android_kernel_xiaomi_sm8350/arch/x86/kernel/traps_32.c
Vegard Nossum 4461145ef1 x86, lockdep: fix "WARNING: at kernel/lockdep.c:2658 check_flags+0x4c/0x128()"
Alessandro Suardi reported:
> Recently upgraded my FC6 desktop to Fedora 9; with the
>  latest nautilus RPM updates my VNC session went nuts
>  with nautilus pegging the CPU for everything that breathed.
>
> I now reverted to an earlier nautilus package, but during
>  the peak CPU period my kernel spat this:
>
> [314185.623294] ------------[ cut here ]------------
> [314185.623414] WARNING: at kernel/lockdep.c:2658 check_flags+0x4c/0x128()
> [314185.623514] Modules linked in: iptable_filter ip_tables x_tables
> sunrpc ipv6 fuse snd_via82xx snd_ac97_codec ac97_bus snd_mpu401_uart
> snd_rawmidi via686a hwmon parport_pc sg parport uhci_hcd ehci_hcd
> [314185.623924] Pid: 12314, comm: nautilus Not tainted 2.6.26-rc5-git2 #4
> [314185.624021]  [<c0115b95>] warn_on_slowpath+0x41/0x7b
> [314185.624021]  [<c010de70>] ? do_page_fault+0x2c1/0x5fd
> [314185.624021]  [<c0128396>] ? up_read+0x16/0x28
> [314185.624021]  [<c010de70>] ? do_page_fault+0x2c1/0x5fd
> [314185.624021]  [<c012fa33>] ? __lock_acquire+0xbb4/0xbc3
> [314185.624021]  [<c012d0a0>] check_flags+0x4c/0x128
> [314185.624021]  [<c012fa73>] lock_acquire+0x31/0x7d
> [314185.624021]  [<c0128cf6>] __atomic_notifier_call_chain+0x30/0x80
> [314185.624021]  [<c0128cc6>] ? __atomic_notifier_call_chain+0x0/0x80
> [314185.624021]  [<c0128d52>] atomic_notifier_call_chain+0xc/0xe
> [314185.624021]  [<c0128d81>] notify_die+0x2d/0x2f
> [314185.624021]  [<c01043b0>] do_int3+0x1f/0x4d
> [314185.624021]  [<c02f2d3b>] int3+0x27/0x2c
> [314185.624021]  =======================
> [314185.624021] ---[ end trace 1923f65a2d7bb246 ]---
> [314185.624021] possible reason: unannotated irqs-off.
> [314185.624021] irq event stamp: 488879
> [314185.624021] hardirqs last  enabled at (488879): [<c0102d67>]
> restore_nocheck+0x12/0x15
> [314185.624021] hardirqs last disabled at (488878): [<c0102dca>]
> work_resched+0x19/0x30
> [314185.624021] softirqs last  enabled at (488876): [<c011a1ba>]
> __do_softirq+0xa6/0xac
> [314185.624021] softirqs last disabled at (488865): [<c010476e>]
> do_softirq+0x57/0xa6
>
> I didn't seem to find it with some googling, so here it is.
>
> I was incidentally ltracing that process to try and find out
>  what was gulping down that much CPU (sorry, no idea
>  whether ltrace and the WARNING happened at the same
>  time or which came first) and:

Yeah, this is extremely likely to be the source of the warning.

The warning should be harmless, however.

> Box is my trusty noname K7-800, 512MB RAM; if there's
>  anything else useful I might be able to provide, just ask.

It would be interesting to see where the int3 comes from.  Too bad,
lockdep doesn't provide the register dump. The stacktrace also doesn't
go further than the int3(), I wonder if this int3 came from userspace?
The ltrace readme says "software breakpoints, like gdb", so I guess
this is the case. Yep, seems like it.

This looks relevant:

| commit fb1dac909d
| Author: Peter Zijlstra <a.p.zijlstra@chello.nl>
| Date:   Wed Jan 16 09:51:59 2008 +0100
|
|     lockdep: more hardirq annotations for notify_die()

I'm attaching a similarly-looking patch for this case (DO_VM86_ERROR),
though I suspect it might be missing for the other cases
(DO_ERROR/DO_ERROR_INFO) as well.

Reported-by: Alessandro Suardi <alessandro.suardi@gmail.com>
Signed-off-by: Vegard Nossum <vegard.nossum@gmail.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-12 21:27:19 +02:00

1271 lines
31 KiB
C

/*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Pentium III FXSR, SSE support
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
/*
* 'Traps.c' handles hardware traps and faults after we have saved some
* state in 'asm.s'.
