android_kernel_xiaomi_sm8350/fs/pnode.c
Greg Kroah-Hartman ae0dae9ffc This is the 5.4.37 stable release
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAl6tF/4ACgkQONu9yGCS
 aT7GdA//U9Nzp0upthsH5IMqIOwaJQBEwXF83fTResLKPSNjq6wAYO6kQwdTBMZ1
 PUo/ZEmOnDigdHM3PCGw+Z779UCb9/2laH+KPnPTnst9LcM0sLJMsgoCIuqsyl8J
 mPDLCbx4f7/ffkw/cSb+JrqCn/2mFib3uCwktTSqxVWm9S7EcE3CRxSTEE1XP/z6
 FzDPCjeNijNa3U96NnHFcKXEo/vcaEKHIB9bgdR7kUuRKGBhXSjv7LWUV/940F2w
 eyGgW5A+o94dsCORx2aOgBwOoujAto/DxDihv4jm/S5HTg68hqWQxqWerlsy0PFP
 k7j854aaHamIJjt5SE2MTm9YxnvWh4rpbXjuYDLYLM1jLaACZ+5mIj+w18yrpmOs
 7vjlHBBBTt4xNbODML4KLrj+fCdXk4uEBy7sWi/qYPUmrV3CLK1DqcqRQ9toS+yh
 o22JwyVYuD2os0YMYikqSVRlCe4UwJcW0ZZfOFg2cpB9anG7i+DrzW9Lc6CuPsHo
 ZC9rdVNEHLh9Ti9zcXrs8AFjxoIbP/m0n+ZH7bQPo1/rWE4+fzj14wtKslGtkT0B
 00/Vo9mtmmBC0MVBignbWsq5aE3bFLWTOveJppjgAVXYJ7mQhtnvw4eFSJahtBa0
 s+SB9M6kGNvWpL11cokqIaVfklDjaMo0Jeakd78KdobeNOgBvug=
 =TNyS
 -----END PGP SIGNATURE-----

Merge 5.4.37 into android-5.4-stable

Changes in 5.4.37
	remoteproc: Fix wrong rvring index computation
	ubifs: Fix ubifs_tnc_lookup() usage in do_kill_orphans()
	printk: queue wake_up_klogd irq_work only if per-CPU areas are ready
	ASoC: stm32: sai: fix sai probe
	usb: dwc3: gadget: Do link recovery for SS and SSP
	kbuild: fix DT binding schema rule again to avoid needless rebuilds
	usb: gadget: udc: bdc: Remove unnecessary NULL checks in bdc_req_complete
	usb: gadget: udc: atmel: Fix vbus disconnect handling
	afs: Make record checking use TASK_UNINTERRUPTIBLE when appropriate
	afs: Fix to actually set AFS_SERVER_FL_HAVE_EPOCH
	iio:ad7797: Use correct attribute_group
	propagate_one(): mnt_set_mountpoint() needs mount_lock
	counter: 104-quad-8: Add lock guards - generic interface
	s390/ftrace: fix potential crashes when switching tracers
	ASoC: q6dsp6: q6afe-dai: add missing channels to MI2S DAIs
	ASoC: tas571x: disable regulators on failed probe
	ASoC: meson: axg-card: fix codec-to-codec link setup
	ASoC: wm8960: Fix wrong clock after suspend & resume
	drivers: soc: xilinx: fix firmware driver Kconfig dependency
	nfsd: memory corruption in nfsd4_lock()
	bpf: Forbid XADD on spilled pointers for unprivileged users
	i2c: altera: use proper variable to hold errno
	rxrpc: Fix DATA Tx to disable nofrag for UDP on AF_INET6 socket
	net/cxgb4: Check the return from t4_query_params properly
	xfs: acquire superblock freeze protection on eofblocks scans
	svcrdma: Fix trace point use-after-free race
	svcrdma: Fix leak of svc_rdma_recv_ctxt objects
	net/mlx5e: Don't trigger IRQ multiple times on XSK wakeup to avoid WQ overruns
	net/mlx5e: Get the latest values from counters in switchdev mode
	PCI: Avoid ASMedia XHCI USB PME# from D0 defect
	PCI: Add ACS quirk for Zhaoxin multi-function devices
	PCI: Make ACS quirk implementations more uniform
	PCI: Unify ACS quirk desired vs provided checking
	PCI: Add Zhaoxin Vendor ID
	PCI: Add ACS quirk for Zhaoxin Root/Downstream Ports
	PCI: Move Apex Edge TPU class quirk to fix BAR assignment
