue_table_header *q_tbl_hdr;
struct hfi_queue_header *q_hdr;
struct vidc_iface_q_info *iface_q;
int offset = 0;
phys_addr_t fw_bias = 0;
size_t q_size;
struct msm_smem *mem_data;
void *kvaddr;
dma_addr_t dma_handle;
dma_addr_t iova;
struct context_bank_info *cb;
q_size = ALIGN(QUEUE_SIZE, SZ_1M);
mem_data = &dev->dsp_iface_q_table.mem_data;
/* Allocate dsp queues from ADSP device memory */
kvaddr = dma_alloc_coherent(dev->res->mem_cdsp.dev, q_size,
&dma_handle, GFP_KERNEL);
if (IS_ERR_OR_NULL(kvaddr)) {
dprintk(VIDC_ERR, "%s: failed dma allocation\n", __func__);
goto fail_dma_alloc;
}
cb = msm_smem_get_context_bank(MSM_VIDC_UNKNOWN, 0,
dev->res, HAL_BUFFER_INTERNAL_CMD_QUEUE);
if (!cb) {
dprintk(VIDC_ERR,
"%s: failed to get context bank\n", __func__);
goto fail_dma_map;
}
iova = dma_map_single_attrs(cb->dev, phys_to_virt(dma_handle),
q_size, DMA_BIDIRECTIONAL, 0);
if (dma_mapping_error(cb->dev, iova)) {
dprintk(VIDC_ERR, "%s: failed dma mapping\n", __func__);
goto fail_dma_map;
}
dprintk(VIDC_HIGH,
"%s: kvaddr %pK dma_handle %#llx iova %#llx size %zd\n",
__func__, kvaddr, dma_handle, iova, q_size);
memset(mem_data, 0, sizeof(struct msm_smem));
mem_data->kvaddr = kvaddr;
mem_data->device_addr = iova;
mem_data->dma_handle = dma_handle;
mem_data->size = q_size;
mem_data->buffer_type = HAL_BUFFER_INTERNAL_CMD_QUEUE;
mem_data->mapping_info.cb_info = cb;
if (!is_iommu_present(dev->res))
fw_bias = dev->hal_data->firmware_base;
dev->dsp_iface_q_table.align_virtual_addr = kvaddr;
dev->dsp_iface_q_table.align_device_addr = iova - fw_bias;
dev->dsp_iface_q_table.mem_size = VIDC_IFACEQ_TABLE_SIZE;
offset = dev->dsp_iface_q_table.mem_size;
for (i = 0; i < VIDC_IFACEQ_NUMQ; i++) {
iface_q = &dev->dsp_iface_queues[i];
iface_q->q_array.align_device_addr = iova + offset - fw_bias;
iface_q->q_array.align_virtual_addr =
(void *)((char *)kvaddr + offset);
iface_q->q_array.mem_size = VIDC_IFACEQ_QUEUE_SIZE;
offset += iface_q->q_array.mem_size;
iface_q->q_hdr = VIDC_IFACEQ_GET_QHDR_START_ADDR(
dev->dsp_iface_q_table.align_virtual_addr, i);
__set_queue_hdr_defaults(iface_q->q_hdr);
}
q_tbl_hdr = (struct hfi_queue_table_header *)
dev->dsp_iface_q_table.align_virtual_addr;
q_tbl_hdr->qtbl_version = 0;
q_tbl_hdr->device_addr = (void *)dev;
strlcpy(q_tbl_hdr->name, "msm_v4l2_vidc", sizeof(q_tbl_hdr->name));
q_tbl_hdr->qtbl_size = VIDC_IFACEQ_TABLE_SIZE;
q_tbl_hdr->qtbl_qhdr0_offset = sizeof(struct hfi_queue_table_header);
q_tbl_hdr->qtbl_qhdr_size = sizeof(struct hfi_queue_header);
q_tbl_hdr->qtbl_num_q = VIDC_IFACEQ_NUMQ;
q_tbl_hdr->qtbl_num_active_q = VIDC_IFACEQ_NUMQ;
iface_q = &dev->dsp_iface_queues[VIDC_IFACEQ_CMDQ_IDX];
q_hdr = iface_q->q_hdr;
q_hdr->qhdr_start_addr = iface_q->q_array.align_device_addr;
q_hdr->qhdr_type |= HFI_Q_ID_HOST_TO_CTRL_CMD_Q;
iface_q = &dev->dsp_iface_queues[VIDC_IFACEQ_MSGQ_IDX];
q_hdr = iface_q->q_hdr;
q_hdr->qhdr_start_addr = iface_q->q_array.align_device_addr;
q_hdr->qhdr_type |= HFI_Q_ID_CTRL_TO_HOST_MSG_Q;
iface_q = &dev->dsp_iface_queues[VIDC_IFACEQ_DBGQ_IDX];
q_hdr = iface_q->q_hdr;
q_hdr->qhdr_start_addr = iface_q->q_array.align_device_addr;
q_hdr->qhdr_type |= HFI_Q_ID_CTRL_TO_HOST_DEBUG_Q;
/*
* Set receive request to zero on debug queue as there is no
* need of interrupt from video hardware for debug messages
*/
q_hdr->qhdr_rx_req = 0;
return rc;
fail_dma_map:
dma_free_coherent(dev->res->mem_cdsp.dev, q_size, kvaddr, dma_handle);
fail_dma_alloc:
return -ENOMEM;
}
static void __interface_queues_release(struct venus_hfi_device *device)
{
int i;
struct hfi_mem_map_table *qdss;
struct hfi_mem_map *mem_map;
int num_entries = device->res->qdss_addr_set.count;
unsigned long mem_map_table_base_addr;
struct context_bank_info *cb;
if (device->qdss.align_virtual_addr) {
qdss = (struct hfi_mem_map_table *)
device->qdss.align_virtual_addr;
qdss->mem_map_num_entries = num_entries;
mem_map_table_base_addr =
device->qdss.align_device_addr +
sizeof(struct hfi_mem_map_table);
qdss->mem_map_table_base_addr =
(u32)mem_map_table_base_addr;
if ((unsigned long)qdss->mem_map_table_base_addr !=
mem_map_table_base_addr) {
dprintk(VIDC_ERR,
"Invalid mem_map_table_base_addr %#lx",
mem_map_table_base_addr);
}
mem_map = (struct hfi_mem_map *)(qdss + 1);
cb = msm_smem_get_context_bank(MSM_VIDC_UNKNOWN,
false, device->res, HAL_BUFFER_INTERNAL_CMD_QUEUE);
for (i = 0; cb && i < num_entries; i++) {
iommu_unmap(cb->domain,
mem_map[i].virtual_addr,
mem_map[i].size);
}
__smem_free(device, &device->qdss.mem_data);
}
__smem_free(device, &device->iface_q_table.mem_data);
__smem_free(device, &device->sfr.mem_data);
for (i = 0; i < VIDC_IFACEQ_NUMQ; i++) {
device->iface_queues[i].q_hdr = NULL;
device->iface_queues[i].q_array.align_virtual_addr = NULL;
device->iface_queues[i].q_array.align_device_addr = 0;
}
device->iface_q_table.align_virtual_addr = NULL;
device->iface_q_table.align_device_addr = 0;
device->qdss.align_virtual_addr = NULL;
device->qdss.align_device_addr = 0;
device->sfr.align_virtual_addr = NULL;
device->sfr.align_device_addr = 0;
device->mem_addr.align_virtual_addr = NULL;
device->mem_addr.align_device_addr = 0;
if (device->res->cvp_internal)
__interface_dsp_queues_release(device);
}
static int __get_qdss_iommu_virtual_addr(struct venus_hfi_device *dev,
struct hfi_mem_map *mem_map, struct iommu_domain *domain)
{
int i;
int rc = 0;
dma_addr_t iova = QDSS_IOVA_START;
int num_entries = dev->res->qdss_addr_set.count;
struct addr_range *qdss_addr_tbl = dev->res->qdss_addr_set.addr_tbl;
if (!num_entries)
return -ENODATA;
for (i = 0; i < num_entries; i++) {
if (domain) {
rc = iommu_map(domain, iova,
qdss_addr_tbl[i].start,
qdss_addr_tbl[i].size,
IOMMU_READ | IOMMU_WRITE);
if (rc) {
dprintk(VIDC_ERR,
"IOMMU QDSS mapping failed for addr %#x\n",
qdss_addr_tbl[i].start);
rc = -ENOMEM;
break;
}
} else {
iova = qdss_addr_tbl[i].start;
}
mem_map[i].virtual_addr = (u32)iova;
mem_map[i].physical_addr = qdss_addr_tbl[i].start;
mem_map[i].size = qdss_addr_tbl[i].size;
mem_map[i].attr = 0x0;
iova += mem_map[i].size;
}
if (i < num_entries) {
dprintk(VIDC_ERR,
"QDSS mapping failed, Freeing other entries %d\n", i);
for (--i; domain && i >= 0; i--) {
iommu_unmap(domain,
mem_map[i].virtual_addr,
mem_map[i].size);
}
}
return rc;
}
static void __setup_ucregion_memory_map_common(struct venus_hfi_device *device)
{
__write_register(device, UC_REGION_ADDR,
(u32)device->iface_q_table.align_device_addr);
__write_register(device, UC_REGION_SIZE, SHARED_QSIZE);
__write_register(device, QTBL_ADDR,
(u32)device->iface_q_table.align_device_addr);
__write_register(device, QTBL_INFO, 0x01);
if (device->sfr.align_device_addr)
__write_register(device, SFR_ADDR,
(u32)device->sfr.align_device_addr);
if (device->qdss.align_device_addr)
__write_register(device, MMAP_ADDR,
(u32)device->qdss.align_device_addr);
}
static int __interface_queues_init(struct venus_hfi_device *dev)
{
struct hfi_queue_table_header *q_tbl_hdr;
struct hfi_queue_header *q_hdr;
u32 i;
int rc = 0;
struct hfi_mem_map_table *qdss;
struct hfi_mem_map *mem_map;
struct vidc_iface_q_info *iface_q;
struct hfi_sfr_struct *vsfr;
struct vidc_mem_addr *mem_addr;
int offset = 0;
int num_entries = dev->res->qdss_addr_set.count;
phys_addr_t fw_bias = 0;
size_t q_size;
unsigned long mem_map_table_base_addr;
struct context_bank_info *cb;
q_size = SHARED_QSIZE - ALIGNED_SFR_SIZE - ALIGNED_QDSS_SIZE;
mem_addr = &dev->mem_addr;
if (!is_iommu_present(dev->res))
fw_bias = dev->hal_data->firmware_base;
rc = __smem_alloc(dev, mem_addr, q_size, 1, SMEM_UNCACHED,
HAL_BUFFER_INTERNAL_CMD_QUEUE);
if (rc) {
dprintk(VIDC_ERR, "iface_q_table_alloc_fail\n");
goto fail_alloc_queue;
}
dev->iface_q_table.align_virtual_addr = mem_addr->align_virtual_addr;
dev->iface_q_table.align_device_addr = mem_addr->align_device_addr -
fw_bias;
dev->iface_q_table.mem_size = VIDC_IFACEQ_TABLE_SIZE;
dev->iface_q_table.mem_data = mem_addr->mem_data;
offset += dev->iface_q_table.mem_size;
for (i = 0; i < VIDC_IFACEQ_NUMQ; i++) {
iface_q = &dev->iface_queues[i];
iface_q->q_array.align_device_addr = mem_addr->align_device_addr
+ offset - fw_bias;
iface_q->q_array.align_virtual_addr =
mem_addr->align_virtual_addr + offset;
iface_q->q_array.mem_size = VIDC_IFACEQ_QUEUE_SIZE;
offset += iface_q->q_array.mem_size;
iface_q->q_hdr = VIDC_IFACEQ_GET_QHDR_START_ADDR(
dev->iface_q_table.align_virtual_addr, i);
__set_queue_hdr_defaults(iface_q->q_hdr);
}
if ((msm_vidc_fw_debug_mode & HFI_DEBUG_MODE_QDSS) && num_entries) {
rc = __smem_alloc(dev, mem_addr,
ALIGNED_QDSS_SIZE, 1, SMEM_UNCACHED,
HAL_BUFFER_INTERNAL_CMD_QUEUE);
if (rc) {
dprintk(VIDC_ERR,
"qdss_alloc_fail: QDSS messages logging will not work\n");
dev->qdss.align_device_addr = 0;
} else {
dev->qdss.align_device_addr =
mem_addr->align_device_addr - fw_bias;
dev->qdss.align_virtual_addr =
mem_addr->align_virtual_addr;
dev->qdss.mem_size = ALIGNED_QDSS_SIZE;
dev->qdss.mem_data = mem_addr->mem_data;
}
}
rc = __smem_alloc(dev, mem_addr,
ALIGNED_SFR_SIZE, 1, SMEM_UNCACHED,
HAL_BUFFER_INTERNAL_CMD_QUEUE);
if (rc) {
dprintk(VIDC_ERR, "sfr_alloc_fail: SFR not will work\n");
dev->sfr.align_device_addr = 0;
} else {
dev->sfr.align_device_addr = mem_addr->align_device_addr -
fw_bias;
dev->sfr.align_virtual_addr = mem_addr->align_virtual_addr;
dev->sfr.mem_size = ALIGNED_SFR_SIZE;
dev->sfr.mem_data = mem_addr->mem_data;
vsfr = (struct hfi_sfr_struct *) dev->sfr.align_virtual_addr;
vsfr->bufSize = ALIGNED_SFR_SIZE;
}
q_tbl_hdr = (struct hfi_queue_table_header *)
dev->iface_q_table.align_virtual_addr;
q_tbl_hdr->qtbl_version = 0;
q_tbl_hdr->device_addr = (void *)dev;
strlcpy(q_tbl_hdr->name, "msm_v4l2_vidc", sizeof(q_tbl_hdr->name));
q_tbl_hdr->qtbl_size = VIDC_IFACEQ_TABLE_SIZE;
q_tbl_hdr->qtbl_qhdr0_offset = sizeof(struct hfi_queue_table_header);
q_tbl_hdr->qtbl_qhdr_size = sizeof(struct hfi_queue_header);
q_tbl_hdr->qtbl_num_q = VIDC_IFACEQ_NUMQ;
q_tbl_hdr->qtbl_num_active_q = VIDC_IFACEQ_NUMQ;
iface_q = &dev->iface_queues[VIDC_IFACEQ_CMDQ_IDX];
q_hdr = iface_q->q_hdr;
q_hdr->qhdr_start_addr = iface_q->q_array.align_device_addr;
q_hdr->qhdr_type |= HFI_Q_ID_HOST_TO_CTRL_CMD_Q;
iface_q = &dev->iface_queues[VIDC_IFACEQ_MSGQ_IDX];
q_hdr = iface_q->q_hdr;
q_hdr->qhdr_start_addr = iface_q->q_array.align_device_addr;