*/
#include <linux/interrupt.h>
#include <linux/kallsyms.h>
#include <linux/spinlock.h>
#include <linux/highmem.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/utsname.h>
#include <linux/kdebug.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/ptrace.h>
#include <linux/string.h>
#include <linux/unwind.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/kexec.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/bug.h>
#include <linux/nmi.h>
#include <linux/mm.h>
#ifdef CONFIG_EISA
#include <linux/ioport.h>
#include <linux/eisa.h>
#endif
#ifdef CONFIG_MCA
#include <linux/mca.h>
#endif
#if defined(CONFIG_EDAC)
#include <linux/edac.h>
#endif
#include <asm/arch_hooks.h>
#include <asm/stacktrace.h>
#include <asm/processor.h>
#include <asm/debugreg.h>
#include <asm/atomic.h>
#include <asm/system.h>
#include <asm/unwind.h>
#include <asm/desc.h>
#include <asm/i387.h>
#include <asm/nmi.h>
#include <asm/smp.h>
#include <asm/io.h>
#include "mach_traps.h"
int panic_on_unrecovered_nmi;
DECLARE_BITMAP(used_vectors, NR_VECTORS);
EXPORT_SYMBOL_GPL(used_vectors);
asmlinkage int system_call(void);
/* Do we ignore FPU interrupts ? */
char ignore_fpu_irq;
/*
* The IDT has to be page-aligned to simplify the Pentium
* F0 0F bug workaround.. We have a special link segment
* for this.
*/
gate_desc idt_table[256]
__attribute__((__section__(".data.idt"))) = { { { { 0, 0 } } }, };
asmlinkage void divide_error(void);
asmlinkage void debug(void);
asmlinkage void nmi(void);
asmlinkage void int3(void);
asmlinkage void overflow(void);
asmlinkage void bounds(void);
asmlinkage void invalid_op(void);
asmlinkage void device_not_available(void);
asmlinkage void coprocessor_segment_overrun(void);
asmlinkage void invalid_TSS(void);
asmlinkage void segment_not_present(void);
asmlinkage void stack_segment(void);
asmlinkage void general_protection(void);
asmlinkage void page_fault(void);
asmlinkage void coprocessor_error(void);
asmlinkage void simd_coprocessor_error(void);
asmlinkage void alignment_check(void);
asmlinkage void spurious_interrupt_bug(void);
asmlinkage void machine_check(void);
int kstack_depth_to_print = 24;
static unsigned int code_bytes = 64;
void printk_address(unsigned long address, int reliable)
{
#ifdef CONFIG_KALLSYMS
char namebuf[KSYM_NAME_LEN];
unsigned long offset = 0;
unsigned long symsize;
const char *symname;
char reliab[4] = "";
char *delim = ":";
char *modname;
symname = kallsyms_lookup(address, &symsize, &offset,
&modname, namebuf);
if (!symname) {
printk(" [<%08lx>]\n", address);
return;
}
if (!reliable)
strcpy(reliab, "? ");
if (!modname)
modname = delim = "";
printk(" [<%08lx>] %s%s%s%s%s+0x%lx/0x%lx\n",
address, reliab, delim, modname, delim, symname, offset, symsize);
#else
printk(" [<%08lx>]\n", address);
#endif
}
static inline int valid_stack_ptr(struct thread_info *tinfo, void *p, unsigned size)
{
return p > (void *)tinfo &&
p <= (void *)tinfo + THREAD_SIZE - size;
}
/* The form of the top of the frame on the stack */
struct stack_frame {
struct stack_frame *next_frame;
unsigned long return_address;
};
static inline unsigned long
print_context_stack(struct thread_info *tinfo,
unsigned long *stack, unsigned long bp,
const struct stacktrace_ops *ops, void *data)
{
struct stack_frame *frame = (struct stack_frame *)bp;
while (valid_stack_ptr(tinfo, stack, sizeof(*stack))) {
unsigned long addr;
addr = *stack;
if (__kernel_text_address(addr)) {
if ((unsigned long) stack == bp + 4) {
ops->address(data, addr, 1);
frame = frame->next_frame;
bp = (unsigned long) frame;
} else {
ops->address(data, addr, bp == 0);
}
}
stack++;
}
return bp;
}
#define MSG(msg) ops->warning(data, msg)
void dump_trace(struct task_struct *task, struct pt_regs *regs,
unsigned long *stack, unsigned long bp,
const struct stacktrace_ops *ops, void *data)
{
if (!task)
task = current;
if (!stack) {
unsigned long dummy;
stack = &dummy;
if (task != current)
stack = (unsigned long *)task->thread.sp;
}
#ifdef CONFIG_FRAME_POINTER
if (!bp) {
if (task == current) {
/* Grab bp right from our regs */
asm("movl %%ebp, %0" : "=r" (bp) :);
} else {
/* bp is the last reg pushed by switch_to */
bp = *(unsigned long *) task->thread.sp;
}
}
#endif
while (1) {
struct thread_info *context;
context = (struct thread_info *)
((unsigned long)stack & (~(THREAD_SIZE - 1)));
bp = print_context_stack(context, stack, bp, ops, data);
/*
* Should be after the line below, but somewhere
* in early boot context comes out corrupted and we
* can't reference it:
*/
if (ops->stack(data, "IRQ") < 0)
break;
stack = (unsigned long *)context->previous_esp;
if (!stack)
break;
touch_nmi_watchdog();
}
}
EXPORT_SYMBOL(dump_trace);
static void
print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
{
printk(data);
print_symbol(msg, symbol);
printk("\n");
}
static void print_trace_warning(void *data, char *msg)
{
printk("%s%s\n", (char *)data, msg);
}
static int print_trace_stack(void *data, char *name)
{
return 0;
}
/*
* Print one address/symbol entries per line.