	ARM: dts: bcm283x: Disable dsi0 node
	cpumap: Avoid warning when CONFIG_DEBUG_PER_CPU_MAPS is enabled
	s390/pci: do not set affinity for floating irqs
	net/mlx5: Fix failing fw tracer allocation on s390
	sched/core: Fix reset-on-fork from RT with uclamp
	perf/core: fix parent pid/tid in task exit events
	netfilter: nat: fix error handling upon registering inet hook
	PM: sleep: core: Switch back to async_schedule_dev()
	blk-iocost: Fix error on iocost_ioc_vrate_adj
	um: ensure `make ARCH=um mrproper` removes arch/$(SUBARCH)/include/generated/
	bpf, x86_32: Fix incorrect encoding in BPF_LDX zero-extension
	bpf, x86_32: Fix clobbering of dst for BPF_JSET
	bpf, x86_32: Fix logic error in BPF_LDX zero-extension
	mm: shmem: disable interrupt when acquiring info->lock in userfaultfd_copy path
	xfs: clear PF_MEMALLOC before exiting xfsaild thread
	bpf, x86: Fix encoding for lower 8-bit registers in BPF_STX BPF_B
	libbpf: Initialize *nl_pid so gcc 10 is happy
	net: fec: set GPR bit on suspend by DT configuration.
	x86: hyperv: report value of misc_features
	signal: check sig before setting info in kill_pid_usb_asyncio
	afs: Fix length of dump of bad YFSFetchStatus record
	xfs: fix partially uninitialized structure in xfs_reflink_remap_extent
	ALSA: hda: Release resources at error in delayed probe
	ALSA: hda: Keep the controller initialization even if no codecs found
	ALSA: hda: Explicitly permit using autosuspend if runtime PM is supported
	scsi: target: fix PR IN / READ FULL STATUS for FC
	scsi: target: tcmu: reset_ring should reset TCMU_DEV_BIT_BROKEN
	objtool: Fix CONFIG_UBSAN_TRAP unreachable warnings
	objtool: Support Clang non-section symbols in ORC dump
	xen/xenbus: ensure xenbus_map_ring_valloc() returns proper grant status
	ALSA: hda: call runtime_allow() for all hda controllers
	net: stmmac: socfpga: Allow all RGMII modes
	mac80211: fix channel switch trigger from unknown mesh peer
	arm64: Delete the space separator in __emit_inst
	ext4: use matching invalidatepage in ext4_writepage
	ext4: increase wait time needed before reuse of deleted inode numbers
	ext4: convert BUG_ON's to WARN_ON's in mballoc.c
	blk-mq: Put driver tag in blk_mq_dispatch_rq_list() when no budget
	hwmon: (jc42) Fix name to have no illegal characters
	taprio: do not use BIT() in TCA_TAPRIO_ATTR_FLAG_* definitions
	qed: Fix race condition between scheduling and destroying the slowpath workqueue
	Crypto: chelsio - Fixes a hang issue during driver registration
	net: use indirect call wrappers for skb_copy_datagram_iter()
	qed: Fix use after free in qed_chain_free
	ext4: check for non-zero journal inum in ext4_calculate_overhead
	ASoC: soc-core: disable route checks for legacy devices
	ASoC: stm32: spdifrx: fix regmap status check
	Linux 5.4.37

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: Ice2ab2e77117b798ed22e9442f72a44f39be28dc
2020-05-02 09:01:51 +02:00

619 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/fs/pnode.c
*
* (C) Copyright IBM Corporation 2005.
