android_kernel_xiaomi_sm8350/arch/x86/oprofile/nmi_int.c
Andi Kleen b991702884 oprofile: Implement Intel architectural perfmon support
Newer Intel CPUs (Core1+) have support for architectural
events described in CPUID 0xA. See the IA32 SDM Vol3b.18 for details.

The advantage of this is that it can be done without knowing about
the specific CPU, because the CPU describes by itself what
performance events are supported. This is only a fallback
because only a limited set of 6 events are supported.
This allows to do profiling on Nehalem and on Atom systems
(later not tested)

This patch implements support for that in oprofile's Intel
Family 6 profiling module. It also has the advantage of supporting
an arbitary number of events now as reported by the CPU.
Also allow arbitary counter widths >32bit while we're at it.

Requires a patched oprofile userland to support the new
architecture.

v2: update for latest oprofile tree
    remove force_arch_perfmon

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Robert Richter <robert.richter@amd.com>
2008-10-13 19:25:09 +02:00

540 lines
11 KiB
C

/**
* @file nmi_int.c
*
* @remark Copyright 2002-2008 OProfile authors
* @remark Read the file COPYING
*
* @author John Levon <levon@movementarian.org>
* @author Robert Richter <robert.richter@amd.com>
*/
#include <linux/init.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/oprofile.h>
#include <linux/sysdev.h>
#include <linux/slab.h>
#include <linux/moduleparam.h>
#include <linux/kdebug.h>
#include <linux/cpu.h>
#include <asm/nmi.h>
#include <asm/msr.h>
#include <asm/apic.h>
#include "op_counter.h"
#include "op_x86_model.h"
static struct op_x86_model_spec const *model;
static DEFINE_PER_CPU(struct op_msrs, cpu_msrs);
static DEFINE_PER_CPU(unsigned long, saved_lvtpc);
static int nmi_start(void);
static void nmi_stop(void);
static void nmi_cpu_start(void *dummy);
static void nmi_cpu_stop(void *dummy);
/* 0 == registered but off, 1 == registered and on */
static int nmi_enabled = 0;
#ifdef CONFIG_SMP
static int oprofile_cpu_notifier(struct notifier_block *b, unsigned long action,
void *data)
{
int cpu = (unsigned long)data;
switch (action) {
case CPU_DOWN_FAILED:
case CPU_ONLINE:
smp_call_function_single(cpu, nmi_cpu_start, NULL, 0);
break;
case CPU_DOWN_PREPARE:
smp_call_function_single(cpu, nmi_cpu_stop, NULL, 1);
break;
}
return NOTIFY_DONE;
}
static struct notifier_block oprofile_cpu_nb = {
.notifier_call = oprofile_cpu_notifier
};
#endif
#ifdef CONFIG_PM
static int nmi_suspend(struct sys_device *dev, pm_message_t state)
{
/* Only one CPU left, just stop that one */
if (nmi_enabled == 1)
nmi_cpu_stop(NULL);
return 0;
}
static int nmi_resume(struct sys_device *dev)
{
if (nmi_enabled == 1)
nmi_cpu_start(NULL);
return 0;
}
static struct sysdev_class oprofile_sysclass = {
.name = "oprofile",
.resume = nmi_resume,
.suspend = nmi_suspend,
};
static struct sys_device device_oprofile = {
.id = 0,
.cls = &oprofile_sysclass,
};
static int __init init_sysfs(void)
{
int error;
error = sysdev_class_register(&oprofile_sysclass);
if (!error)
error = sysdev_register(&device_oprofile);
return error;
}
static void exit_sysfs(void)
{
sysdev_unregister(&device_oprofile);
sysdev_class_unregister(&oprofile_sysclass);
}
#else
#define init_sysfs() do { } while (0)
#define exit_sysfs() do { } while (0)
#endif /* CONFIG_PM */
static int profile_exceptions_notify(struct notifier_block *self,
unsigned long val, void *data)
{
struct die_args *args = (struct die_args *)data;
int ret = NOTIFY_DONE;
int cpu = smp_processor_id();
switch (val) {
case DIE_NMI:
if (model->check_ctrs(args->regs, &per_cpu(cpu_msrs, cpu)))
ret = NOTIFY_STOP;
break;
default:
break;
}
return ret;
}
static void nmi_cpu_save_registers(struct op_msrs *msrs)
{
unsigned int const nr_ctrs = model->num_counters;
unsigned int const nr_ctrls = model->num_controls;