q_hdr->qhdr_type |= HFI_Q_ID_CTRL_TO_HOST_MSG_Q;
iface_q = &dev->iface_queues[VIDC_IFACEQ_DBGQ_IDX];
q_hdr = iface_q->q_hdr;
q_hdr->qhdr_start_addr = iface_q->q_array.align_device_addr;
q_hdr->qhdr_type |= HFI_Q_ID_CTRL_TO_HOST_DEBUG_Q;
/*
* Set receive request to zero on debug queue as there is no
* need of interrupt from video hardware for debug messages
*/
q_hdr->qhdr_rx_req = 0;
if (dev->qdss.align_virtual_addr) {
qdss = (struct hfi_mem_map_table *)dev->qdss.align_virtual_addr;
qdss->mem_map_num_entries = num_entries;
mem_map_table_base_addr = dev->qdss.align_device_addr +
sizeof(struct hfi_mem_map_table);
qdss->mem_map_table_base_addr = mem_map_table_base_addr;
mem_map = (struct hfi_mem_map *)(qdss + 1);
cb = msm_smem_get_context_bank(MSM_VIDC_UNKNOWN, false,
dev->res, HAL_BUFFER_INTERNAL_CMD_QUEUE);
if (!cb) {
dprintk(VIDC_ERR,
"%s: failed to get context bank\n", __func__);
return -EINVAL;
}
rc = __get_qdss_iommu_virtual_addr(dev, mem_map, cb->domain);
if (rc) {
dprintk(VIDC_ERR,
"IOMMU mapping failed, Freeing qdss memdata\n");
__smem_free(dev, &dev->qdss.mem_data);
dev->qdss.align_virtual_addr = NULL;
dev->qdss.align_device_addr = 0;
}
}
if (dev->res->cvp_internal) {
rc = __interface_dsp_queues_init(dev);
if (rc) {
dprintk(VIDC_ERR, "dsp_queues_init failed\n");
goto fail_alloc_queue;
}
}
call_venus_op(dev, setup_ucregion_memmap, dev);
return 0;
fail_alloc_queue:
return -ENOMEM;
}
static int __sys_set_debug(struct venus_hfi_device *device, u32 debug)
{
u8 packet[VIDC_IFACEQ_VAR_SMALL_PKT_SIZE];
int rc = 0;
struct hfi_cmd_sys_set_property_packet *pkt =
(struct hfi_cmd_sys_set_property_packet *) &packet;
rc = call_hfi_pkt_op(device, sys_debug_config, pkt, debug);
if (rc) {
dprintk(VIDC_ERR,
"Debug mode setting to FW failed\n");
return -ENOTEMPTY;
}
if (__iface_cmdq_write(device, pkt))
return -ENOTEMPTY;
return 0;
}
static int __sys_set_coverage(struct venus_hfi_device *device, u32 mode)
{
u8 packet[VIDC_IFACEQ_VAR_SMALL_PKT_SIZE];
int rc = 0;
struct hfi_cmd_sys_set_property_packet *pkt =
(struct hfi_cmd_sys_set_property_packet *) &packet;
rc = call_hfi_pkt_op(device, sys_coverage_config,
pkt, mode);
if (rc) {
dprintk(VIDC_ERR,
"Coverage mode setting to FW failed\n");
return -ENOTEMPTY;
}
if (__iface_cmdq_write(device, pkt)) {
dprintk(VIDC_ERR, "Failed to send coverage pkt to f/w\n");
return -ENOTEMPTY;
}
return 0;
}
static int __sys_set_power_control(struct venus_hfi_device *device,
bool enable)
{
struct regulator_info *rinfo;
bool supported = false;
u8 packet[VIDC_IFACEQ_VAR_SMALL_PKT_SIZE];
struct hfi_cmd_sys_set_property_packet *pkt =
(struct hfi_cmd_sys_set_property_packet *) &packet;
venus_hfi_for_each_regulator(device, rinfo) {
if (rinfo->has_hw_power_collapse) {
supported = true;
break;
}
}
if (!supported)
return 0;
call_hfi_pkt_op(device, sys_power_control, pkt, enable);
if (__iface_cmdq_write(device, pkt))
return -ENOTEMPTY;
return 0;
}
static int venus_hfi_core_init(void *device)
{
int rc = 0;
struct hfi_cmd_sys_init_packet pkt;
struct hfi_cmd_sys_get_property_packet version_pkt;
struct venus_hfi_device *dev;
if (!device) {
dprintk(VIDC_ERR, "Invalid device\n");
return -ENODEV;
}
dev = device;
dprintk(VIDC_HIGH, "Core initializing\n");
mutex_lock(&dev->lock);
dev->bus_vote.data =
kzalloc(sizeof(struct vidc_bus_vote_data), GFP_KERNEL);
if (!dev->bus_vote.data) {
dprintk(VIDC_ERR, "Bus vote data memory is not allocated\n");
rc = -ENOMEM;
goto err_no_mem;
}
dev->bus_vote.data_count = 1;
dev->bus_vote.data->power_mode = VIDC_POWER_TURBO;
rc = __load_fw(dev);
if (rc) {
dprintk(VIDC_ERR, "Failed to load Venus FW\n");
goto err_load_fw;
}
__set_state(dev, VENUS_STATE_INIT);
dprintk(VIDC_HIGH, "Dev_Virt: %pa, Reg_Virt: %pK\n",
&dev->hal_data->firmware_base,
dev->hal_data->register_base);
rc = __interface_queues_init(dev);
if (rc) {
dprintk(VIDC_ERR, "failed to init queues\n");
rc = -ENOMEM;
goto err_core_init;
}
rc = call_venus_op(dev, boot_firmware, dev);
if (rc) {
dprintk(VIDC_ERR, "Failed to start core\n");
rc = -ENODEV;
goto err_core_init;
}
rc = call_hfi_pkt_op(dev, sys_init, &pkt, HFI_VIDEO_ARCH_OX);
if (rc) {
dprintk(VIDC_ERR, "Failed to create sys init pkt\n");
goto err_core_init;
}
if (__iface_cmdq_write(dev, &pkt)) {
rc = -ENOTEMPTY;
goto err_core_init;
}
rc = call_hfi_pkt_op(dev, sys_image_version, &version_pkt);
if (rc || __iface_cmdq_write(dev, &version_pkt))
dprintk(VIDC_ERR, "Failed to send image version pkt to f/w\n");
__sys_set_debug(device, (msm_vidc_debug & FW_LOGMASK) >> FW_LOGSHIFT);
__enable_subcaches(device);
__set_subcaches(device);
__dsp_send_hfi_queue(device);
__set_ubwc_config(device);
if (dev->res->pm_qos_latency_us) {
#ifdef CONFIG_SMP
dev->qos.type = PM_QOS_REQ_AFFINE_IRQ;
dev->qos.irq = dev->hal_data->irq;
#endif
pm_qos_add_request(&dev->qos, PM_QOS_CPU_DMA_LATENCY,
dev->res->pm_qos_latency_us);
}
dprintk(VIDC_HIGH, "Core inited successfully\n");
mutex_unlock(&dev->lock);
return rc;
err_core_init:
__set_state(dev, VENUS_STATE_DEINIT);
__unload_fw(dev);
err_load_fw:
err_no_mem:
dprintk(VIDC_ERR, "Core init failed\n");
mutex_unlock(&dev->lock);
return rc;
}
static int venus_hfi_core_release(void *dev)
{
int rc = 0;
struct venus_hfi_device *device = dev;
struct hal_session *session, *next;
if (!device) {
dprintk(VIDC_ERR, "invalid device\n");
return -ENODEV;
}
mutex_lock(&device->lock);
dprintk(VIDC_HIGH, "Core releasing\n");
if (device->res->pm_qos_latency_us &&
pm_qos_request_active(&device->qos))
pm_qos_remove_request(&device->qos);
__resume(device);
__set_state(device, VENUS_STATE_DEINIT);
__dsp_shutdown(device, 0);
__unload_fw(device);
/* unlink all sessions from device */
list_for_each_entry_safe(session, next, &device->sess_head, list)
list_del(&session->list);
dprintk(VIDC_HIGH, "Core released successfully\n");
mutex_unlock(&device->lock);
return rc;
}
static int __get_q_size(struct venus_hfi_device *dev, unsigned int q_index)
{
struct hfi_queue_header *queue;
struct vidc_iface_q_info *q_info;
u32 write_ptr, read_ptr;
if (q_index >= VIDC_IFACEQ_NUMQ) {
dprintk(VIDC_ERR, "Invalid q index: %d\n", q_index);
return -ENOENT;
}
q_info = &dev->iface_queues[q_index];
if (!q_info) {
dprintk(VIDC_ERR, "cannot read shared Q's\n");
return -ENOENT;
}
queue = (struct hfi_queue_header *)q_info->q_hdr;
if (!queue) {
dprintk(VIDC_ERR, "queue not present\n");
return -ENOENT;
}
write_ptr = (u32)queue->qhdr_write_idx;
read_ptr = (u32)queue->qhdr_read_idx;
return read_ptr - write_ptr;
}
static void __core_clear_interrupt_common(struct venus_hfi_device *device)
{
u32 intr_status = 0, mask = 0;
if (!device) {
dprintk(VIDC_ERR, "%s: NULL device\n", __func__);
return;
}
intr_status = __read_register(device, WRAPPER_INTR_STATUS);
mask = (WRAPPER_INTR_STATUS_A2H_BMSK |
WRAPPER_INTR_STATUS_A2HWD_BMSK |
CTRL_INIT_IDLE_MSG_BMSK);
if (intr_status & mask) {
device->intr_status |= intr_status;
device->reg_count++;
dprintk(VIDC_LOW,
"INTERRUPT for device: %pK: times: %d interrupt_status: %d\n",
device, device->reg_count, intr_status);
} else {
device->spur_count++;
}
__write_register(device, CPU_CS_A2HSOFTINTCLR, 1);
__write_register(device, WRAPPER_INTR_CLEAR, intr_status);
}
static int venus_hfi_core_trigger_ssr(void *device,
enum hal_ssr_trigger_type type)
{
struct hfi_cmd_sys_test_ssr_packet pkt;
int rc = 0;
struct venus_hfi_device *dev;
if (!device) {
dprintk(VIDC_ERR, "invalid device\n");
return -ENODEV;
}
dev = device;
mutex_lock(&dev->lock);
rc = call_hfi_pkt_op(dev, ssr_cmd, type, &pkt);
if (rc) {
dprintk(VIDC_ERR, "core_ping: failed to create packet\n");
goto err_create_pkt;
}
if (__iface_cmdq_write(dev, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
mutex_unlock(&dev->lock);
return rc;
}
static int venus_hfi_session_set_property(void *sess,
u32 ptype, void *pdata, u32 size)
{
u8 packet[VIDC_IFACEQ_VAR_LARGE_PKT_SIZE];
struct hfi_cmd_session_set_property_packet *pkt =
(struct hfi_cmd_session_set_property_packet *) &packet;
struct hal_session *session = sess;
struct venus_hfi_device *device;
int rc = 0;
if (!session || !session->device) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
dprintk(VIDC_HIGH, "in set_prop,with prop id: %#x\n", ptype);
if (!__is_session_valid(device, session, __func__)) {
rc = -EINVAL;
goto err_set_prop;
}
rc = call_hfi_pkt_op(device, session_set_property,
pkt, session, ptype, pdata, size);
if (rc == -ENOTSUPP) {
dprintk(VIDC_ERR,
"set property: unsupported prop id: %#x\n", ptype);
rc = 0;
goto err_set_prop;
} else if (rc) {
dprintk(VIDC_ERR, "set property: failed to create packet\n");
rc = -EINVAL;
goto err_set_prop;
}
if (__iface_cmdq_write(session->device, pkt)) {
rc = -ENOTEMPTY;
goto err_set_prop;
}
err_set_prop:
mutex_unlock(&device->lock);
return rc;
}
static void __set_default_sys_properties(struct venus_hfi_device *device)
{
if (__sys_set_debug(device,
(msm_vidc_debug & FW_LOGMASK) >> FW_LOGSHIFT))
dprintk(VIDC_ERR, "Setting fw_debug msg ON failed\n");
if (__sys_set_power_control(device, true))
dprintk(VIDC_ERR, "Setting h/w power collapse ON failed\n");
}
static void __session_clean(struct hal_session *session)
{
struct hal_session *temp, *next;
struct venus_hfi_device *device;
if (!session || !session->device) {
dprintk(VIDC_ERR, "%s: invalid params\n", __func__);
return;
}
device = session->device;
dprintk(VIDC_HIGH, "deleted the session: %pK\n", session);
/*
* session might have been removed from the device list in
* core_release, so check and remove if it is in the list
*/
list_for_each_entry_safe(temp, next, &device->sess_head, list) {
if (session == temp) {
list_del(&session->list);
break;
}
}
/* Poison the session handle with zeros */
*session = (struct hal_session){ {0} };
kfree(session);
}
static int venus_hfi_session_clean(void *session)
{
struct hal_session *sess_close;
struct venus_hfi_device *device;
if (!session) {
dprintk(VIDC_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
sess_close = session;
device = sess_close->device;
if (!device) {
dprintk(VIDC_ERR, "Invalid device handle %s\n", __func__);
return -EINVAL;
}
mutex_lock(&device->lock);
__session_clean(sess_close);
mutex_unlock(&device->lock);
return 0;
}
static int venus_hfi_session_init(void *device, void *session_id,
enum hal_domain session_type, enum hal_video_codec codec_type,