* Author : Ram Pai (linuxram@us.ibm.com)
*/
#include <linux/mnt_namespace.h>
#include <linux/mount.h>
#include <linux/fs.h>
#include <linux/nsproxy.h>
#include <uapi/linux/mount.h>
#include "internal.h"
#include "pnode.h"
/* return the next shared peer mount of @p */
static inline struct mount *next_peer(struct mount *p)
{
return list_entry(p->mnt_share.next, struct mount, mnt_share);
}
static inline struct mount *first_slave(struct mount *p)
{
return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
}
static inline struct mount *last_slave(struct mount *p)
{
return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave);
}
static inline struct mount *next_slave(struct mount *p)
{
return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
}
static struct mount *get_peer_under_root(struct mount *mnt,
struct mnt_namespace *ns,
const struct path *root)
{
struct mount *m = mnt;
do {
/* Check the namespace first for optimization */
if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
return m;
m = next_peer(m);
} while (m != mnt);
return NULL;
}
/*
* Get ID of closest dominating peer group having a representative
* under the given root.
*
* Caller must hold namespace_sem
*/
int get_dominating_id(struct mount *mnt, const struct path *root)
{
struct mount *m;
for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
if (d)
return d->mnt_group_id;
}
return 0;
}
static int do_make_slave(struct mount *mnt)
{
struct mount *master, *slave_mnt;
if (list_empty(&mnt->mnt_share)) {
if (IS_MNT_SHARED(mnt)) {
mnt_release_group_id(mnt);
CLEAR_MNT_SHARED(mnt);
}
master = mnt->mnt_master;
if (!master) {
struct list_head *p = &mnt->mnt_slave_list;
while (!list_empty(p)) {
slave_mnt = list_first_entry(p,
struct mount, mnt_slave);
list_del_init(&slave_mnt->mnt_slave);
slave_mnt->mnt_master = NULL;
}
return 0;
}
} else {
struct mount *m;
/*
* slave 'mnt' to a peer mount that has the
* same root dentry. If none is available then
* slave it to anything that is available.
*/
for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
master = m;
break;
}
}
list_del_init(&mnt->mnt_share);
mnt->mnt_group_id = 0;
CLEAR_MNT_SHARED(mnt);
}
list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
slave_mnt->mnt_master = master;
list_move(&mnt->mnt_slave, &master->mnt_slave_list);
list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
INIT_LIST_HEAD(&mnt->mnt_slave_list);
mnt->mnt_master = master;
return 0;
}
/*
* vfsmount lock must be held for write
*/
void change_mnt_propagation(struct mount *mnt, int type)
{
if (type == MS_SHARED) {
set_mnt_shared(mnt);
return;
}
do_make_slave(mnt);
if (type != MS_SLAVE) {
list_del_init(&mnt->mnt_slave);
mnt->mnt_master = NULL;
if (type == MS_UNBINDABLE)
mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
else
mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
}
}
/*
* get the next mount in the propagation tree.
* @m: the mount seen last
* @origin: the original mount from where the tree walk initiated
*
* Note that peer groups form contiguous segments of slave lists.
* We rely on that in get_source() to be able to find out if
* vfsmount found while iterating with propagation_next() is
* a peer of one we'd found earlier.
*/
static struct mount *propagation_next(struct mount *m,
struct mount *origin)
{
/* are there any slaves of this mount? */
if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
return first_slave(m);
while (1) {
struct mount *master = m->mnt_master;
if (master == origin->mnt_master) {
struct mount *next = next_peer(m);
return (next == origin) ? NULL : next;
} else if (m->mnt_slave.next != &master->mnt_slave_list)
return next_slave(m);
/* back at master */
m = master;
}
}
static struct mount *skip_propagation_subtree(struct mount *m,
struct mount *origin)
{
/*
* Advance m such that propagation_next will not return
* the slaves of m.