*/
static void print_trace_address(void *data, unsigned long addr, int reliable)
{
printk("%s [<%08lx>] ", (char *)data, addr);
if (!reliable)
printk("? ");
print_symbol("%s\n", addr);
touch_nmi_watchdog();
}
static const struct stacktrace_ops print_trace_ops = {
.warning = print_trace_warning,
.warning_symbol = print_trace_warning_symbol,
.stack = print_trace_stack,
.address = print_trace_address,
};
static void
show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
unsigned long *stack, unsigned long bp, char *log_lvl)
{
dump_trace(task, regs, stack, bp, &print_trace_ops, log_lvl);
printk("%s =======================\n", log_lvl);
}
void show_trace(struct task_struct *task, struct pt_regs *regs,
unsigned long *stack, unsigned long bp)
{
show_trace_log_lvl(task, regs, stack, bp, "");
}
static void
show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
unsigned long *sp, unsigned long bp, char *log_lvl)
{
unsigned long *stack;
int i;
if (sp == NULL) {
if (task)
sp = (unsigned long *)task->thread.sp;
else
sp = (unsigned long *)&sp;
}
stack = sp;
for (i = 0; i < kstack_depth_to_print; i++) {
if (kstack_end(stack))
break;
if (i && ((i % 8) == 0))
printk("\n%s ", log_lvl);
printk("%08lx ", *stack++);
}
printk("\n%sCall Trace:\n", log_lvl);
show_trace_log_lvl(task, regs, sp, bp, log_lvl);
}
void show_stack(struct task_struct *task, unsigned long *sp)
{
printk(" ");
show_stack_log_lvl(task, NULL, sp, 0, "");
}
/*
* The architecture-independent dump_stack generator
*/
void dump_stack(void)
{
unsigned long bp = 0;
unsigned long stack;
#ifdef CONFIG_FRAME_POINTER
if (!bp)
asm("movl %%ebp, %0" : "=r" (bp):);
#endif
printk("Pid: %d, comm: %.20s %s %s %.*s\n",
current->pid, current->comm, print_tainted(),
init_utsname()->release,
(int)strcspn(init_utsname()->version, " "),
init_utsname()->version);
show_trace(current, NULL, &stack, bp);
}
EXPORT_SYMBOL(dump_stack);
void show_registers(struct pt_regs *regs)
{
int i;
print_modules();
__show_registers(regs, 0);
printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
TASK_COMM_LEN, current->comm, task_pid_nr(current),
current_thread_info(), current, task_thread_info(current));
/*
* When in-kernel, we also print out the stack and code at the
* time of the fault..
