android_kernel_xiaomi_sm8350/fs/debugfs/file.c
Arnd Bergmann acaefc25d2 [PATCH] libfs: add simple attribute files
Based on the discussion about spufs attributes, this is my suggestion
for a more generic attribute file support that can be used by both
debugfs and spufs.

Simple attribute files behave similarly to sequential files from
a kernel programmers perspective in that a standard set of file
operations is provided and only an open operation needs to
be written that registers file specific get() and set() functions.

These operations are defined as

void foo_set(void *data, u64 val); and
u64 foo_get(void *data);

where data is the inode->u.generic_ip pointer of the file and the
operations just need to make send of that pointer. The infrastructure
makes sure this works correctly with concurrent access and partial
read calls.

A macro named DEFINE_SIMPLE_ATTRIBUTE is provided to further simplify
using the attributes.

This patch already contains the changes for debugfs to use attributes
for its internal file operations.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-06-20 15:15:30 -07:00

254 lines
8.5 KiB
C

/*
* file.c - part of debugfs, a tiny little debug file system
*
* Copyright (C) 2004 Greg Kroah-Hartman <greg@kroah.com>
* Copyright (C) 2004 IBM Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* debugfs is for people to use instead of /proc or /sys.
* See Documentation/DocBook/kernel-api for more details.
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/debugfs.h>
static ssize_t default_read_file(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
return 0;
}
static ssize_t default_write_file(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
return count;
}
static int default_open(struct inode *inode, struct file *file)
{
if (inode->u.generic_ip)
file->private_data = inode->u.generic_ip;
return 0;
}
struct file_operations debugfs_file_operations = {
.read = default_read_file,
.write = default_write_file,
.open = default_open,
};
static void debugfs_u8_set(void *data, u64 val)
{
*(u8 *)data = val;
}
static u64 debugfs_u8_get(void *data)
{
return *(u8 *)data;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_u8, debugfs_u8_get, debugfs_u8_set, "%llu\n");
/**
* debugfs_create_u8 - create a file in the debugfs filesystem that is used to read and write a unsigned 8 bit value.
*
* @name: a pointer to a string containing the name of the file to create.
* @mode: the permission that the file should have
* @parent: a pointer to the parent dentry for this file. This should be a
* directory dentry if set. If this paramater is NULL, then the
* file will be created in the root of the debugfs filesystem.
* @value: a pointer to the variable that the file should read to and write
* from.
*
* This function creates a file in debugfs with the given name that
* contains the value of the variable @value. If the @mode variable is so
* set, it can be read from, and written to.
*
* This function will return a pointer to a dentry if it succeeds. This
* pointer must be passed to the debugfs_remove() function when the file is
* to be removed (no automatic cleanup happens if your module is unloaded,
* you are responsible here.) If an error occurs, NULL will be returned.
*
* If debugfs is not enabled in the kernel, the value -ENODEV will be
* returned. It is not wise to check for this value, but rather, check for
* NULL or !NULL instead as to eliminate the need for #ifdef in the calling
* code.
*/
struct dentry *debugfs_create_u8(const char *name, mode_t mode,
struct dentry *parent, u8 *value)
{
return debugfs_create_file(name, mode, parent, value, &fops_u8);
}
EXPORT_SYMBOL_GPL(debugfs_create_u8);
static void debugfs_u16_set(void *data, u64 val)
{
*(u16 *)data = val;
}
static u64 debugfs_u16_get(void *data)
{
return *(u16 *)data;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_u16, debugfs_u16_get, debugfs_u16_set, "%llu\n");
/**
* debugfs_create_u16 - create a file in the debugfs filesystem that is used to read and write a unsigned 8 bit value.
*
* @name: a pointer to a string containing the name of the file to create.
* @mode: the permission that the file should have
* @parent: a pointer to the parent dentry for this file. This should be a
* directory dentry if set. If this paramater is NULL, then the
* file will be created in the root of the debugfs filesystem.
* @value: a pointer to the variable that the file should read to and write
* from.
*
* This function creates a file in debugfs with the given name that
* contains the value of the variable @value. If the @mode variable is so
* set, it can be read from, and written to.