*/
if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
m = last_slave(m);
return m;
}
static struct mount *next_group(struct mount *m, struct mount *origin)
{
while (1) {
while (1) {
struct mount *next;
if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
return first_slave(m);
next = next_peer(m);
if (m->mnt_group_id == origin->mnt_group_id) {
if (next == origin)
return NULL;
} else if (m->mnt_slave.next != &next->mnt_slave)
break;
m = next;
}
/* m is the last peer */
while (1) {
struct mount *master = m->mnt_master;
if (m->mnt_slave.next != &master->mnt_slave_list)
return next_slave(m);
m = next_peer(master);
if (master->mnt_group_id == origin->mnt_group_id)
break;
if (master->mnt_slave.next == &m->mnt_slave)
break;
m = master;
}
if (m == origin)
return NULL;
}
}
/* all accesses are serialized by namespace_sem */
static struct mount *last_dest, *first_source, *last_source, *dest_master;
static struct mountpoint *mp;
static struct hlist_head *list;
static inline bool peers(struct mount *m1, struct mount *m2)
{
return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
}
static int propagate_one(struct mount *m)
{
struct mount *child;
int type;
/* skip ones added by this propagate_mnt() */
if (IS_MNT_NEW(m))
return 0;
/* skip if mountpoint isn't covered by it */
if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
return 0;
if (peers(m, last_dest)) {
type = CL_MAKE_SHARED;
} else {
struct mount *n, *p;
bool done;
for (n = m; ; n = p) {
p = n->mnt_master;
if (p == dest_master || IS_MNT_MARKED(p))
break;
}
do {
struct mount *parent = last_source->mnt_parent;
if (last_source == first_source)
break;
done = parent->mnt_master == p;
if (done && peers(n, parent))
break;
last_source = last_source->mnt_master;
} while (!done);
type = CL_SLAVE;
/* beginning of peer group among the slaves? */
if (IS_MNT_SHARED(m))
type |= CL_MAKE_SHARED;
}
child = copy_tree(last_source, last_source->mnt.mnt_root, type);
if (IS_ERR(child))
return PTR_ERR(child);
read_seqlock_excl(&mount_lock);
mnt_set_mountpoint(m, mp, child);
if (m->mnt_master != dest_master)
SET_MNT_MARK(m->mnt_master);
read_sequnlock_excl(&mount_lock);
last_dest = m;
last_source = child;
hlist_add_head(&child->mnt_hash, list);
return count_mounts(m->mnt_ns, child);
}
/*
* mount 'source_mnt' under the destination 'dest_mnt' at
* dentry 'dest_dentry'. And propagate that mount to
* all the peer and slave mounts of 'dest_mnt'.
* Link all the new mounts into a propagation tree headed at
* source_mnt. Also link all the new mounts using ->mnt_list
* headed at source_mnt's ->mnt_list
*
* @dest_mnt: destination mount.
* @dest_dentry: destination dentry.
* @source_mnt: source mount.
* @tree_list : list of heads of trees to be attached.
*/
int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
struct mount *source_mnt, struct hlist_head *tree_list)
{
struct mount *m, *n;
int ret = 0;
/*
* we don't want to bother passing tons of arguments to
* propagate_one(); everything is serialized by namespace_sem,
* so globals will do just fine.