*/
if (!user_mode_vm(regs)) {
unsigned int code_prologue = code_bytes * 43 / 64;
unsigned int code_len = code_bytes;
unsigned char c;
u8 *ip;
printk("\n" KERN_EMERG "Stack: ");
show_stack_log_lvl(NULL, regs, &regs->sp, 0, KERN_EMERG);
printk(KERN_EMERG "Code: ");
ip = (u8 *)regs->ip - code_prologue;
if (ip < (u8 *)PAGE_OFFSET ||
probe_kernel_address(ip, c)) {
/* try starting at EIP */
ip = (u8 *)regs->ip;
code_len = code_len - code_prologue + 1;
}
for (i = 0; i < code_len; i++, ip++) {
if (ip < (u8 *)PAGE_OFFSET ||
probe_kernel_address(ip, c)) {
printk(" Bad EIP value.");
break;
}
if (ip == (u8 *)regs->ip)
printk("<%02x> ", c);
else
printk("%02x ", c);
}
}
printk("\n");
}
int is_valid_bugaddr(unsigned long ip)
{
unsigned short ud2;
if (ip < PAGE_OFFSET)
return 0;
if (probe_kernel_address((unsigned short *)ip, ud2))
return 0;
return ud2 == 0x0b0f;
}
static int die_counter;
int __kprobes __die(const char *str, struct pt_regs *regs, long err)
{
unsigned short ss;
unsigned long sp;
printk(KERN_EMERG "%s: %04lx [#%d] ", str, err & 0xffff, ++die_counter);
#ifdef CONFIG_PREEMPT
printk("PREEMPT ");
#endif
#ifdef CONFIG_SMP
printk("SMP ");
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
printk("DEBUG_PAGEALLOC");
#endif
printk("\n");
if (notify_die(DIE_OOPS, str, regs, err,
current->thread.trap_no, SIGSEGV) != NOTIFY_STOP) {
show_registers(regs);
/* Executive summary in case the oops scrolled away */
sp = (unsigned long) (&regs->sp);
savesegment(ss, ss);
if (user_mode(regs)) {
sp = regs->sp;
ss = regs->ss & 0xffff;
}
printk(KERN_EMERG "EIP: [<%08lx>] ", regs->ip);
print_symbol("%s", regs->ip);
printk(" SS:ESP %04x:%08lx\n", ss, sp);
return 0;
}
return 1;
}
/*
* This is gone through when something in the kernel has done something bad
* and is about to be terminated:
*/
void die(const char *str, struct pt_regs *regs, long err)
{
static struct {
raw_spinlock_t lock;
u32 lock_owner;
int lock_owner_depth;
} die = {
.lock = __RAW_SPIN_LOCK_UNLOCKED,
.lock_owner = -1,
.lock_owner_depth = 0
};
unsigned long flags;
oops_enter();
if (die.lock_owner != raw_smp_processor_id()) {
console_verbose();
raw_local_irq_save(flags);
__raw_spin_lock(&die.lock);
die.lock_owner = smp_processor_id();
die.lock_owner_depth = 0;
bust_spinlocks(1);
} else {
raw_local_irq_save(flags);
}
if (++die.lock_owner_depth < 3) {
report_bug(regs->ip, regs);
if (__die(str, regs, err))
regs = NULL;
} else {
printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
}
bust_spinlocks(0);
die.lock_owner = -1;
add_taint(TAINT_DIE);
__raw_spin_unlock(&die.lock);
raw_local_irq_restore(flags);
if (!regs)
return;
if (kexec_should_crash(current))
crash_kexec(regs);
if (in_interrupt())
panic("Fatal exception in interrupt");
if (panic_on_oops)
panic("Fatal exception");
oops_exit();
do_exit(SIGSEGV);
}
static inline void
die_if_kernel(const char *str, struct pt_regs *regs, long err)
{
if (!user_mode_vm(regs))
die(str, regs, err);
}
static void __kprobes
do_trap(int trapnr, int signr, char *str, int vm86, struct pt_regs *regs,
long error_code, siginfo_t *info)
{
struct task_struct *tsk = current;
if (regs->flags & X86_VM_MASK) {
if (vm86)
goto vm86_trap;
goto trap_signal;
}
if (!user_mode(regs))
goto kernel_trap;
trap_signal:
/*
* We want error_code and trap_no set for userspace faults and
* kernelspace faults which result in die(), but not
* kernelspace faults which are fixed up. die() gives the
* process no chance to handle the signal and notice the
* kernel fault information, so that won't result in polluting
* the information about previously queued, but not yet
* delivered, faults. See also do_general_protection below.