void **new_session)
{
struct hfi_cmd_sys_session_init_packet pkt;
struct venus_hfi_device *dev;
struct hal_session *s;
if (!device || !new_session) {
dprintk(VIDC_ERR, "%s - invalid input\n", __func__);
return -EINVAL;
}
dev = device;
mutex_lock(&dev->lock);
s = kzalloc(sizeof(struct hal_session), GFP_KERNEL);
if (!s) {
dprintk(VIDC_ERR, "new session fail: Out of memory\n");
goto err_session_init_fail;
}
s->session_id = session_id;
s->is_decoder = (session_type == HAL_VIDEO_DOMAIN_DECODER);
s->device = dev;
s->codec = codec_type;
s->domain = session_type;
dprintk(VIDC_HIGH,
"%s: inst %pK, session %pK, codec 0x%x, domain 0x%x\n",
__func__, session_id, s, s->codec, s->domain);
list_add_tail(&s->list, &dev->sess_head);
__set_default_sys_properties(device);
if (call_hfi_pkt_op(dev, session_init, &pkt,
s, session_type, codec_type)) {
dprintk(VIDC_ERR, "session_init: failed to create packet\n");
goto err_session_init_fail;
}
*new_session = s;
if (__iface_cmdq_write(dev, &pkt))
goto err_session_init_fail;
mutex_unlock(&dev->lock);
return 0;
err_session_init_fail:
if (s)
__session_clean(s);
*new_session = NULL;
mutex_unlock(&dev->lock);
return -EINVAL;
}
static int __send_session_cmd(struct hal_session *session, int pkt_type)
{
struct vidc_hal_session_cmd_pkt pkt;
int rc = 0;
struct venus_hfi_device *device = session->device;
if (!__is_session_valid(device, session, __func__))
return -EINVAL;
rc = call_hfi_pkt_op(device, session_cmd,
&pkt, pkt_type, session);
if (rc == -EPERM)
return 0;
if (rc) {
dprintk(VIDC_ERR, "send session cmd: create pkt failed\n");
goto err_create_pkt;
}
if (__iface_cmdq_write(session->device, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int venus_hfi_session_end(void *session)
{
struct hal_session *sess;
struct venus_hfi_device *device;
int rc = 0;
if (!session) {
dprintk(VIDC_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
sess = session;
device = sess->device;
mutex_lock(&device->lock);
if (msm_vidc_fw_coverage) {
if (__sys_set_coverage(sess->device, msm_vidc_fw_coverage))
dprintk(VIDC_ERR, "Fw_coverage msg ON failed\n");
}
rc = __send_session_cmd(session, HFI_CMD_SYS_SESSION_END);
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_abort(void *sess)
{
struct hal_session *session = sess;
struct venus_hfi_device *device;
int rc = 0;
if (!session || !session->device) {
dprintk(VIDC_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
__flush_debug_queue(device, NULL);
rc = __send_session_cmd(session, HFI_CMD_SYS_SESSION_ABORT);
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_set_buffers(void *sess,
struct vidc_buffer_addr_info *buffer_info)
{
struct hfi_cmd_session_set_buffers_packet *pkt;
u8 packet[VIDC_IFACEQ_VAR_LARGE_PKT_SIZE];
int rc = 0;
struct hal_session *session = sess;
struct venus_hfi_device *device;
if (!session || !session->device || !buffer_info) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
if (!__is_session_valid(device, session, __func__)) {
rc = -EINVAL;
goto err_create_pkt;
}
if (buffer_info->buffer_type == HAL_BUFFER_INPUT) {
/*
* Hardware doesn't care about input buffers being
* published beforehand
*/
rc = 0;
goto err_create_pkt;
}
pkt = (struct hfi_cmd_session_set_buffers_packet *)packet;
rc = call_hfi_pkt_op(device, session_set_buffers,
pkt, session, buffer_info);
if (rc) {
dprintk(VIDC_ERR, "set buffers: failed to create packet\n");
goto err_create_pkt;
}
dprintk(VIDC_HIGH, "set buffers: %#x\n", buffer_info->buffer_type);
if (__iface_cmdq_write(session->device, pkt))
rc = -ENOTEMPTY;
err_create_pkt:
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_release_buffers(void *sess,
struct vidc_buffer_addr_info *buffer_info)
{
struct hfi_cmd_session_release_buffer_packet *pkt;
u8 packet[VIDC_IFACEQ_VAR_LARGE_PKT_SIZE];
int rc = 0;
struct hal_session *session = sess;
struct venus_hfi_device *device;
if (!session || !session->device || !buffer_info) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
if (!__is_session_valid(device, session, __func__)) {
rc = -EINVAL;
goto err_create_pkt;
}
if (buffer_info->buffer_type == HAL_BUFFER_INPUT) {
rc = 0;
goto err_create_pkt;
}
pkt = (struct hfi_cmd_session_release_buffer_packet *) packet;
rc = call_hfi_pkt_op(device, session_release_buffers,
pkt, session, buffer_info);
if (rc) {
dprintk(VIDC_ERR, "release buffers: failed to create packet\n");
goto err_create_pkt;
}
dprintk(VIDC_HIGH, "Release buffers: %#x\n", buffer_info->buffer_type);
if (__iface_cmdq_write(session->device, pkt))
rc = -ENOTEMPTY;
err_create_pkt:
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_register_buffer(void *sess,
struct vidc_register_buffer *buffer)
{
int rc = 0;
u8 packet[VIDC_IFACEQ_VAR_LARGE_PKT_SIZE];
struct hfi_cmd_session_register_buffers_packet *pkt;
struct hal_session *session = sess;
struct venus_hfi_device *device;
if (!session || !session->device || !buffer) {
dprintk(VIDC_ERR, "%s: invalid params\n", __func__);
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
if (!__is_session_valid(device, session, __func__)) {
rc = -EINVAL;
goto exit;
}
pkt = (struct hfi_cmd_session_register_buffers_packet *)packet;
rc = call_hfi_pkt_op(device, session_register_buffer, pkt,
session, buffer);
if (rc) {
dprintk(VIDC_ERR, "%s: failed to create packet\n", __func__);
goto exit;
}
if (__iface_cmdq_write(session->device, pkt))
rc = -ENOTEMPTY;
exit:
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_unregister_buffer(void *sess,
struct vidc_unregister_buffer *buffer)
{
int rc = 0;
u8 packet[VIDC_IFACEQ_VAR_LARGE_PKT_SIZE];
struct hfi_cmd_session_unregister_buffers_packet *pkt;
struct hal_session *session = sess;
struct venus_hfi_device *device;
if (!session || !session->device || !buffer) {
dprintk(VIDC_ERR, "%s: invalid params\n", __func__);
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
if (!__is_session_valid(device, session, __func__)) {
rc = -EINVAL;
goto exit;
}
pkt = (struct hfi_cmd_session_unregister_buffers_packet *)packet;
rc = call_hfi_pkt_op(device, session_unregister_buffer, pkt,
session, buffer);
if (rc) {
dprintk(VIDC_ERR, "%s: failed to create packet\n", __func__);
goto exit;
}
if (__iface_cmdq_write(session->device, pkt))
rc = -ENOTEMPTY;
exit:
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_load_res(void *session)
{
struct hal_session *sess;
struct venus_hfi_device *device;
int rc = 0;
if (!session) {
dprintk(VIDC_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
sess = session;
device = sess->device;
mutex_lock(&device->lock);
rc = __send_session_cmd(sess, HFI_CMD_SESSION_LOAD_RESOURCES);
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_release_res(void *session)
{
struct hal_session *sess;
struct venus_hfi_device *device;
int rc = 0;
if (!session) {
dprintk(VIDC_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
sess = session;
device = sess->device;
mutex_lock(&device->lock);
rc = __send_session_cmd(sess, HFI_CMD_SESSION_RELEASE_RESOURCES);
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_start(void *session)
{
struct hal_session *sess;
struct venus_hfi_device *device;
int rc = 0;
if (!session) {
dprintk(VIDC_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
sess = session;
device = sess->device;
mutex_lock(&device->lock);
rc = __send_session_cmd(sess, HFI_CMD_SESSION_START);
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_continue(void *session)
{
struct hal_session *sess;
struct venus_hfi_device *device;
int rc = 0;
if (!session) {
dprintk(VIDC_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
sess = session;
device = sess->device;
mutex_lock(&device->lock);
rc = __send_session_cmd(sess, HFI_CMD_SESSION_CONTINUE);
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_stop(void *session)
{
struct hal_session *sess;
struct venus_hfi_device *device;
int rc = 0;
if (!session) {
dprintk(VIDC_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
sess = session;
device = sess->device;
mutex_lock(&device->lock);
rc = __send_session_cmd(sess, HFI_CMD_SESSION_STOP);
mutex_unlock(&device->lock);
return rc;
}
static int __session_etb(struct hal_session *session,
struct vidc_frame_data *input_frame, bool relaxed)
{
int rc = 0;
struct venus_hfi_device *device = session->device;
if (!__is_session_valid(device, session, __func__))
return -EINVAL;
if (session->is_decoder) {
struct hfi_cmd_session_empty_buffer_compressed_packet pkt;
rc = call_hfi_pkt_op(device, session_etb_decoder,
&pkt, session, input_frame);
if (rc) {
dprintk(VIDC_ERR,
"Session etb decoder: failed to create pkt\n");
goto err_create_pkt;
}
if (!relaxed)
rc = __iface_cmdq_write(session->device, &pkt);
else
rc = __iface_cmdq_write_relaxed(session->device,
&pkt, NULL);
if (rc)
goto err_create_pkt;
} else {
struct hfi_cmd_session_empty_buffer_uncompressed_plane0_packet
pkt;
rc = call_hfi_pkt_op(device, session_etb_encoder,
&pkt, session, input_frame);
if (rc) {
dprintk(VIDC_ERR,
"Session etb encoder: failed to create pkt\n");
goto err_create_pkt;
}
if (!relaxed)
rc = __iface_cmdq_write(session->device, &pkt);
else
rc = __iface_cmdq_write_relaxed(session->device,
&pkt, NULL);
if (rc)
goto err_create_pkt;
}
err_create_pkt:
return rc;
}
static int venus_hfi_session_etb(void *sess,
struct vidc_frame_data *input_frame)
{
int rc = 0;
struct hal_session *session = sess;
struct venus_hfi_device *device;
if (!session || !session->device || !input_frame) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
rc = __session_etb(session, input_frame, false);
mutex_unlock(&device->lock);
return rc;
}
static int __session_ftb(struct hal_session *session,
struct vidc_frame_data *output_frame, bool relaxed)
{
int rc = 0;
struct venus_hfi_device *device = session->device;
struct hfi_cmd_session_fill_buffer_packet pkt;
if (!__is_session_valid(device, session, __func__))
return -EINVAL;
rc = call_hfi_pkt_op(device, session_ftb,
&pkt, session, output_frame);
if (rc) {
dprintk(VIDC_ERR, "Session ftb: failed to create pkt\n");
goto err_create_pkt;
}
if (!relaxed)
rc = __iface_cmdq_write(session->device, &pkt);
else
rc = __iface_cmdq_write_relaxed(session->device,
&pkt, NULL);
err_create_pkt:
return rc;
}
static int venus_hfi_session_ftb(void *sess,
struct vidc_frame_data *output_frame)
{
int rc = 0;
struct hal_session *session = sess;