*/
last_dest = dest_mnt;
first_source = source_mnt;
last_source = source_mnt;
mp = dest_mp;
list = tree_list;
dest_master = dest_mnt->mnt_master;
/* all peers of dest_mnt, except dest_mnt itself */
for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
ret = propagate_one(n);
if (ret)
goto out;
}
/* all slave groups */
for (m = next_group(dest_mnt, dest_mnt); m;
m = next_group(m, dest_mnt)) {
/* everything in that slave group */
n = m;
do {
ret = propagate_one(n);
if (ret)
goto out;
n = next_peer(n);
} while (n != m);
}
out:
read_seqlock_excl(&mount_lock);
hlist_for_each_entry(n, tree_list, mnt_hash) {
m = n->mnt_parent;
if (m->mnt_master != dest_mnt->mnt_master)
CLEAR_MNT_MARK(m->mnt_master);
}
read_sequnlock_excl(&mount_lock);
return ret;
}
static struct mount *find_topper(struct mount *mnt)
{
/* If there is exactly one mount covering mnt completely return it. */
struct mount *child;
if (!list_is_singular(&mnt->mnt_mounts))
return NULL;
child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
if (child->mnt_mountpoint != mnt->mnt.mnt_root)
return NULL;
return child;
}
/*
* return true if the refcount is greater than count
*/
static inline int do_refcount_check(struct mount *mnt, int count)
{
return mnt_get_count(mnt) > count;
}
/*
* check if the mount 'mnt' can be unmounted successfully.
* @mnt: the mount to be checked for unmount
* NOTE: unmounting 'mnt' would naturally propagate to all
* other mounts its parent propagates to.
* Check if any of these mounts that **do not have submounts**
* have more references than 'refcnt'. If so return busy.
*
* vfsmount lock must be held for write
*/
int propagate_mount_busy(struct mount *mnt, int refcnt)
{
struct mount *m, *child, *topper;
struct mount *parent = mnt->mnt_parent;
if (mnt == parent)
return do_refcount_check(mnt, refcnt);
/*
* quickly check if the current mount can be unmounted.
* If not, we don't have to go checking for all other
* mounts
*/
if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
return 1;
for (m = propagation_next(parent, parent); m;
m = propagation_next(m, parent)) {
int count = 1;
child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
if (!child)
continue;
/* Is there exactly one mount on the child that covers
* it completely whose reference should be ignored?
*/
topper = find_topper(child);
if (topper)
count += 1;
else if (!list_empty(&child->mnt_mounts))
continue;
if (do_refcount_check(child, count))
return 1;
}
return 0;
}
/*
* Clear MNT_LOCKED when it can be shown to be safe.
*
* mount_lock lock must be held for write
*/
void propagate_mount_unlock(struct mount *mnt)
{
struct mount *parent = mnt->mnt_parent;
struct mount *m, *child;
BUG_ON(parent == mnt);
for (m = propagation_next(parent, parent); m;
m = propagation_next(m, parent)) {
child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
if (child)
child->mnt.mnt_flags &= ~MNT_LOCKED;
}
}
static void umount_one(struct mount *mnt, struct list_head *to_umount)
{
CLEAR_MNT_MARK(mnt);
mnt->mnt.mnt_flags |= MNT_UMOUNT;
list_del_init(&mnt->mnt_child);
list_del_init(&mnt->mnt_umounting);
list_move_tail(&mnt->mnt_list, to_umount);
}
/*
* NOTE: unmounting 'mnt' naturally propagates to all other mounts its
* parent propagates to.
*/
static bool __propagate_umount(struct mount *mnt,
struct list_head *to_umount,
struct list_head *to_restore)
{
bool progress = false;
struct mount *child;
/*
* The state of the parent won't change if this mount is
* already unmounted or marked as without children.
*/
if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED))
goto out;
/* Verify topper is the only grandchild that has not been
* speculatively unmounted.