*/
tsk->thread.error_code = error_code;
tsk->thread.trap_no = trapnr;
if (info)
force_sig_info(signr, info, tsk);
else
force_sig(signr, tsk);
return;
kernel_trap:
if (!fixup_exception(regs)) {
tsk->thread.error_code = error_code;
tsk->thread.trap_no = trapnr;
die(str, regs, error_code);
}
return;
vm86_trap:
if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
error_code, trapnr))
goto trap_signal;
return;
}
#define DO_ERROR(trapnr, signr, str, name) \
void do_##name(struct pt_regs *regs, long error_code) \
{ \
trace_hardirqs_fixup(); \
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
== NOTIFY_STOP) \
return; \
do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
}
#define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr, irq) \
void do_##name(struct pt_regs *regs, long error_code) \
{ \
siginfo_t info; \
if (irq) \
local_irq_enable(); \
info.si_signo = signr; \
info.si_errno = 0; \
info.si_code = sicode; \
info.si_addr = (void __user *)siaddr; \
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
== NOTIFY_STOP) \
return; \
do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
}
#define DO_VM86_ERROR(trapnr, signr, str, name) \
void do_##name(struct pt_regs *regs, long error_code) \
{ \
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
== NOTIFY_STOP) \
return; \
do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
}
#define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
void do_##name(struct pt_regs *regs, long error_code) \
{ \
siginfo_t info; \
info.si_signo = signr; \
info.si_errno = 0; \
info.si_code = sicode; \
info.si_addr = (void __user *)siaddr; \
trace_hardirqs_fixup(); \
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
== NOTIFY_STOP) \
return; \
do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
}
DO_VM86_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
#ifndef CONFIG_KPROBES
DO_VM86_ERROR(3, SIGTRAP, "int3", int3)
#endif
DO_VM86_ERROR(4, SIGSEGV, "overflow", overflow)
DO_VM86_ERROR(5, SIGSEGV, "bounds", bounds)
DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip, 0)
DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0, 0)
DO_ERROR_INFO(32, SIGILL, "iret exception", iret_error, ILL_BADSTK, 0, 1)
void __kprobes do_general_protection(struct pt_regs *regs, long error_code)
{
struct thread_struct *thread;
struct tss_struct *tss;
int cpu;
cpu = get_cpu();
tss = &per_cpu(init_tss, cpu);
thread = &current->thread;
/*
* Perform the lazy TSS's I/O bitmap copy. If the TSS has an
* invalid offset set (the LAZY one) and the faulting thread has
* a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
* and we set the offset field correctly. Then we let the CPU to
* restart the faulting instruction.
*/
if (tss->x86_tss.io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
thread->io_bitmap_ptr) {
memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
thread->io_bitmap_max);
/*
* If the previously set map was extending to higher ports
* than the current one, pad extra space with 0xff (no access).
*/
if (thread->io_bitmap_max < tss->io_bitmap_max) {
memset((char *) tss->io_bitmap +
thread->io_bitmap_max, 0xff,
tss->io_bitmap_max - thread->io_bitmap_max);
}
tss->io_bitmap_max = thread->io_bitmap_max;
tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
tss->io_bitmap_owner = thread;
put_cpu();
return;
}
put_cpu();
if (regs->flags & X86_VM_MASK)
goto gp_in_vm86;
if (!user_mode(regs))
goto gp_in_kernel;
current->thread.error_code = error_code;
current->thread.trap_no = 13;
if (show_unhandled_signals && unhandled_signal(current, SIGSEGV) &&
printk_ratelimit()) {
printk(KERN_INFO
"%s[%d] general protection ip:%lx sp:%lx error:%lx",
current->comm, task_pid_nr(current),
regs->ip, regs->sp, error_code);
print_vma_addr(" in ", regs->ip);
printk("\n");
}
force_sig(SIGSEGV, current);
return;
gp_in_vm86:
local_irq_enable();
handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
return;
gp_in_kernel:
if (!fixup_exception(regs)) {
current->thread.error_code = error_code;
current->thread.trap_no = 13;
if (notify_die(DIE_GPF, "general protection fault", regs,
error_code, 13, SIGSEGV) == NOTIFY_STOP)
return;
die("general protection fault", regs, error_code);
}
}
static notrace __kprobes void
mem_parity_error(unsigned char reason, struct pt_regs *regs)
{
printk(KERN_EMERG
"Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
reason, smp_processor_id());
printk(KERN_EMERG
"You have some hardware problem, likely on the PCI bus.\n");
#if defined(CONFIG_EDAC)
if (edac_handler_set()) {
edac_atomic_assert_error();
return;
}
#endif
if (panic_on_unrecovered_nmi)
panic("NMI: Not continuing");
printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
/* Clear and disable the memory parity error line. */
clear_mem_error(reason);
}
static notrace __kprobes void
io_check_error(unsigned char reason, struct pt_regs *regs)
{
unsigned long i;
printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
show_registers(regs);
/* Re-enable the IOCK line, wait for a few seconds */
reason = (reason & 0xf) | 8;
outb(reason, 0x61);
i = 2000;
while (--i)
udelay(1000);
reason &= ~8;
outb(reason, 0x61);
}
static notrace __kprobes void
unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
{
if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
return;
#ifdef CONFIG_MCA
/*
* Might actually be able to figure out what the guilty party
* is:
*/
if (MCA_bus) {
mca_handle_nmi();
return;
}
#endif
printk(KERN_EMERG
"Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
reason, smp_processor_id());
printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
if (panic_on_unrecovered_nmi)
panic("NMI: Not continuing");
printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
}
static DEFINE_SPINLOCK(nmi_print_lock);
void notrace __kprobes die_nmi(struct pt_regs *regs, const char *msg)
{
if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) == NOTIFY_STOP)
return;
spin_lock(&nmi_print_lock);
/*
* We are in trouble anyway, lets at least try
* to get a message out:
*/
bust_spinlocks(1);
printk(KERN_EMERG "%s", msg);
printk(" on CPU%d, ip %08lx, registers:\n",
smp_processor_id(), regs->ip);
show_registers(regs);
console_silent();
spin_unlock(&nmi_print_lock);
bust_spinlocks(0);
/*
* If we are in kernel we are probably nested up pretty bad
* and might aswell get out now while we still can:
*/
if (!user_mode_vm(regs)) {
current->thread.trap_no = 2;
crash_kexec(regs);
}
do_exit(SIGSEGV);
}
static notrace __kprobes void default_do_nmi(struct pt_regs *regs)
{
unsigned char reason = 0;
/* Only the BSP gets external NMIs from the system: */
if (!smp_processor_id())
reason = get_nmi_reason();
if (!(reason & 0xc0)) {
if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
== NOTIFY_STOP)
return;
#ifdef CONFIG_X86_LOCAL_APIC
/*
* Ok, so this is none of the documented NMI sources,
* so it must be the NMI watchdog.