struct venus_hfi_device *device;
if (!session || !session->device || !output_frame) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
rc = __session_ftb(session, output_frame, false);
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_process_batch(void *sess,
int num_etbs, struct vidc_frame_data etbs[],
int num_ftbs, struct vidc_frame_data ftbs[])
{
int rc = 0, c = 0;
struct hal_session *session = sess;
struct venus_hfi_device *device;
struct hfi_cmd_session_sync_process_packet pkt;
if (!session || !session->device) {
dprintk(VIDC_ERR, "%s: Invalid Params\n", __func__);
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
if (!__is_session_valid(device, session, __func__)) {
rc = -EINVAL;
goto err_etbs_and_ftbs;
}
for (c = 0; c < num_ftbs; ++c) {
rc = __session_ftb(session, &ftbs[c], true);
if (rc) {
dprintk(VIDC_ERR, "Failed to queue batched ftb: %d\n",
rc);
goto err_etbs_and_ftbs;
}
}
for (c = 0; c < num_etbs; ++c) {
rc = __session_etb(session, &etbs[c], true);
if (rc) {
dprintk(VIDC_ERR, "Failed to queue batched etb: %d\n",
rc);
goto err_etbs_and_ftbs;
}
}
rc = call_hfi_pkt_op(device, session_sync_process, &pkt, session);
if (rc) {
dprintk(VIDC_ERR, "Failed to create sync packet\n");
goto err_etbs_and_ftbs;
}
if (__iface_cmdq_write(session->device, &pkt))
rc = -ENOTEMPTY;
err_etbs_and_ftbs:
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_get_buf_req(void *sess)
{
struct hfi_cmd_session_get_property_packet pkt;
int rc = 0;
struct hal_session *session = sess;
struct venus_hfi_device *device;
if (!session || !session->device) {
dprintk(VIDC_ERR, "invalid session");
return -ENODEV;
}
device = session->device;
mutex_lock(&device->lock);
if (!__is_session_valid(device, session, __func__)) {
rc = -EINVAL;
goto err_create_pkt;
}
rc = call_hfi_pkt_op(device, session_get_buf_req,
&pkt, session);
if (rc) {
dprintk(VIDC_ERR,
"Session get buf req: failed to create pkt\n");
goto err_create_pkt;
}
if (__iface_cmdq_write(session->device, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_flush(void *sess, enum hal_flush flush_mode)
{
struct hfi_cmd_session_flush_packet pkt;
int rc = 0;
struct hal_session *session = sess;
struct venus_hfi_device *device;
if (!session || !session->device) {
dprintk(VIDC_ERR, "invalid session");
return -ENODEV;
}
device = session->device;
mutex_lock(&device->lock);
if (!__is_session_valid(device, session, __func__)) {
rc = -EINVAL;
goto err_create_pkt;
}
rc = call_hfi_pkt_op(device, session_flush,
&pkt, session, flush_mode);
if (rc) {
dprintk(VIDC_ERR, "Session flush: failed to create pkt\n");
goto err_create_pkt;
}
if (__iface_cmdq_write(session->device, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
mutex_unlock(&device->lock);
return rc;
}
static int __check_core_registered(struct hal_device_data core,
phys_addr_t fw_addr, u8 *reg_addr, u32 reg_size,
phys_addr_t irq)
{
struct venus_hfi_device *device;
struct hal_data *hal_data;
struct list_head *curr, *next;
if (!core.dev_count) {
dprintk(VIDC_ERR, "no device Registered\n");
return -EINVAL;
}
list_for_each_safe(curr, next, &core.dev_head) {
device = list_entry(curr,
struct venus_hfi_device, list);
hal_data = device->hal_data;
if (hal_data && hal_data->irq == irq &&
(CONTAINS(hal_data->firmware_base,
FIRMWARE_SIZE, fw_addr) ||
CONTAINS(fw_addr, FIRMWARE_SIZE,
hal_data->firmware_base) ||
CONTAINS(hal_data->register_base,
reg_size, reg_addr) ||
CONTAINS(reg_addr, reg_size,
hal_data->register_base) ||
OVERLAPS(hal_data->register_base,
reg_size, reg_addr, reg_size) ||
OVERLAPS(reg_addr, reg_size,
hal_data->register_base,
reg_size) ||
OVERLAPS(hal_data->firmware_base,
FIRMWARE_SIZE, fw_addr,
FIRMWARE_SIZE) ||
OVERLAPS(fw_addr, FIRMWARE_SIZE,
hal_data->firmware_base,
FIRMWARE_SIZE))) {
return 0;
}
dprintk(VIDC_ERR, "Device not registered\n");
return -EINVAL;
}
return -EINVAL;
}
static void __process_fatal_error(
struct venus_hfi_device *device)
{
struct msm_vidc_cb_cmd_done cmd_done = {0};
cmd_done.device_id = device->device_id;
device->callback(HAL_SYS_ERROR, &cmd_done);
}
int __prepare_pc(struct venus_hfi_device *device)
{
int rc = 0;
struct hfi_cmd_sys_pc_prep_packet pkt;
rc = call_hfi_pkt_op(device, sys_pc_prep, &pkt);
if (rc) {
dprintk(VIDC_ERR, "Failed to create sys pc prep pkt\n");
goto err_pc_prep;
}
if (__iface_cmdq_write(device, &pkt))
rc = -ENOTEMPTY;
if (rc)
dprintk(VIDC_ERR, "Failed to prepare venus for power off");
err_pc_prep:
return rc;
}
static void venus_hfi_pm_handler(struct work_struct *work)
{
int rc = 0;
struct venus_hfi_device *device = list_first_entry(
&hal_ctxt.dev_head, struct venus_hfi_device, list);
if (!device) {
dprintk(VIDC_ERR, "%s: NULL device\n", __func__);
return;
}
dprintk(VIDC_HIGH, "Entering %s\n", __func__);
/*
* It is ok to check this variable outside the lock since
* it is being updated in this context only
*/
if (device->skip_pc_count >= VIDC_MAX_PC_SKIP_COUNT) {
dprintk(VIDC_ERR, "Failed to PC for %d times\n",
device->skip_pc_count);
device->skip_pc_count = 0;
__process_fatal_error(device);
return;
}
mutex_lock(&device->lock);
rc = __power_collapse(device, false);
mutex_unlock(&device->lock);
switch (rc) {
case 0:
device->skip_pc_count = 0;
/* Cancel pending delayed works if any */
cancel_delayed_work(&venus_hfi_pm_work);
dprintk(VIDC_HIGH, "%s: power collapse successful!\n",
__func__);
break;
case -EBUSY:
device->skip_pc_count = 0;
dprintk(VIDC_HIGH, "%s: retry PC as dsp is busy\n", __func__);
queue_delayed_work(device->venus_pm_workq,
&venus_hfi_pm_work, msecs_to_jiffies(
device->res->msm_vidc_pwr_collapse_delay));
break;
case -EAGAIN:
device->skip_pc_count++;
dprintk(VIDC_ERR, "%s: retry power collapse (count %d)\n",
__func__, device->skip_pc_count);
queue_delayed_work(device->venus_pm_workq,
&venus_hfi_pm_work, msecs_to_jiffies(
device->res->msm_vidc_pwr_collapse_delay));
break;
default:
dprintk(VIDC_ERR, "%s: power collapse failed\n", __func__);
break;
}
}
static int __prepare_pc_common(struct venus_hfi_device *device)
{
int rc = 0;
u32 wfi_status = 0, idle_status = 0, pc_ready = 0;
u32 ctrl_status = 0;
int count = 0;
const int max_tries = 10;
ctrl_status = __read_register(device, CTRL_STATUS);
pc_ready = ctrl_status & CTRL_STATUS_PC_READY;
idle_status = ctrl_status & BIT(30);
if (pc_ready) {
dprintk(VIDC_HIGH, "Already in pc_ready state\n");
return 0;
}
wfi_status = BIT(0) & __read_register(device,
WRAPPER_CPU_STATUS);
if (!wfi_status || !idle_status) {
dprintk(VIDC_ERR, "Skipping PC, wfi status not set\n");
goto skip_power_off;
}
rc = __prepare_pc(device);
if (rc) {
dprintk(VIDC_ERR, "Failed __prepare_pc %d\n", rc);
goto skip_power_off;
}
while (count < max_tries) {
wfi_status = BIT(0) & __read_register(device,
WRAPPER_CPU_STATUS);
ctrl_status = __read_register(device, CTRL_STATUS);
if (wfi_status && (ctrl_status & CTRL_STATUS_PC_READY))
break;
usleep_range(150, 250);
count++;
}
if (count == max_tries) {
dprintk(VIDC_ERR, "Skip PC. Core is not in right state\n");
goto skip_power_off;
}
return rc;
skip_power_off:
dprintk(VIDC_ERR, "Skip PC, wfi=%#x, idle=%#x, pcr=%#x, ctrl=%#x)\n",
wfi_status, idle_status, pc_ready, ctrl_status);
return -EAGAIN;
}
static int __power_collapse(struct venus_hfi_device *device, bool force)
{
int rc = 0;
u32 flags = 0;
if (!device) {
dprintk(VIDC_ERR, "%s: invalid params\n", __func__);
return -EINVAL;
}
if (!device->power_enabled) {
dprintk(VIDC_HIGH, "%s: Power already disabled\n",
__func__);
goto exit;
}
if (!__core_in_valid_state(device)) {
dprintk(VIDC_ERR, "%s - Core not in init state\n", __func__);
return -EINVAL;
}
rc = __dsp_suspend(device, force, flags);
if (rc == -EBUSY)
goto exit;
else if (rc)
goto skip_power_off;
rc = call_venus_op(device, prepare_pc, device);
if (rc)
goto skip_power_off;
__flush_debug_queue(device, device->raw_packet);
rc = __suspend(device);
if (rc)
dprintk(VIDC_ERR, "Failed __suspend\n");
exit:
return rc;
skip_power_off:
return -EAGAIN;
}
static void __process_sys_error(struct venus_hfi_device *device)
{
struct hfi_sfr_struct *vsfr = NULL;
vsfr = (struct hfi_sfr_struct *)device->sfr.align_virtual_addr;
if (vsfr) {
void *p = memchr(vsfr->rg_data, '\0', vsfr->bufSize);
/*
* SFR isn't guaranteed to be NULL terminated
* since SYS_ERROR indicates that Venus is in the
* process of crashing.
*/
if (p == NULL)
vsfr->rg_data[vsfr->bufSize - 1] = '\0';
dprintk(VIDC_ERR, "SFR Message from FW: %s\n",
vsfr->rg_data);
}
}
static void __flush_debug_queue(struct venus_hfi_device *device, u8 *packet)
{
bool local_packet = false;
enum vidc_msg_prio log_level = msm_vidc_debug;
if (!device) {
dprintk(VIDC_ERR, "%s: Invalid params\n", __func__);
return;
}
if (!packet) {
packet = kzalloc(VIDC_IFACEQ_VAR_HUGE_PKT_SIZE, GFP_KERNEL);
if (!packet) {
dprintk(VIDC_ERR, "In %s() Fail to allocate mem\n",
__func__);
return;
}
local_packet = true;
/*
* Local packek is used when error occurred.
* It is good to print these logs to printk as well.
*/
log_level |= FW_PRINTK;
}
#define SKIP_INVALID_PKT(pkt_size, payload_size, pkt_hdr_size) ({ \
if (pkt_size < pkt_hdr_size || \
payload_size < MIN_PAYLOAD_SIZE || \
payload_size > \
(pkt_size - pkt_hdr_size + sizeof(u8))) { \
dprintk(VIDC_ERR, \
"%s: invalid msg size - %d\n", \
__func__, pkt->msg_size); \
continue; \
} \
})
while (!__iface_dbgq_read(device, packet)) {
struct hfi_packet_header *pkt =
(struct hfi_packet_header *) packet;
if (pkt->size < sizeof(struct hfi_packet_header)) {
dprintk(VIDC_ERR, "Invalid pkt size - %s\n",
__func__);
continue;
}
if (pkt->packet_type == HFI_MSG_SYS_COV) {
struct hfi_msg_sys_coverage_packet *pkt =
(struct hfi_msg_sys_coverage_packet *) packet;
int stm_size = 0;
SKIP_INVALID_PKT(pkt->size,
pkt->msg_size, sizeof(*pkt));
stm_size = stm_log_inv_ts(0, 0,
pkt->rg_msg_data, pkt->msg_size);
if (stm_size == 0)
dprintk(VIDC_ERR,
"In %s, stm_log returned size of 0\n",
__func__);
} else if (pkt->packet_type == HFI_MSG_SYS_DEBUG) {
struct hfi_msg_sys_debug_packet *pkt =
(struct hfi_msg_sys_debug_packet *) packet;
SKIP_INVALID_PKT(pkt->size,
pkt->msg_size, sizeof(*pkt));
/*
* All fw messages starts with new line character. This
* causes dprintk to print this message in two lines
* in the kernel log. Ignoring the first character
* from the message fixes this to print it in a single
* line.