*
* This function will return a pointer to a dentry if it succeeds. This
* pointer must be passed to the debugfs_remove() function when the file is
* to be removed (no automatic cleanup happens if your module is unloaded,
* you are responsible here.) If an error occurs, NULL will be returned.
*
* If debugfs is not enabled in the kernel, the value -ENODEV will be
* returned. It is not wise to check for this value, but rather, check for
* NULL or !NULL instead as to eliminate the need for #ifdef in the calling
* code.
*/
struct dentry *debugfs_create_u16(const char *name, mode_t mode,
struct dentry *parent, u16 *value)
{
return debugfs_create_file(name, mode, parent, value, &fops_u16);
}
EXPORT_SYMBOL_GPL(debugfs_create_u16);
static void debugfs_u32_set(void *data, u64 val)
{
*(u32 *)data = val;
}
static u64 debugfs_u32_get(void *data)
{
return *(u32 *)data;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_u32, debugfs_u32_get, debugfs_u32_set, "%llu\n");
/**
* debugfs_create_u32 - create a file in the debugfs filesystem that is used to read and write a unsigned 8 bit value.
*
* @name: a pointer to a string containing the name of the file to create.
* @mode: the permission that the file should have
* @parent: a pointer to the parent dentry for this file. This should be a
* directory dentry if set. If this paramater is NULL, then the
* file will be created in the root of the debugfs filesystem.
* @value: a pointer to the variable that the file should read to and write
* from.
*
* This function creates a file in debugfs with the given name that
* contains the value of the variable @value. If the @mode variable is so
* set, it can be read from, and written to.
*
* This function will return a pointer to a dentry if it succeeds. This
* pointer must be passed to the debugfs_remove() function when the file is
* to be removed (no automatic cleanup happens if your module is unloaded,
* you are responsible here.) If an error occurs, NULL will be returned.
*
* If debugfs is not enabled in the kernel, the value -ENODEV will be
* returned. It is not wise to check for this value, but rather, check for
* NULL or !NULL instead as to eliminate the need for #ifdef in the calling
* code.
*/
struct dentry *debugfs_create_u32(const char *name, mode_t mode,
struct dentry *parent, u32 *value)
{
return debugfs_create_file(name, mode, parent, value, &fops_u32);
}
EXPORT_SYMBOL_GPL(debugfs_create_u32);
static ssize_t read_file_bool(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
char buf[3];
u32 *val = file->private_data;
if (*val)
buf[0] = 'Y';
else
buf[0] = 'N';
buf[1] = '\n';
buf[2] = 0x00;
return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
}
static ssize_t write_file_bool(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
char buf[32];
int buf_size;
u32 *val = file->private_data;
buf_size = min(count, (sizeof(buf)-1));
if (copy_from_user(buf, user_buf, buf_size))
return -EFAULT;
switch (buf[0]) {
case 'y':
case 'Y':
case '1':
*val = 1;
break;
case 'n':
case 'N':
case '0':
*val = 0;
break;
}
return count;
}
static struct file_operations fops_bool = {
.read = read_file_bool,
.write = write_file_bool,
.open = default_open,
};
/**
* debugfs_create_bool - create a file in the debugfs filesystem that is used to read and write a boolean value.
*
* @name: a pointer to a string containing the name of the file to create.
* @mode: the permission that the file should have
* @parent: a pointer to the parent dentry for this file. This should be a
* directory dentry if set. If this paramater is NULL, then the
* file will be created in the root of the debugfs filesystem.
* @value: a pointer to the variable that the file should read to and write
* from.
*
* This function creates a file in debugfs with the given name that
* contains the value of the variable @value. If the @mode variable is so
* set, it can be read from, and written to.
*
* This function will return a pointer to a dentry if it succeeds. This
* pointer must be passed to the debugfs_remove() function when the file is
* to be removed (no automatic cleanup happens if your module is unloaded,
* you are responsible here.) If an error occurs, NULL will be returned.
*
* If debugfs is not enabled in the kernel, the value -ENODEV will be
* returned. It is not wise to check for this value, but rather, check for
* NULL or !NULL instead as to eliminate the need for #ifdef in the calling
* code.
*/
struct dentry *debugfs_create_bool(const char *name, mode_t mode,
struct dentry *parent, u32 *value)
{
return debugfs_create_file(name, mode, parent, value, &fops_bool);
}
EXPORT_SYMBOL_GPL(debugfs_create_bool);