*/
if (nmi_watchdog_tick(regs, reason))
return;
if (!do_nmi_callback(regs, smp_processor_id()))
unknown_nmi_error(reason, regs);
#else
unknown_nmi_error(reason, regs);
#endif
return;
}
if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
return;
if (reason & 0x80)
mem_parity_error(reason, regs);
if (reason & 0x40)
io_check_error(reason, regs);
/*
* Reassert NMI in case it became active meanwhile
* as it's edge-triggered:
*/
reassert_nmi();
}
static int ignore_nmis;
notrace __kprobes void do_nmi(struct pt_regs *regs, long error_code)
{
int cpu;
nmi_enter();
cpu = smp_processor_id();
++nmi_count(cpu);
if (!ignore_nmis)
default_do_nmi(regs);
nmi_exit();
}
void stop_nmi(void)
{
acpi_nmi_disable();
ignore_nmis++;
}
void restart_nmi(void)
{
ignore_nmis--;
acpi_nmi_enable();
}
#ifdef CONFIG_KPROBES
void __kprobes do_int3(struct pt_regs *regs, long error_code)
{
trace_hardirqs_fixup();
if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
== NOTIFY_STOP)
return;
/*
* This is an interrupt gate, because kprobes wants interrupts
* disabled. Normal trap handlers don't.
*/
restore_interrupts(regs);
do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
}
#endif
/*
* Our handling of the processor debug registers is non-trivial.
* We do not clear them on entry and exit from the kernel. Therefore
* it is possible to get a watchpoint trap here from inside the kernel.
* However, the code in ./ptrace.c has ensured that the user can
* only set watchpoints on userspace addresses. Therefore the in-kernel
* watchpoint trap can only occur in code which is reading/writing
* from user space. Such code must not hold kernel locks (since it
* can equally take a page fault), therefore it is safe to call
* force_sig_info even though that claims and releases locks.
*
* Code in ./signal.c ensures that the debug control register
* is restored before we deliver any signal, and therefore that
* user code runs with the correct debug control register even though
* we clear it here.
*
* Being careful here means that we don't have to be as careful in a
* lot of more complicated places (task switching can be a bit lazy
* about restoring all the debug state, and ptrace doesn't have to
* find every occurrence of the TF bit that could be saved away even
* by user code)
*/
void __kprobes do_debug(struct pt_regs *regs, long error_code)
{
struct task_struct *tsk = current;
unsigned int condition;
trace_hardirqs_fixup();
get_debugreg(condition, 6);
/*
* The processor cleared BTF, so don't mark that we need it set.
*/
clear_tsk_thread_flag(tsk, TIF_DEBUGCTLMSR);
tsk->thread.debugctlmsr = 0;
if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
SIGTRAP) == NOTIFY_STOP)
return;
/* It's safe to allow irq's after DR6 has been saved */
if (regs->flags & X86_EFLAGS_IF)
local_irq_enable();
/* Mask out spurious debug traps due to lazy DR7 setting */
if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
if (!tsk->thread.debugreg7)
goto clear_dr7;
}
if (regs->flags & X86_VM_MASK)
goto debug_vm86;
/* Save debug status register where ptrace can see it */
tsk->thread.debugreg6 = condition;
/*
* Single-stepping through TF: make sure we ignore any events in
* kernel space (but re-enable TF when returning to user mode).