*/
pkt->rg_msg_data[pkt->msg_size-1] = '\0';
dprintk_firmware(log_level, "%s", &pkt->rg_msg_data[1]);
}
}
#undef SKIP_INVALID_PKT
if (local_packet)
kfree(packet);
}
static bool __is_session_valid(struct venus_hfi_device *device,
struct hal_session *session, const char *func)
{
struct hal_session *temp = NULL;
if (!device || !session)
goto invalid;
list_for_each_entry(temp, &device->sess_head, list)
if (session == temp)
return true;
invalid:
dprintk(VIDC_ERR, "%s: device %pK, invalid session %pK\n",
func, device, session);
return false;
}
static struct hal_session *__get_session(struct venus_hfi_device *device,
u32 session_id)
{
struct hal_session *temp = NULL;
list_for_each_entry(temp, &device->sess_head, list) {
if (session_id == hash32_ptr(temp))
return temp;
}
return NULL;
}
static bool __watchdog_common(u32 intr_status)
{
bool rc = false;
if (intr_status & WRAPPER_INTR_STATUS_A2HWD_BMSK)
rc = true;
return rc;
}
static int __response_handler(struct venus_hfi_device *device)
{
struct msm_vidc_cb_info *packets;
int packet_count = 0;
u8 *raw_packet = NULL;
bool requeue_pm_work = true;
if (!device || device->state != VENUS_STATE_INIT)
return 0;
packets = device->response_pkt;
raw_packet = device->raw_packet;
if (!raw_packet || !packets) {
dprintk(VIDC_ERR,
"%s: Invalid args : Res packet = %pK, Raw packet = %pK\n",
__func__, packets, raw_packet);
return 0;
}
if (call_venus_op(device, watchdog, device->intr_status)) {
struct hfi_sfr_struct *vsfr = (struct hfi_sfr_struct *)
device->sfr.align_virtual_addr;
struct msm_vidc_cb_info info = {
.response_type = HAL_SYS_WATCHDOG_TIMEOUT,
.response.cmd = {
.device_id = device->device_id,
}
};
if (vsfr)
dprintk(VIDC_ERR, "SFR Message from FW: %s\n",
vsfr->rg_data);
dprintk(VIDC_ERR, "Received watchdog timeout\n");
packets[packet_count++] = info;
goto exit;
}
/* Bleed the msg queue dry of packets */
while (!__iface_msgq_read(device, raw_packet)) {
void **session_id = NULL;
struct msm_vidc_cb_info *info = &packets[packet_count++];
int rc = 0;
rc = hfi_process_msg_packet(device->device_id,
(struct vidc_hal_msg_pkt_hdr *)raw_packet, info);
if (rc) {
dprintk(VIDC_ERR,
"Corrupt/unknown packet found, discarding\n");
--packet_count;
continue;
}
/* Process the packet types that we're interested in */
switch (info->response_type) {
case HAL_SYS_ERROR:
__process_sys_error(device);
break;
case HAL_SYS_RELEASE_RESOURCE_DONE:
dprintk(VIDC_HIGH, "Received SYS_RELEASE_RESOURCE\n");
break;
case HAL_SYS_INIT_DONE:
dprintk(VIDC_HIGH, "Received SYS_INIT_DONE\n");
break;
case HAL_SESSION_LOAD_RESOURCE_DONE:
break;
default:
break;
}
/* For session-related packets, validate session */
switch (info->response_type) {
case HAL_SESSION_LOAD_RESOURCE_DONE:
case HAL_SESSION_INIT_DONE:
case HAL_SESSION_END_DONE:
case HAL_SESSION_ABORT_DONE:
case HAL_SESSION_START_DONE:
case HAL_SESSION_STOP_DONE:
case HAL_SESSION_FLUSH_DONE:
case HAL_SESSION_SUSPEND_DONE:
case HAL_SESSION_RESUME_DONE:
case HAL_SESSION_SET_PROP_DONE:
case HAL_SESSION_GET_PROP_DONE:
case HAL_SESSION_RELEASE_BUFFER_DONE:
case HAL_SESSION_REGISTER_BUFFER_DONE:
case HAL_SESSION_UNREGISTER_BUFFER_DONE:
case HAL_SESSION_RELEASE_RESOURCE_DONE:
case HAL_SESSION_PROPERTY_INFO:
session_id = &info->response.cmd.session_id;
break;
case HAL_SESSION_ERROR:
case HAL_SESSION_ETB_DONE:
case HAL_SESSION_FTB_DONE:
session_id = &info->response.data.session_id;
break;
case HAL_SESSION_EVENT_CHANGE:
session_id = &info->response.event.session_id;
break;
case HAL_RESPONSE_UNUSED:
default:
session_id = NULL;
break;
}
/*
* hfi_process_msg_packet provides a session_id that's a hashed
* value of struct hal_session, we need to coerce the hashed
* value back to pointer that we can use. Ideally, hfi_process\
* _msg_packet should take care of this, but it doesn't have
* required information for it
*/
if (session_id) {
struct hal_session *session = NULL;
if (upper_32_bits((uintptr_t)*session_id) != 0) {
dprintk(VIDC_ERR,
"Upper 32-bits != 0 for sess_id=%pK\n",
*session_id);
}
session = __get_session(device,
(u32)(uintptr_t)*session_id);
if (!session) {
dprintk(VIDC_ERR,
"Received a packet (%#x) for an unrecognized session (%pK), discarding\n",
info->response_type,
*session_id);
--packet_count;
continue;
}
*session_id = session->session_id;
}
if (packet_count >= max_packets &&
__get_q_size(device, VIDC_IFACEQ_MSGQ_IDX)) {
dprintk(VIDC_ERR,
"Too many packets in message queue to handle at once, deferring read\n");
break;
}
/* do not read packets after sys error packet */
if (info->response_type == HAL_SYS_ERROR)
break;
}
if (requeue_pm_work && device->res->sw_power_collapsible) {
cancel_delayed_work(&venus_hfi_pm_work);
if (!queue_delayed_work(device->venus_pm_workq,
&venus_hfi_pm_work,
msecs_to_jiffies(
device->res->msm_vidc_pwr_collapse_delay))) {
dprintk(VIDC_ERR, "PM work already scheduled\n");
}
}
exit:
__flush_debug_queue(device, raw_packet);
return packet_count;
}
static void venus_hfi_core_work_handler(struct work_struct *work)
{
struct venus_hfi_device *device = list_first_entry(
&hal_ctxt.dev_head, struct venus_hfi_device, list);
int num_responses = 0, i = 0;
u32 intr_status;
mutex_lock(&device->lock);
if (!__core_in_valid_state(device)) {
dprintk(VIDC_ERR, "%s - Core not in init state\n", __func__);
goto err_no_work;
}
if (!device->callback) {
dprintk(VIDC_ERR, "No interrupt callback function: %pK\n",
device);
goto err_no_work;
}
if (__resume(device)) {
dprintk(VIDC_ERR, "%s: Power enable failed\n", __func__);
goto err_no_work;
}
call_venus_op(device, core_clear_interrupt, device);
num_responses = __response_handler(device);
err_no_work:
/* Keep the interrupt status before releasing device lock */
intr_status = device->intr_status;
mutex_unlock(&device->lock);
/*
* Issue the callbacks outside of the locked contex to preserve
* re-entrancy.
*/
for (i = 0; !IS_ERR_OR_NULL(device->response_pkt) &&
i < num_responses; ++i) {
struct msm_vidc_cb_info *r = &device->response_pkt[i];
if (!__core_in_valid_state(device)) {
dprintk(VIDC_ERR,
"Ignore responses from %d to %d as device is in invalid state",
(i + 1), num_responses);
break;
}
dprintk(VIDC_LOW, "Processing response %d of %d, type %d\n",
(i + 1), num_responses, r->response_type);
device->callback(r->response_type, &r->response);
}
/* We need re-enable the irq which was disabled in ISR handler */
if (!call_venus_op(device, watchdog, intr_status))
enable_irq(device->hal_data->irq);
/*
* XXX: Don't add any code beyond here. Reacquiring locks after release
* it above doesn't guarantee the atomicity that we're aiming for.
*/
}
static DECLARE_WORK(venus_hfi_work, venus_hfi_core_work_handler);
static irqreturn_t venus_hfi_isr(int irq, void *dev)
{
struct venus_hfi_device *device = dev;
disable_irq_nosync(irq);
queue_work(device->vidc_workq, &venus_hfi_work);
return IRQ_HANDLED;
}
static int __init_regs_and_interrupts(struct venus_hfi_device *device,
struct msm_vidc_platform_resources *res)
{
struct hal_data *hal = NULL;
int rc = 0;
rc = __check_core_registered(hal_ctxt, res->firmware_base,
(u8 *)(uintptr_t)res->register_base,
res->register_size, res->irq);
if (!rc) {
dprintk(VIDC_ERR, "Core present/Already added\n");
rc = -EEXIST;
goto err_core_init;
}
dprintk(VIDC_HIGH, "HAL_DATA will be assigned now\n");
hal = kzalloc(sizeof(struct hal_data), GFP_KERNEL);
if (!hal) {
dprintk(VIDC_ERR, "Failed to alloc\n");
rc = -ENOMEM;
goto err_core_init;
}
hal->irq = res->irq;
hal->firmware_base = res->firmware_base;
hal->register_base = devm_ioremap_nocache(&res->pdev->dev,
res->register_base, res->register_size);
hal->register_size = res->register_size;
if (!hal->register_base) {
dprintk(VIDC_ERR,
"could not map reg addr %pa of size %d\n",
&res->register_base, res->register_size);
goto error_irq_fail;
}
device->hal_data = hal;
rc = request_irq(res->irq, venus_hfi_isr, IRQF_TRIGGER_HIGH,
"msm_vidc", device);
if (unlikely(rc)) {
dprintk(VIDC_ERR, "() :request_irq failed\n");
goto error_irq_fail;
}
disable_irq_nosync(res->irq);
dprintk(VIDC_HIGH,
"firmware_base = %pa, register_base = %pa, register_size = %d\n",
&res->firmware_base, &res->register_base,
res->register_size);
return rc;
error_irq_fail:
kfree(hal);
err_core_init:
return rc;
}
static inline void __deinit_clocks(struct venus_hfi_device *device)
{
struct clock_info *cl;
device->clk_freq = 0;
venus_hfi_for_each_clock_reverse(device, cl) {
if (cl->clk) {
clk_put(cl->clk);
cl->clk = NULL;
}
}
}
static inline int __init_clocks(struct venus_hfi_device *device)
{
int rc = 0;
struct clock_info *cl = NULL;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %pK\n", device);
return -EINVAL;
}
venus_hfi_for_each_clock(device, cl) {
dprintk(VIDC_HIGH, "%s: scalable? %d, count %d\n",
cl->name, cl->has_scaling, cl->count);
}
venus_hfi_for_each_clock(device, cl) {
if (!cl->clk) {
cl->clk = clk_get(&device->res->pdev->dev, cl->name);
if (IS_ERR_OR_NULL(cl->clk)) {
dprintk(VIDC_ERR,
"Failed to get clock: %s\n", cl->name);
rc = PTR_ERR(cl->clk) ?
PTR_ERR(cl->clk) : -EINVAL;
cl->clk = NULL;
goto err_clk_get;
}
}
}
device->clk_freq = 0;
return 0;
err_clk_get:
__deinit_clocks(device);
return rc;
}
static int __handle_reset_clk(struct msm_vidc_platform_resources *res,
int reset_index, enum reset_state state)
{
int rc = 0;
struct reset_control *rst;
struct reset_set *rst_set = &res->reset_set;
if (!rst_set->reset_tbl)
return 0;
rst = rst_set->reset_tbl[reset_index].rst;
dprintk(VIDC_HIGH, "reset_clk: name %s reset_state %d rst %pK\n",
rst_set->reset_tbl[reset_index].name, state, rst);
switch (state) {
case INIT:
if (rst)
goto skip_reset_init;
rst = devm_reset_control_get(&res->pdev->dev,
rst_set->reset_tbl[reset_index].name);
if (IS_ERR(rst))
rc = PTR_ERR(rst);
rst_set->reset_tbl[reset_index].rst = rst;
break;
case ASSERT:
if (!rst) {
rc = PTR_ERR(rst);
goto failed_to_reset;
}
rc = reset_control_assert(rst);
break;
case DEASSERT:
if (!rst) {
rc = PTR_ERR(rst);
goto failed_to_reset;
}
rc = reset_control_deassert(rst);
break;
default:
dprintk(VIDC_ERR, "Invalid reset request\n");
if (rc)
goto failed_to_reset;
}
return 0;
skip_reset_init:
failed_to_reset:
return rc;
}
void __disable_unprepare_clks(struct venus_hfi_device *device)
{
struct clock_info *cl;
int rc = 0;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %pK\n", device);
return;
}
venus_hfi_for_each_clock_reverse(device, cl) {
dprintk(VIDC_HIGH, "Clock: %s disable and unprepare\n",
cl->name);
rc = clk_set_flags(cl->clk, CLKFLAG_NORETAIN_PERIPH);
if (rc) {
dprintk(VIDC_ERR,
"Failed set flag NORETAIN_PERIPH %s\n",
cl->name);
}
rc = clk_set_flags(cl->clk, CLKFLAG_NORETAIN_MEM);
if (rc) {
dprintk(VIDC_ERR,
"Failed set flag NORETAIN_MEM %s\n",
cl->name);
}
if (!__clk_is_enabled(cl->clk))
dprintk(VIDC_ERR, "%s: clock %s already disabled\n",
__func__, cl->name);
clk_disable_unprepare(cl->clk);
if (__clk_is_enabled(cl->clk))
dprintk(VIDC_ERR, "%s: clock %s not disabled\n",
__func__, cl->name);
}
}
int __reset_ahb2axi_bridge_common(struct venus_hfi_device *device)
{
int rc, i;
if (!device) {
dprintk(VIDC_ERR, "NULL device\n");
rc = -EINVAL;
goto failed_to_reset;
}
for (i = 0; i < device->res->reset_set.count; i++) {
rc = __handle_reset_clk(device->res, i, ASSERT);
if (rc) {
dprintk(VIDC_ERR,
"failed to assert reset clocks\n");
goto failed_to_reset;
}
/* wait for deassert */
usleep_range(150, 250);
rc = __handle_reset_clk(device->res, i, DEASSERT);
if (rc) {
dprintk(VIDC_ERR,
"failed to deassert reset clocks\n");
goto failed_to_reset;
}
}
return 0;
failed_to_reset:
return rc;
}
static inline int __prepare_enable_clks(struct venus_hfi_device *device)
{
struct clock_info *cl = NULL, *cl_fail = NULL;
int rc = 0, c = 0;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %pK\n", device);
return -EINVAL;
}
venus_hfi_for_each_clock(device, cl) {
/*
* For the clocks we control, set the rate prior to preparing
* them. Since we don't really have a load at this point, scale
* it to the lowest frequency possible
*/
if (cl->has_scaling)
__set_clk_rate(device, cl, clk_round_rate(cl->clk, 0));
rc = clk_set_flags(cl->clk, CLKFLAG_RETAIN_PERIPH);
if (rc) {
dprintk(VIDC_ERR,
"Failed set flag RETAIN_PERIPH %s\n",
cl->name);
}
rc = clk_set_flags(cl->clk, CLKFLAG_RETAIN_MEM);
if (rc) {
dprintk(VIDC_ERR,
"Failed set flag RETAIN_MEM %s\n",
cl->name);
}
if (__clk_is_enabled(cl->clk))
dprintk(VIDC_ERR, "%s: clock %s already enabled\n",
__func__, cl->name);
rc = clk_prepare_enable(cl->clk);
if (rc) {
dprintk(VIDC_ERR, "Failed to enable clocks\n");
cl_fail = cl;
goto fail_clk_enable;
}
if (!__clk_is_enabled(cl->clk))
dprintk(VIDC_ERR, "%s: clock %s not enabled\n",
__func__, cl->name);
c++;
dprintk(VIDC_HIGH,
"Clock: %s prepared and enabled\n", cl->name);
}
call_venus_op(device, clock_config_on_enable, device);
return rc;
fail_clk_enable:
venus_hfi_for_each_clock_reverse_continue(device, cl, c) {
dprintk(VIDC_ERR, "Clock: %s disable and unprepare\n",
cl->name);
clk_disable_unprepare(cl->clk);
}
return rc;
}
static void __deinit_bus(struct venus_hfi_device *device)
{
struct bus_info *bus = NULL;
if (!device)
return;
kfree(device->bus_vote.data);
device->bus_vote = DEFAULT_BUS_VOTE;
venus_hfi_for_each_bus_reverse(device, bus) {
msm_bus_scale_unregister(bus->client);
bus->client = NULL;
}
}
static int __init_bus(struct venus_hfi_device *device)
{
struct bus_info *bus = NULL;
int rc = 0;
if (!device)
return -EINVAL;
venus_hfi_for_each_bus(device, bus) {
if (!strcmp(bus->mode, "msm-vidc-llcc")) {
if (msm_vidc_syscache_disable) {
dprintk(VIDC_HIGH,
"Skipping LLC bus init %s: %s\n",
bus->name, bus->mode);
continue;
}
}
bus->client = msm_bus_scale_register(bus->master, bus->slave,
bus->name, false);
if (IS_ERR_OR_NULL(bus->client)) {
rc = PTR_ERR(bus->client) ?