*/
list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
if (child->mnt_mountpoint == mnt->mnt.mnt_root)
continue;
if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child))
continue;
/* Found a mounted child */
goto children;
}
/* Mark mounts that can be unmounted if not locked */
SET_MNT_MARK(mnt);
progress = true;
/* If a mount is without children and not locked umount it. */
if (!IS_MNT_LOCKED(mnt)) {
umount_one(mnt, to_umount);
} else {
children:
list_move_tail(&mnt->mnt_umounting, to_restore);
}
out:
return progress;
}
static void umount_list(struct list_head *to_umount,
struct list_head *to_restore)
{
struct mount *mnt, *child, *tmp;
list_for_each_entry(mnt, to_umount, mnt_list) {
list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) {
/* topper? */
if (child->mnt_mountpoint == mnt->mnt.mnt_root)
list_move_tail(&child->mnt_umounting, to_restore);
else
umount_one(child, to_umount);
}
}
}
static void restore_mounts(struct list_head *to_restore)
{
/* Restore mounts to a clean working state */
while (!list_empty(to_restore)) {
struct mount *mnt, *parent;
struct mountpoint *mp;
mnt = list_first_entry(to_restore, struct mount, mnt_umounting);
CLEAR_MNT_MARK(mnt);
list_del_init(&mnt->mnt_umounting);
/* Should this mount be reparented? */
mp = mnt->mnt_mp;
parent = mnt->mnt_parent;
while (parent->mnt.mnt_flags & MNT_UMOUNT) {
mp = parent->mnt_mp;
parent = parent->mnt_parent;
}
if (parent != mnt->mnt_parent)
mnt_change_mountpoint(parent, mp, mnt);
}
}
static void cleanup_umount_visitations(struct list_head *visited)
{
while (!list_empty(visited)) {
struct mount *mnt =
list_first_entry(visited, struct mount, mnt_umounting);
list_del_init(&mnt->mnt_umounting);
}
}
/*
* collect all mounts that receive propagation from the mount in @list,
* and return these additional mounts in the same list.
* @list: the list of mounts to be unmounted.
*
* vfsmount lock must be held for write
*/
int propagate_umount(struct list_head *list)
{
struct mount *mnt;
LIST_HEAD(to_restore);
LIST_HEAD(to_umount);
LIST_HEAD(visited);
/* Find candidates for unmounting */
list_for_each_entry_reverse(mnt, list, mnt_list) {
struct mount *parent = mnt->mnt_parent;
struct mount *m;
/*
* If this mount has already been visited it is known that it's
* entire peer group and all of their slaves in the propagation
* tree for the mountpoint has already been visited and there is
* no need to visit them again.
*/
if (!list_empty(&mnt->mnt_umounting))
continue;
list_add_tail(&mnt->mnt_umounting, &visited);
for (m = propagation_next(parent, parent); m;
m = propagation_next(m, parent)) {
struct mount *child = __lookup_mnt(&m->mnt,
mnt->mnt_mountpoint);
if (!child)
continue;
if (!list_empty(&child->mnt_umounting)) {
/*
* If the child has already been visited it is
* know that it's entire peer group and all of
* their slaves in the propgation tree for the
* mountpoint has already been visited and there
* is no need to visit this subtree again.
*/
m = skip_propagation_subtree(m, parent);
continue;
} else if (child->mnt.mnt_flags & MNT_UMOUNT) {
/*
* We have come accross an partially unmounted
* mount in list that has not been visited yet.
* Remember it has been visited and continue
* about our merry way.
*/
list_add_tail(&child->mnt_umounting, &visited);
continue;
}
/* Check the child and parents while progress is made */
while (__propagate_umount(child,
&to_umount, &to_restore)) {
/* Is the parent a umount candidate? */
child = child->mnt_parent;
if (list_empty(&child->mnt_umounting))
break;
}
}
}
umount_list(&to_umount, &to_restore);
restore_mounts(&to_restore);
cleanup_umount_visitations(&visited);
list_splice_tail(&to_umount, list);
return 0;
}
void propagate_remount(struct mount *mnt)
{
struct mount *parent = mnt->mnt_parent;
struct mount *p = mnt, *m;
struct super_block *sb = mnt->mnt.mnt_sb;
if (!sb->s_op->copy_mnt_data)
return;
for (p = propagation_next(parent, parent); p;
p = propagation_next(p, parent)) {
m = __lookup_mnt(&p->mnt, mnt->mnt_mountpoint);
if (m)
sb->s_op->copy_mnt_data(m->mnt.data, mnt->mnt.data);
}
}