*/
if (condition & DR_STEP) {
/*
* We already checked v86 mode above, so we can
* check for kernel mode by just checking the CPL
* of CS.
*/
if (!user_mode(regs))
goto clear_TF_reenable;
}
/* Ok, finally something we can handle */
send_sigtrap(tsk, regs, error_code);
/*
* Disable additional traps. They'll be re-enabled when
* the signal is delivered.
*/
clear_dr7:
set_debugreg(0, 7);
return;
debug_vm86:
handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
return;
clear_TF_reenable:
set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
regs->flags &= ~X86_EFLAGS_TF;
return;
}
/*
* Note that we play around with the 'TS' bit in an attempt to get
* the correct behaviour even in the presence of the asynchronous
* IRQ13 behaviour
*/
void math_error(void __user *ip)
{
struct task_struct *task;
unsigned short cwd;
unsigned short swd;
siginfo_t info;
/*
* Save the info for the exception handler and clear the error.
*/
task = current;
save_init_fpu(task);
task->thread.trap_no = 16;
task->thread.error_code = 0;
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = __SI_FAULT;
info.si_addr = ip;
/*
* (~cwd & swd) will mask out exceptions that are not set to unmasked
* status. 0x3f is the exception bits in these regs, 0x200 is the
* C1 reg you need in case of a stack fault, 0x040 is the stack
* fault bit. We should only be taking one exception at a time,
* so if this combination doesn't produce any single exception,
* then we have a bad program that isn't syncronizing its FPU usage
* and it will suffer the consequences since we won't be able to
* fully reproduce the context of the exception
*/
cwd = get_fpu_cwd(task);
swd = get_fpu_swd(task);
switch (swd & ~cwd & 0x3f) {
case 0x000: /* No unmasked exception */
return;
default: /* Multiple exceptions */
break;
case 0x001: /* Invalid Op */
/*
* swd & 0x240 == 0x040: Stack Underflow
* swd & 0x240 == 0x240: Stack Overflow
* User must clear the SF bit (0x40) if set
*/
info.si_code = FPE_FLTINV;
break;
case 0x002: /* Denormalize */
case 0x010: /* Underflow */
info.si_code = FPE_FLTUND;
break;
case 0x004: /* Zero Divide */
info.si_code = FPE_FLTDIV;
break;
case 0x008: /* Overflow */
info.si_code = FPE_FLTOVF;
break;
case 0x020: /* Precision */
info.si_code = FPE_FLTRES;
break;
}
force_sig_info(SIGFPE, &info, task);
}
void do_coprocessor_error(struct pt_regs *regs, long error_code)
{
ignore_fpu_irq = 1;
math_error((void __user *)regs->ip);
}
static void simd_math_error(void __user *ip)
{
struct task_struct *task;
unsigned short mxcsr;
siginfo_t info;
/*
* Save the info for the exception handler and clear the error.
*/
task = current;
save_init_fpu(task);
task->thread.trap_no = 19;
task->thread.error_code = 0;
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = __SI_FAULT;
info.si_addr = ip;
/*
* The SIMD FPU exceptions are handled a little differently, as there
* is only a single status/control register. Thus, to determine which
* unmasked exception was caught we must mask the exception mask bits
* at 0x1f80, and then use these to mask the exception bits at 0x3f.
*/
mxcsr = get_fpu_mxcsr(task);
switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
case 0x000:
default:
break;
case 0x001: /* Invalid Op */
info.si_code = FPE_FLTINV;
break;
case 0x002: /* Denormalize */
case 0x010: /* Underflow */
info.si_code = FPE_FLTUND;
break;
case 0x004: /* Zero Divide */
info.si_code = FPE_FLTDIV;
break;
case 0x008: /* Overflow */
info.si_code = FPE_FLTOVF;
break;
case 0x020: /* Precision */
info.si_code = FPE_FLTRES;
break;
}
force_sig_info(SIGFPE, &info, task);
}
void do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
{
if (cpu_has_xmm) {
/* Handle SIMD FPU exceptions on PIII+ processors. */
ignore_fpu_irq = 1;
simd_math_error((void __user *)regs->ip);
return;
}
/*
* Handle strange cache flush from user space exception
* in all other cases. This is undocumented behaviour.