PTR_ERR(bus->client) : -EBADHANDLE;
dprintk(VIDC_ERR, "Failed to register bus %s: %d\n",
bus->name, rc);
bus->client = NULL;
goto err_add_dev;
}
}
if (device->res->vpu_ver == VPU_VERSION_IRIS1)
device->bus_vote.calc_bw = calc_bw_iris1;
else
device->bus_vote.calc_bw = calc_bw_iris2;
return 0;
err_add_dev:
__deinit_bus(device);
return rc;
}
static void __deinit_regulators(struct venus_hfi_device *device)
{
struct regulator_info *rinfo = NULL;
venus_hfi_for_each_regulator_reverse(device, rinfo) {
if (rinfo->regulator) {
regulator_put(rinfo->regulator);
rinfo->regulator = NULL;
}
}
}
static int __init_regulators(struct venus_hfi_device *device)
{
int rc = 0;
struct regulator_info *rinfo = NULL;
venus_hfi_for_each_regulator(device, rinfo) {
rinfo->regulator = regulator_get(&device->res->pdev->dev,
rinfo->name);
if (IS_ERR_OR_NULL(rinfo->regulator)) {
rc = PTR_ERR(rinfo->regulator) ?
PTR_ERR(rinfo->regulator) : -EBADHANDLE;
dprintk(VIDC_ERR, "Failed to get regulator: %s\n",
rinfo->name);
rinfo->regulator = NULL;
goto err_reg_get;
}
}
return 0;
err_reg_get:
__deinit_regulators(device);
return rc;
}
static void __deinit_subcaches(struct venus_hfi_device *device)
{
struct subcache_info *sinfo = NULL;
if (!device) {
dprintk(VIDC_ERR, "deinit_subcaches: invalid device %pK\n",
device);
goto exit;
}
if (!is_sys_cache_present(device))
goto exit;
venus_hfi_for_each_subcache_reverse(device, sinfo) {
if (sinfo->subcache) {
dprintk(VIDC_HIGH, "deinit_subcaches: %s\n",
sinfo->name);
llcc_slice_putd(sinfo->subcache);
sinfo->subcache = NULL;
}
}
exit:
return;
}
static int __init_subcaches(struct venus_hfi_device *device)
{
int rc = 0;
struct subcache_info *sinfo = NULL;
if (!device) {
dprintk(VIDC_ERR, "init_subcaches: invalid device %pK\n",
device);
return -EINVAL;
}
if (!is_sys_cache_present(device))
return 0;
venus_hfi_for_each_subcache(device, sinfo) {
if (!strcmp("vidsc0", sinfo->name)) {
sinfo->subcache = llcc_slice_getd(LLCC_VIDSC0);
} else if (!strcmp("vidsc1", sinfo->name)) {
sinfo->subcache = llcc_slice_getd(LLCC_VIDSC1);
} else if (!strcmp("vidscfw", sinfo->name)) {
sinfo->subcache = llcc_slice_getd(LLCC_VIDFW);
} else {
dprintk(VIDC_ERR, "Invalid subcache name %s\n",
sinfo->name);
}
if (IS_ERR_OR_NULL(sinfo->subcache)) {
rc = PTR_ERR(sinfo->subcache) ?
PTR_ERR(sinfo->subcache) : -EBADHANDLE;
dprintk(VIDC_ERR,
"init_subcaches: invalid subcache: %s rc %d\n",
sinfo->name, rc);
sinfo->subcache = NULL;
goto err_subcache_get;
}
dprintk(VIDC_HIGH, "init_subcaches: %s\n",
sinfo->name);
}
return 0;
err_subcache_get:
__deinit_subcaches(device);
return rc;
}
static int __init_resources(struct venus_hfi_device *device,
struct msm_vidc_platform_resources *res)
{
int i, rc = 0;
rc = __init_regulators(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to get all regulators\n");
return -ENODEV;
}
rc = __init_clocks(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to init clocks\n");
rc = -ENODEV;
goto err_init_clocks;
}
for (i = 0; i < device->res->reset_set.count; i++) {
rc = __handle_reset_clk(res, i, INIT);
if (rc) {
dprintk(VIDC_ERR, "Failed to init reset clocks\n");
rc = -ENODEV;
goto err_init_reset_clk;
}
}
rc = __init_bus(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to init bus: %d\n", rc);
goto err_init_bus;
}
rc = __init_subcaches(device);
if (rc)
dprintk(VIDC_ERR, "Failed to init subcaches: %d\n", rc);
return rc;
err_init_reset_clk:
err_init_bus:
__deinit_clocks(device);
err_init_clocks:
__deinit_regulators(device);
return rc;
}
static void __deinit_resources(struct venus_hfi_device *device)
{
__deinit_subcaches(device);
__deinit_bus(device);
__deinit_clocks(device);
__deinit_regulators(device);
}
static int __protect_cp_mem(struct venus_hfi_device *device)
{
struct tzbsp_memprot memprot;
unsigned int resp = 0;
int rc = 0;
struct context_bank_info *cb;
struct scm_desc desc = {0};
if (!device)
return -EINVAL;
memprot.cp_start = 0x0;
memprot.cp_size = 0x0;
memprot.cp_nonpixel_start = 0x0;
memprot.cp_nonpixel_size = 0x0;
list_for_each_entry(cb, &device->res->context_banks, list) {
if (!strcmp(cb->name, "venus_ns")) {
desc.args[1] = memprot.cp_size =
cb->addr_range.start;
dprintk(VIDC_HIGH, "%s memprot.cp_size: %#x\n",
__func__, memprot.cp_size);
}
if (!strcmp(cb->name, "venus_sec_non_pixel")) {
desc.args[2] = memprot.cp_nonpixel_start =
cb->addr_range.start;
desc.args[3] = memprot.cp_nonpixel_size =
cb->addr_range.size;
dprintk(VIDC_HIGH,
"%s memprot.cp_nonpixel_start: %#x size: %#x\n",
__func__, memprot.cp_nonpixel_start,
memprot.cp_nonpixel_size);
}
}
desc.arginfo = SCM_ARGS(4);
rc = scm_call2(SCM_SIP_FNID(SCM_SVC_MP,
TZBSP_MEM_PROTECT_VIDEO_VAR), &desc);
resp = desc.ret[0];
if (rc) {
dprintk(VIDC_ERR, "Failed to protect memory(%d) response: %d\n",
rc, resp);
}
trace_venus_hfi_var_done(
memprot.cp_start, memprot.cp_size,
memprot.cp_nonpixel_start, memprot.cp_nonpixel_size);
return rc;
}
static int __disable_regulator(struct regulator_info *rinfo,
struct venus_hfi_device *device)
{
int rc = 0;
dprintk(VIDC_HIGH, "Disabling regulator %s\n", rinfo->name);
/*
* This call is needed. Driver needs to acquire the control back
* from HW in order to disable the regualtor. Else the behavior
* is unknown.
*/
rc = __acquire_regulator(rinfo, device);
if (rc) {
/*
* This is somewhat fatal, but nothing we can do
* about it. We can't disable the regulator w/o
* getting it back under s/w control
*/
dprintk(VIDC_ERR,
"Failed to acquire control on %s\n",
rinfo->name);
goto disable_regulator_failed;
}
if (!regulator_is_enabled(rinfo->regulator))
dprintk(VIDC_ERR, "%s: regulator %s already disabled\n",
__func__, rinfo->name);
rc = regulator_disable(rinfo->regulator);
if (rc) {
dprintk(VIDC_ERR,
"Failed to disable %s: %d\n",
rinfo->name, rc);
goto disable_regulator_failed;
}
if (regulator_is_enabled(rinfo->regulator))
dprintk(VIDC_ERR, "%s: regulator %s not disabled\n",
__func__, rinfo->name);
return 0;
disable_regulator_failed:
/* Bring attention to this issue */
msm_vidc_res_handle_fatal_hw_error(device->res, true);
return rc;
}
static int __enable_hw_power_collapse(struct venus_hfi_device *device)
{
int rc = 0;
rc = __hand_off_regulators(device);
if (rc)
dprintk(VIDC_ERR,
"%s : Failed to enable HW power collapse %d\n",
__func__, rc);
return rc;
}
static int __enable_regulators(struct venus_hfi_device *device)
{
int rc = 0, c = 0;
struct regulator_info *rinfo;
dprintk(VIDC_HIGH, "Enabling regulators\n");
venus_hfi_for_each_regulator(device, rinfo) {
if (regulator_is_enabled(rinfo->regulator))
dprintk(VIDC_ERR, "%s: regulator %s already enabled\n",
__func__, rinfo->name);
rc = regulator_enable(rinfo->regulator);
if (rc) {
dprintk(VIDC_ERR,
"Failed to enable %s: %d\n",
rinfo->name, rc);
goto err_reg_enable_failed;
}
if (!regulator_is_enabled(rinfo->regulator))
dprintk(VIDC_ERR, "%s: regulator %s not enabled\n",
__func__, rinfo->name);
dprintk(VIDC_HIGH, "Enabled regulator %s\n",
rinfo->name);
c++;
}
return 0;
err_reg_enable_failed:
venus_hfi_for_each_regulator_reverse_continue(device, rinfo, c)
__disable_regulator(rinfo, device);
return rc;
}
int __disable_regulators(struct venus_hfi_device *device)
{
struct regulator_info *rinfo;
dprintk(VIDC_HIGH, "Disabling regulators\n");
venus_hfi_for_each_regulator_reverse(device, rinfo)
__disable_regulator(rinfo, device);
return 0;
}
static int __enable_subcaches(struct venus_hfi_device *device)
{
int rc = 0;
u32 c = 0;
struct subcache_info *sinfo;
if (msm_vidc_syscache_disable || !is_sys_cache_present(device))
return 0;
/* Activate subcaches */
venus_hfi_for_each_subcache(device, sinfo) {
rc = llcc_slice_activate(sinfo->subcache);
if (rc) {
dprintk(VIDC_ERR, "Failed to activate %s: %d\n",
sinfo->name, rc);
msm_vidc_res_handle_fatal_hw_error(device->res, true);
goto err_activate_fail;
}
sinfo->isactive = true;
dprintk(VIDC_HIGH, "Activated subcache %s\n", sinfo->name);
c++;
}
dprintk(VIDC_HIGH, "Activated %d Subcaches to Venus\n", c);
return 0;
err_activate_fail:
__release_subcaches(device);
__disable_subcaches(device);
return 0;
}
static int __set_subcaches(struct venus_hfi_device *device)
{
int rc = 0;
u32 c = 0;
struct subcache_info *sinfo;
u32 resource[VIDC_MAX_SUBCACHE_SIZE];
struct hfi_resource_syscache_info_type *sc_res_info;
struct hfi_resource_subcache_type *sc_res;
struct vidc_resource_hdr rhdr;
if (device->res->sys_cache_res_set) {
dprintk(VIDC_HIGH, "Subcaches already set to Venus\n");
return 0;
}
memset((void *)resource, 0x0, (sizeof(u32) * VIDC_MAX_SUBCACHE_SIZE));
sc_res_info = (struct hfi_resource_syscache_info_type *)resource;
sc_res = &(sc_res_info->rg_subcache_entries[0]);
venus_hfi_for_each_subcache(device, sinfo) {
if (sinfo->isactive) {
sc_res[c].size = sinfo->subcache->slice_size;
sc_res[c].sc_id = sinfo->subcache->slice_id;
c++;
}
}
/* Set resource to Venus for activated subcaches */
if (c) {