*/
if (regs->flags & X86_VM_MASK) {
handle_vm86_fault((struct kernel_vm86_regs *)regs, error_code);
return;
}
current->thread.trap_no = 19;
current->thread.error_code = error_code;
die_if_kernel("cache flush denied", regs, error_code);
force_sig(SIGSEGV, current);
}
void do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
{
#if 0
/* No need to warn about this any longer. */
printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
#endif
}
unsigned long patch_espfix_desc(unsigned long uesp, unsigned long kesp)
{
struct desc_struct *gdt = __get_cpu_var(gdt_page).gdt;
unsigned long base = (kesp - uesp) & -THREAD_SIZE;
unsigned long new_kesp = kesp - base;
unsigned long lim_pages = (new_kesp | (THREAD_SIZE - 1)) >> PAGE_SHIFT;
__u64 desc = *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS];
/* Set up base for espfix segment */
desc &= 0x00f0ff0000000000ULL;
desc |= ((((__u64)base) << 16) & 0x000000ffffff0000ULL) |
((((__u64)base) << 32) & 0xff00000000000000ULL) |
((((__u64)lim_pages) << 32) & 0x000f000000000000ULL) |
(lim_pages & 0xffff);
*(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS] = desc;
return new_kesp;
}
/*
* 'math_state_restore()' saves the current math information in the
* old math state array, and gets the new ones from the current task
*
* Careful.. There are problems with IBM-designed IRQ13 behaviour.
* Don't touch unless you *really* know how it works.
*
* Must be called with kernel preemption disabled (in this case,
* local interrupts are disabled at the call-site in entry.S).
*/
asmlinkage void math_state_restore(void)
{
struct thread_info *thread = current_thread_info();
struct task_struct *tsk = thread->task;
if (!tsk_used_math(tsk)) {
local_irq_enable();
/*
* does a slab alloc which can sleep
*/
if (init_fpu(tsk)) {
/*
* ran out of memory!
*/
do_group_exit(SIGKILL);
return;
}
local_irq_disable();
}
clts(); /* Allow maths ops (or we recurse) */
restore_fpu(tsk);
thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
tsk->fpu_counter++;
}
EXPORT_SYMBOL_GPL(math_state_restore);
#ifndef CONFIG_MATH_EMULATION
asmlinkage void math_emulate(long arg)
{
printk(KERN_EMERG
"math-emulation not enabled and no coprocessor found.\n");
printk(KERN_EMERG "killing %s.\n", current->comm);
force_sig(SIGFPE, current);
schedule();
}
#endif /* CONFIG_MATH_EMULATION */
void __init trap_init(void)
{
int i;
#ifdef CONFIG_EISA
void __iomem *p = early_ioremap(0x0FFFD9, 4);
if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
EISA_bus = 1;
early_iounmap(p, 4);
#endif
#ifdef CONFIG_X86_LOCAL_APIC
init_apic_mappings();
#endif
set_trap_gate(0, &divide_error);
set_intr_gate(1, &debug);
set_intr_gate(2, &nmi);
set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
set_system_gate(4, &overflow);
set_trap_gate(5, &bounds);
set_trap_gate(6, &invalid_op);
set_trap_gate(7, &device_not_available);
set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS);
set_trap_gate(9, &coprocessor_segment_overrun);
set_trap_gate(10, &invalid_TSS);
set_trap_gate(11, &segment_not_present);
set_trap_gate(12, &stack_segment);
set_trap_gate(13, &general_protection);
set_intr_gate(14, &page_fault);
set_trap_gate(15, &spurious_interrupt_bug);
set_trap_gate(16, &coprocessor_error);
set_trap_gate(17, &alignment_check);
#ifdef CONFIG_X86_MCE
set_trap_gate(18, &machine_check);
#endif
set_trap_gate(19, &simd_coprocessor_error);
if (cpu_has_fxsr) {
printk(KERN_INFO "Enabling fast FPU save and restore... ");
set_in_cr4(X86_CR4_OSFXSR);
printk("done.\n");
}
if (cpu_has_xmm) {
printk(KERN_INFO
"Enabling unmasked SIMD FPU exception support... ");
set_in_cr4(X86_CR4_OSXMMEXCPT);
printk("done.\n");
}
set_system_gate(SYSCALL_VECTOR, &system_call);
/* Reserve all the builtin and the syscall vector: */
for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
set_bit(i, used_vectors);
set_bit(SYSCALL_VECTOR, used_vectors);
init_thread_xstate();
/*
* Should be a barrier for any external CPU state:
*/
cpu_init();
trap_init_hook();
}
static int __init kstack_setup(char *s)
{
kstack_depth_to_print = simple_strtoul(s, NULL, 0);
return 1;
}
__setup("kstack=", kstack_setup);
static int __init code_bytes_setup(char *s)
{
code_bytes = simple_strtoul(s, NULL, 0);
if (code_bytes > 8192)
code_bytes = 8192;
return 1;
}
__setup("code_bytes=", code_bytes_setup);