dprintk(VIDC_HIGH, "Setting %d Subcaches\n", c);
rhdr.resource_handle = sc_res_info; /* cookie */
rhdr.resource_id = VIDC_RESOURCE_SYSCACHE;
sc_res_info->num_entries = c;
rc = __core_set_resource(device, &rhdr, (void *)sc_res_info);
if (rc) {
dprintk(VIDC_ERR, "Failed to set subcaches %d\n", rc);
goto err_fail_set_subacaches;
}
venus_hfi_for_each_subcache(device, sinfo) {
if (sinfo->isactive)
sinfo->isset = true;
}
dprintk(VIDC_HIGH, "Set Subcaches done to Venus\n");
device->res->sys_cache_res_set = true;
}
return 0;
err_fail_set_subacaches:
__disable_subcaches(device);
return 0;
}
static int __release_subcaches(struct venus_hfi_device *device)
{
struct subcache_info *sinfo;
int rc = 0;
u32 c = 0;
u32 resource[VIDC_MAX_SUBCACHE_SIZE];
struct hfi_resource_syscache_info_type *sc_res_info;
struct hfi_resource_subcache_type *sc_res;
struct vidc_resource_hdr rhdr;
if (msm_vidc_syscache_disable || !is_sys_cache_present(device))
return 0;
memset((void *)resource, 0x0, (sizeof(u32) * VIDC_MAX_SUBCACHE_SIZE));
sc_res_info = (struct hfi_resource_syscache_info_type *)resource;
sc_res = &(sc_res_info->rg_subcache_entries[0]);
/* Release resource command to Venus */
venus_hfi_for_each_subcache_reverse(device, sinfo) {
if (sinfo->isset) {
/* Update the entry */
sc_res[c].size = sinfo->subcache->slice_size;
sc_res[c].sc_id = sinfo->subcache->slice_id;
c++;
sinfo->isset = false;
}
}
if (c > 0) {
dprintk(VIDC_HIGH, "Releasing %d subcaches\n", c);
rhdr.resource_handle = sc_res_info; /* cookie */
rhdr.resource_id = VIDC_RESOURCE_SYSCACHE;
rc = __core_release_resource(device, &rhdr);
if (rc)
dprintk(VIDC_ERR,
"Failed to release %d subcaches\n", c);
}
device->res->sys_cache_res_set = false;
return 0;
}
static int __disable_subcaches(struct venus_hfi_device *device)
{
struct subcache_info *sinfo;
int rc = 0;
if (msm_vidc_syscache_disable || !is_sys_cache_present(device))
return 0;
/* De-activate subcaches */
venus_hfi_for_each_subcache_reverse(device, sinfo) {
if (sinfo->isactive) {
dprintk(VIDC_HIGH, "De-activate subcache %s\n",
sinfo->name);
rc = llcc_slice_deactivate(sinfo->subcache);
if (rc) {
dprintk(VIDC_ERR,
"Failed to de-activate %s: %d\n",
sinfo->name, rc);
}
sinfo->isactive = false;
}
}
return 0;
}
static int __set_ubwc_config(struct venus_hfi_device *device)
{
u8 packet[VIDC_IFACEQ_VAR_SMALL_PKT_SIZE];
int rc = 0;
struct hfi_cmd_sys_set_property_packet *pkt =
(struct hfi_cmd_sys_set_property_packet *) &packet;
if (!device->res->ubwc_config)
return 0;
rc = call_hfi_pkt_op(device, sys_ubwc_config, pkt,
device->res->ubwc_config);
if (rc) {
dprintk(VIDC_ERR,
"ubwc config setting to FW failed\n");
rc = -ENOTEMPTY;
goto fail_to_set_ubwc_config;
}
if (__iface_cmdq_write(device, pkt)) {
rc = -ENOTEMPTY;
goto fail_to_set_ubwc_config;
}
dprintk(VIDC_HIGH,
"Configured UBWC Config to Venus\n");
fail_to_set_ubwc_config:
return rc;
}
static int __venus_power_on(struct venus_hfi_device *device)
{
int rc = 0;
if (device->power_enabled)
return 0;
device->power_enabled = true;
/* Vote for all hardware resources */
rc = __vote_buses(device, device->bus_vote.data,
device->bus_vote.data_count);
if (rc) {
dprintk(VIDC_ERR, "Failed to vote buses, err: %d\n", rc);
goto fail_vote_buses;
}
rc = __enable_regulators(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to enable GDSC, err = %d\n", rc);
goto fail_enable_gdsc;
}
rc = call_venus_op(device, reset_ahb2axi_bridge, device);
if (rc) {
dprintk(VIDC_ERR, "Failed to reset ahb2axi: %d\n", rc);
goto fail_enable_clks;
}
rc = __prepare_enable_clks(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to enable clocks: %d\n", rc);
goto fail_enable_clks;
}
rc = __scale_clocks(device);
if (rc) {
dprintk(VIDC_ERR,
"Failed to scale clocks, performance might be affected\n");
rc = 0;
}
/*
* Re-program all of the registers that get reset as a result of
* regulator_disable() and _enable()
*/
__set_registers(device);
call_venus_op(device, interrupt_init, device);
device->intr_status = 0;
enable_irq(device->hal_data->irq);
return rc;
fail_enable_clks:
__disable_regulators(device);
fail_enable_gdsc:
__unvote_buses(device);
fail_vote_buses:
device->power_enabled = false;
return rc;
}
static void __power_off_common(struct venus_hfi_device *device)
{
if (!device->power_enabled)
return;
if (!(device->intr_status & WRAPPER_INTR_STATUS_A2HWD_BMSK))
disable_irq_nosync(device->hal_data->irq);
device->intr_status = 0;
__disable_unprepare_clks(device);
if (call_venus_op(device, reset_ahb2axi_bridge, device))
dprintk(VIDC_ERR, "Failed to reset ahb2axi\n");
if (__disable_regulators(device))
dprintk(VIDC_ERR, "Failed to disable regulators\n");
if (__unvote_buses(device))
dprintk(VIDC_ERR, "Failed to unvote for buses\n");
device->power_enabled = false;
}
static inline int __suspend(struct venus_hfi_device *device)
{
int rc = 0;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %pK\n", device);
return -EINVAL;
} else if (!device->power_enabled) {
dprintk(VIDC_HIGH, "Power already disabled\n");
return 0;
}
dprintk(VIDC_HIGH, "Entering suspend\n");
if (device->res->pm_qos_latency_us &&
pm_qos_request_active(&device->qos))
pm_qos_remove_request(&device->qos);
rc = __tzbsp_set_video_state(TZBSP_VIDEO_STATE_SUSPEND);
if (rc) {
dprintk(VIDC_ERR, "Failed to suspend video core %d\n", rc);
goto err_tzbsp_suspend;
}
__disable_subcaches(device);
call_venus_op(device, power_off, device);
dprintk(VIDC_HIGH, "Venus power off\n");
return rc;
err_tzbsp_suspend:
return rc;
}
static inline int __resume(struct venus_hfi_device *device)
{
int rc = 0;
u32 flags = 0;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %pK\n", device);
return -EINVAL;
} else if (device->power_enabled) {
goto exit;
} else if (!__core_in_valid_state(device)) {
dprintk(VIDC_ERR, "venus_hfi_device in deinit state.");
return -EINVAL;
}
dprintk(VIDC_HIGH, "Resuming from power collapse\n");
rc = __venus_power_on(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to power on venus\n");
goto err_venus_power_on;
}
/* Reboot the firmware */
rc = __tzbsp_set_video_state(TZBSP_VIDEO_STATE_RESUME);
if (rc) {
dprintk(VIDC_ERR, "Failed to resume video core %d\n", rc);
goto err_set_video_state;
}
/*
* Hand off control of regulators to h/w _after_ loading fw.
* Note that the GDSC will turn off when switching from normal
* (s/w triggered) to fast (HW triggered) unless the h/w vote is
* present.
*/
if (__enable_hw_power_collapse(device))
dprintk(VIDC_ERR, "Failed to enabled inter-frame PC\n");
call_venus_op(device, setup_ucregion_memmap, device);
/* Wait for boot completion */
rc = call_venus_op(device, boot_firmware, device);
if (rc) {
dprintk(VIDC_ERR, "Failed to reset venus core\n");
goto err_reset_core;
}
if (device->res->pm_qos_latency_us) {
#ifdef CONFIG_SMP
device->qos.type = PM_QOS_REQ_AFFINE_IRQ;
device->qos.irq = device->hal_data->irq;
#endif
pm_qos_add_request(&device->qos, PM_QOS_CPU_DMA_LATENCY,
device->res->pm_qos_latency_us);
}
__sys_set_debug(device, (msm_vidc_debug & FW_LOGMASK) >> FW_LOGSHIFT);
__enable_subcaches(device);
__set_subcaches(device);
__dsp_resume(device, flags);
dprintk(VIDC_HIGH, "Resumed from power collapse\n");
exit:
/* Don't reset skip_pc_count for SYS_PC_PREP cmd */
if (device->last_packet_type != HFI_CMD_SYS_PC_PREP)
device->skip_pc_count = 0;
return rc;
err_reset_core:
__tzbsp_set_video_state(TZBSP_VIDEO_STATE_SUSPEND);
err_set_video_state:
call_venus_op(device, power_off, device);
err_venus_power_on:
dprintk(VIDC_ERR, "Failed to resume from power collapse\n");
return rc;
}
static int __load_fw(struct venus_hfi_device *device)
{
int rc = 0;
/* Initialize resources */
rc = __init_resources(device, device->res);
if (rc) {
dprintk(VIDC_ERR, "Failed to init resources: %d\n", rc);
goto fail_init_res;
}
rc = __initialize_packetization(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to initialize packetization\n");
goto fail_init_pkt;
}
trace_msm_v4l2_vidc_fw_load_start("msm_v4l2_vidc venus_fw load start");
rc = __venus_power_on(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to power on venus in in load_fw\n");
goto fail_venus_power_on;
}
if (!device->res->firmware_base) {
if (!device->resources.fw.cookie)
device->resources.fw.cookie =
subsystem_get_with_fwname("venus",
device->res->fw_name);
if (IS_ERR_OR_NULL(device->resources.fw.cookie)) {
dprintk(VIDC_ERR, "Failed to download firmware\n");
device->resources.fw.cookie = NULL;
rc = -ENOMEM;
goto fail_load_fw;
}
} else {
dprintk(VIDC_ERR, "Firmware base must be 0\n");
}
if (!device->res->firmware_base) {
rc = __protect_cp_mem(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to protect memory\n");
goto fail_protect_mem;
}
}
/*
* Hand off control of regulators to h/w _after_ loading fw.
* Note that the GDSC will turn off when switching from normal
* (s/w triggered) to fast (HW triggered) unless the h/w vote is
* present.
*/
if (__enable_hw_power_collapse(device))
dprintk(VIDC_ERR, "Failed to enabled inter-frame PC\n");
trace_msm_v4l2_vidc_fw_load_end("msm_v4l2_vidc venus_fw load end");
return rc;
fail_protect_mem:
if (device->resources.fw.cookie)
subsystem_put(device->resources.fw.cookie);
device->resources.fw.cookie = NULL;
fail_load_fw:
call_venus_op(device, power_off, device);
fail_venus_power_on:
fail_init_pkt:
__deinit_resources(device);
fail_init_res:
trace_msm_v4l2_vidc_fw_load_end("msm_v4l2_vidc venus_fw load end");
return rc;
}
static void __unload_fw(struct venus_hfi_device *device)
{
if (!device->resources.fw.cookie)
return;
cancel_delayed_work(&venus_hfi_pm_work);
if (device->state != VENUS_STATE_DEINIT)
flush_workqueue(device->venus_pm_workq);
__vote_buses(device, NULL, 0);
subsystem_put(device->resources.fw.cookie);
__interface_queues_release(device);
call_venus_op(device, power_off, device);
device->resources.fw.cookie = NULL;
__deinit_resources(device);
dprintk(VIDC_HIGH, "Firmware unloaded successfully\n");
}
static int venus_hfi_get_fw_info(void *dev, struct hal_fw_info *fw_info)
{
int i = 0, j = 0;
struct venus_hfi_device *device = dev;
size_t smem_block_size = 0;
u8 *smem_table_ptr;
char version[VENUS_VERSION_LENGTH] = "";
const u32 smem_image_index_venus = 14 * 128;
if (!device || !fw_info) {
dprintk(VIDC_ERR,
"%s Invalid parameter: device = %pK fw_info = %pK\n",
__func__, device, fw_info);
return -EINVAL;
}
mutex_lock(&device->lock);
smem_table_ptr = qcom_smem_get(QCOM_SMEM_HOST_ANY,
SMEM_IMAGE_VERSION_TABLE, &smem_block_size);
if (smem_table_ptr &&
((smem_image_index_venus +
VENUS_VERSION_LENGTH) <= smem_block_size))
memcpy(version,
smem_table_ptr + smem_image_index_venus,
VENUS_VERSION_LENGTH);
while (version[i++] != 'V' && i < VENUS_VERSION_LENGTH)
;
if (i == VENUS_VERSION_LENGTH - 1) {
dprintk(VIDC_ERR, "Venus version string is not proper\n");
fw_info->version[0] = '\0';
goto fail_version_string;
}
for (i--; i < VENUS_VERSION_LENGTH && j < VENUS_VERSION_LENGTH - 1; i++)
fw_info->version[j++] = version[i];
fw_info->version[j] = '\0';
fail_version_string:
dprintk(VIDC_HIGH, "F/W version retrieved : %s\n", fw_info->version);
fw_info->base_addr = device->hal_data->firmware_base;
fw_info->register_base = device->res->register_base;
fw_info->register_size = device->hal_data->register_size;
fw_info->irq = device->hal_data->irq;
mutex_unlock(&device->lock);
return 0;
}
static int venus_hfi_get_core_capabilities(void *dev)
{
struct venus_hfi_device *device = dev;
int rc = 0;
if (!device)
return -EINVAL;
mutex_lock(&device->lock);
rc = HAL_VIDEO_ENCODER_ROTATION_CAPABILITY |
HAL_VIDEO_ENCODER_SCALING_CAPABILITY |
HAL_VIDEO_ENCODER_DEINTERLACE_CAPABILITY |
HAL_VIDEO_DECODER_MULTI_STREAM_CAPABILITY;
mutex_unlock(&device->lock);
return rc;
}
static void __noc_error_info(struct venus_hfi_device *device, u32 core_num)
{
u32 vcodec_core_video_noc_base_offs, val;
if (!device) {
dprintk(VIDC_ERR, "%s: null device\n", __func__);
return;
}
if (!core_num) {
vcodec_core_video_noc_base_offs =
VCODEC_CORE0_VIDEO_NOC_BASE_OFFS;
} else if (core_num == 1) {
vcodec_core_video_noc_base_offs =
VCODEC_CORE1_VIDEO_NOC_BASE_OFFS;
} else {
dprintk(VIDC_ERR, "%s: invalid core_num %u\n",
__func__, core_num);
return;
}
val = __read_register(device, vcodec_core_video_noc_base_offs +
VCODEC_COREX_VIDEO_NOC_ERR_SWID_LOW_OFFS);
dprintk(VIDC_ERR, "CORE%d_NOC_ERR_SWID_LOW: %#x\n", core_num, val);
val = __read_register(device, vcodec_core_video_noc_base_offs +
VCODEC_COREX_VIDEO_NOC_ERR_SWID_HIGH_OFFS);
dprintk(VIDC_ERR, "CORE%d_NOC_ERR_SWID_HIGH: %#x\n", core_num, val);
val = __read_register(device, vcodec_core_video_noc_base_offs +
VCODEC_COREX_VIDEO_NOC_ERR_MAINCTL_LOW_OFFS);
dprintk(VIDC_ERR, "CORE%d_NOC_ERR_MAINCTL_LOW: %#x\n", core_num, val);
val = __read_register(device, vcodec_core_video_noc_base_offs +
VCODEC_COREX_VIDEO_NOC_ERR_ERRLOG0_LOW_OFFS);
dprintk(VIDC_ERR, "CORE%d_NOC_ERR_ERRLOG0_LOW: %#x\n", core_num, val);
val = __read_register(device, vcodec_core_video_noc_base_offs +
VCODEC_COREX_VIDEO_NOC_ERR_ERRLOG0_HIGH_OFFS);
dprintk(VIDC_ERR, "CORE%d_NOC_ERR_ERRLOG0_HIGH: %#x\n", core_num, val);
val = __read_register(device, vcodec_core_video_noc_base_offs +
VCODEC_COREX_VIDEO_NOC_ERR_ERRLOG1_LOW_OFFS);
dprintk(VIDC_ERR, "CORE%d_NOC_ERR_ERRLOG1_LOW: %#x\n", core_num, val);
val = __read_register(device, vcodec_core_video_noc_base_offs +
VCODEC_COREX_VIDEO_NOC_ERR_ERRLOG1_HIGH_OFFS);
dprintk(VIDC_ERR, "CORE%d_NOC_ERR_ERRLOG1_HIGH: %#x\n", core_num, val);
val = __read_register(device, vcodec_core_video_noc_base_offs +
VCODEC_COREX_VIDEO_NOC_ERR_ERRLOG2_LOW_OFFS);
dprintk(VIDC_ERR, "CORE%d_NOC_ERR_ERRLOG2_LOW: %#x\n", core_num, val);
val = __read_register(device, vcodec_core_video_noc_base_offs +
VCODEC_COREX_VIDEO_NOC_ERR_ERRLOG2_HIGH_OFFS);
dprintk(VIDC_ERR, "CORE%d_NOC_ERR_ERRLOG2_HIGH: %#x\n", core_num, val);
val = __read_register(device, vcodec_core_video_noc_base_offs +
VCODEC_COREX_VIDEO_NOC_ERR_ERRLOG3_LOW_OFFS);
dprintk(VIDC_ERR, "CORE%d_NOC_ERR_ERRLOG3_LOW: %#x\n", core_num, val);
val = __read_register(device, vcodec_core_video_noc_base_offs +
VCODEC_COREX_VIDEO_NOC_ERR_ERRLOG3_HIGH_OFFS);
dprintk(VIDC_ERR, "CORE%d_NOC_ERR_ERRLOG3_HIGH: %#x\n", core_num, val);
}
static void __noc_error_info_common(struct venus_hfi_device *device)
{
const u32 core0 = 0, core1 = 1;
if (__read_register(device, VCODEC_CORE0_VIDEO_NOC_BASE_OFFS +
VCODEC_COREX_VIDEO_NOC_ERR_ERRVLD_LOW_OFFS))
__noc_error_info(device, core0);
if (__read_register(device, VCODEC_CORE1_VIDEO_NOC_BASE_OFFS +
VCODEC_COREX_VIDEO_NOC_ERR_ERRVLD_LOW_OFFS))
__noc_error_info(device, core1);
}
static int venus_hfi_noc_error_info(void *dev)
{
struct venus_hfi_device *device;
if (!dev) {
dprintk(VIDC_ERR, "%s: null device\n", __func__);
return -EINVAL;
}
device = dev;
mutex_lock(&device->lock);
dprintk(VIDC_ERR, "%s: non error information\n", __func__);
call_venus_op(device, noc_error_info, device);
mutex_unlock(&device->lock);
return 0;
}
static int __initialize_packetization(struct venus_hfi_device *device)
{
int rc = 0;
if (!device || !device->res) {
dprintk(VIDC_ERR, "%s - invalid param\n", __func__);
return -EINVAL;
}
device->packetization_type = HFI_PACKETIZATION_4XX;
device->pkt_ops = hfi_get_pkt_ops_handle(device->packetization_type);
if (!device->pkt_ops) {
rc = -EINVAL;
dprintk(VIDC_ERR, "Failed to get pkt_ops handle\n");
}
return rc;
}
void __init_venus_ops(struct venus_hfi_device *device)
{
if (device->res->vpu_ver == VPU_VERSION_AR50)
device->vpu_ops = &vpu4_ops;
else if (device->res->vpu_ver == VPU_VERSION_IRIS1)
device->vpu_ops = &iris1_ops;
else
device->vpu_ops = &iris2_ops;
}
static struct venus_hfi_device *__add_device(u32 device_id,
struct msm_vidc_platform_resources *res,
hfi_cmd_response_callback callback)
{
struct venus_hfi_device *hdevice = NULL;
int rc = 0;
if (!res || !callback) {
dprintk(VIDC_ERR, "Invalid Parameters\n");
return NULL;
}
dprintk(VIDC_HIGH, "entered , device_id: %d\n", device_id);
hdevice = kzalloc(sizeof(struct venus_hfi_device), GFP_KERNEL);
if (!hdevice) {
dprintk(VIDC_ERR, "failed to allocate new device\n");
goto exit;
}
hdevice->response_pkt = kmalloc_array(max_packets,
sizeof(*hdevice->response_pkt), GFP_KERNEL);
if (!hdevice->response_pkt) {
dprintk(VIDC_ERR, "failed to allocate response_pkt\n");
goto err_cleanup;
}
hdevice->raw_packet =
kzalloc(VIDC_IFACEQ_VAR_HUGE_PKT_SIZE, GFP_KERNEL);
if (!hdevice->raw_packet) {
dprintk(VIDC_ERR, "failed to allocate raw packet\n");
goto err_cleanup;
}
rc = __init_regs_and_interrupts(hdevice, res);
if (rc)
goto err_cleanup;
hdevice->res = res;
hdevice->device_id = device_id;
hdevice->callback = (msm_vidc_callback) callback;
__init_venus_ops(hdevice);
hdevice->vidc_workq = create_singlethread_workqueue(
"msm_vidc_workerq_venus");
if (!hdevice->vidc_workq) {
dprintk(VIDC_ERR, ": create vidc workq failed\n");
goto err_cleanup;
}
hdevice->venus_pm_workq = create_singlethread_workqueue(
"pm_workerq_venus");
if (!hdevice->venus_pm_workq) {
dprintk(VIDC_ERR, ": create pm workq failed\n");
goto err_cleanup;
}
if (!hal_ctxt.dev_count)
INIT_LIST_HEAD(&hal_ctxt.dev_head);
mutex_init(&hdevice->lock);
INIT_LIST_HEAD(&hdevice->list);
INIT_LIST_HEAD(&hdevice->sess_head);
list_add_tail(&hdevice->list, &hal_ctxt.dev_head);
hal_ctxt.dev_count++;
return hdevice;
err_cleanup:
if (hdevice->vidc_workq)
destroy_workqueue(hdevice->vidc_workq);
kfree(hdevice->response_pkt);
kfree(hdevice->raw_packet);
kfree(hdevice);
exit:
return NULL;
}
static struct venus_hfi_device *__get_device(u32 device_id,
struct msm_vidc_platform_resources *res,
hfi_cmd_response_callback callback)
{
if (!res || !callback) {
dprintk(VIDC_ERR, "Invalid params: %pK %pK\n", res, callback);
return NULL;
}
return __add_device(device_id, res, callback);
}
void venus_hfi_delete_device(void *device)
{
struct venus_hfi_device *close, *tmp, *dev;
if (!device)
return;
dev = (struct venus_hfi_device *) device;
list_for_each_entry_safe(close, tmp, &hal_ctxt.dev_head, list) {
if (close->hal_data->irq == dev->hal_data->irq) {
hal_ctxt.dev_count--;
list_del(&close->list);
mutex_destroy(&close->lock);
destroy_workqueue(close->vidc_workq);
destroy_workqueue(close->venus_pm_workq);
free_irq(dev->hal_data->irq, close);
iounmap(dev->hal_data->register_base);
kfree(close->hal_data);
kfree(close->response_pkt);
kfree(close->raw_packet);
kfree(close);
break;
}
}
}
static void venus_init_hfi_callbacks(struct hfi_device *hdev)
{
hdev->core_init = venus_hfi_core_init;
hdev->core_release = venus_hfi_core_release;
hdev->core_trigger_ssr = venus_hfi_core_trigger_ssr;
hdev->session_init = venus_hfi_session_init;
hdev->session_end = venus_hfi_session_end;
hdev->session_abort = venus_hfi_session_abort;
hdev->session_clean = venus_hfi_session_clean;
hdev->session_set_buffers = venus_hfi_session_set_buffers;
hdev->session_release_buffers = venus_hfi_session_release_buffers;
hdev->session_register_buffer = venus_hfi_session_register_buffer;
hdev->session_unregister_buffer = venus_hfi_session_unregister_buffer;
hdev->session_load_res = venus_hfi_session_load_res;
hdev->session_release_res = venus_hfi_session_release_res;
hdev->session_start = venus_hfi_session_start;
hdev->session_continue = venus_hfi_session_continue;
hdev->session_stop = venus_hfi_session_stop;
hdev->session_etb = venus_hfi_session_etb;
hdev->session_ftb = venus_hfi_session_ftb;
hdev->session_process_batch = venus_hfi_session_process_batch;
hdev->session_get_buf_req = venus_hfi_session_get_buf_req;
hdev->session_flush = venus_hfi_session_flush;
hdev->session_set_property = venus_hfi_session_set_property;
hdev->session_pause = venus_hfi_session_pause;
hdev->session_resume = venus_hfi_session_resume;
hdev->scale_clocks = venus_hfi_scale_clocks;
hdev->vote_bus = venus_hfi_vote_buses;
hdev->get_fw_info = venus_hfi_get_fw_info;
hdev->get_core_capabilities = venus_hfi_get_core_capabilities;
hdev->suspend = venus_hfi_suspend;
hdev->flush_debug_queue = venus_hfi_flush_debug_queue;
hdev->noc_error_info = venus_hfi_noc_error_info;
hdev->get_default_properties = venus_hfi_get_default_properties;
}
int venus_hfi_initialize(struct hfi_device *hdev, u32 device_id,
struct msm_vidc_platform_resources *res,
hfi_cmd_response_callback callback)
{
int rc = 0;
if (!hdev || !res || !callback) {
dprintk(VIDC_ERR, "Invalid params: %pK %pK %pK\n",
hdev, res, callback);
rc = -EINVAL;
goto err_venus_hfi_init;
}
hdev->hfi_device_data = __get_device(device_id, res, callback);
if (IS_ERR_OR_NULL(hdev->hfi_device_data)) {
rc = PTR_ERR(hdev->hfi_device_data) ?
PTR_ERR(hdev->hfi_device_data) : -EINVAL;
goto err_venus_hfi_init;
}
venus_init_hfi_callbacks(hdev);
err_venus_hfi_init:
return rc;
}