struct op_msr *counters = msrs->counters;
struct op_msr *controls = msrs->controls;
unsigned int i;
for (i = 0; i < nr_ctrs; ++i) {
if (counters[i].addr) {
rdmsr(counters[i].addr,
counters[i].saved.low,
counters[i].saved.high);
}
}
for (i = 0; i < nr_ctrls; ++i) {
if (controls[i].addr) {
rdmsr(controls[i].addr,
controls[i].saved.low,
controls[i].saved.high);
}
}
}
static void nmi_save_registers(void *dummy)
{
int cpu = smp_processor_id();
struct op_msrs *msrs = &per_cpu(cpu_msrs, cpu);
nmi_cpu_save_registers(msrs);
}
static void free_msrs(void)
{
int i;
for_each_possible_cpu(i) {
kfree(per_cpu(cpu_msrs, i).counters);
per_cpu(cpu_msrs, i).counters = NULL;
kfree(per_cpu(cpu_msrs, i).controls);
per_cpu(cpu_msrs, i).controls = NULL;
}
}
static int allocate_msrs(void)
{
int success = 1;
size_t controls_size = sizeof(struct op_msr) * model->num_controls;
size_t counters_size = sizeof(struct op_msr) * model->num_counters;
int i;
for_each_possible_cpu(i) {
per_cpu(cpu_msrs, i).counters = kmalloc(counters_size,
GFP_KERNEL);
if (!per_cpu(cpu_msrs, i).counters) {
success = 0;
break;
}
per_cpu(cpu_msrs, i).controls = kmalloc(controls_size,
GFP_KERNEL);
if (!per_cpu(cpu_msrs, i).controls) {
success = 0;
break;
}
}
if (!success)
free_msrs();
return success;
}
static void nmi_cpu_setup(void *dummy)
{
int cpu = smp_processor_id();
struct op_msrs *msrs = &per_cpu(cpu_msrs, cpu);
spin_lock(&oprofilefs_lock);
model->setup_ctrs(msrs);
spin_unlock(&oprofilefs_lock);
per_cpu(saved_lvtpc, cpu) = apic_read(APIC_LVTPC);
apic_write(APIC_LVTPC, APIC_DM_NMI);
}
static struct notifier_block profile_exceptions_nb = {
.notifier_call = profile_exceptions_notify,
.next = NULL,
.priority = 0
};
static int nmi_setup(void)
{
int err = 0;
int cpu;
if (!allocate_msrs())
return -ENOMEM;
err = register_die_notifier(&profile_exceptions_nb);
if (err) {
free_msrs();
return err;
}
/* We need to serialize save and setup for HT because the subset
* of msrs are distinct for save and setup operations
*/
/* Assume saved/restored counters are the same on all CPUs */
model->fill_in_addresses(&per_cpu(cpu_msrs, 0));
for_each_possible_cpu(cpu) {
if (cpu != 0) {
memcpy(per_cpu(cpu_msrs, cpu).counters,
per_cpu(cpu_msrs, 0).counters,
sizeof(struct op_msr) * model->num_counters);
memcpy(per_cpu(cpu_msrs, cpu).controls,
per_cpu(cpu_msrs, 0).controls,
sizeof(struct op_msr) * model->num_controls);
}
}
on_each_cpu(nmi_save_registers, NULL, 1);
on_each_cpu(nmi_cpu_setup, NULL, 1);
nmi_enabled = 1;
return 0;
}
static void nmi_restore_registers(struct op_msrs *msrs)
{
unsigned int const nr_ctrs = model->num_counters;
unsigned int const nr_ctrls = model->num_controls;
struct op_msr *counters = msrs->counters;
struct op_msr *controls = msrs->controls;
unsigned int i;
for (i = 0; i < nr_ctrls; ++i) {
if (controls[i].addr) {
wrmsr(controls[i].addr,
controls[i].saved.low,
controls[i].saved.high);
}
}
for (i = 0; i < nr_ctrs; ++i) {
if (counters[i].addr) {
wrmsr(counters[i].addr,
counters[i].saved.low,
counters[i].saved.high);
}
}
}
static void nmi_cpu_shutdown(void *dummy)
{
unsigned int v;
int cpu = smp_processor_id();
struct op_msrs *msrs = &__get_cpu_var(cpu_msrs);
/* restoring APIC_LVTPC can trigger an apic error because the delivery
* mode and vector nr combination can be illegal. That's by design: on
* power on apic lvt contain a zero vector nr which are legal only for
* NMI delivery mode. So inhibit apic err before restoring lvtpc
*/
v = apic_read(APIC_LVTERR);
apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
apic_write(APIC_LVTPC, per_cpu(saved_lvtpc, cpu));
apic_write(APIC_LVTERR, v);
nmi_restore_registers(msrs);
}
static void nmi_shutdown(void)
{
struct op_msrs *msrs;
nmi_enabled = 0;
on_each_cpu(nmi_cpu_shutdown, NULL, 1);
unregister_die_notifier(&profile_exceptions_nb);
msrs = &get_cpu_var(cpu_msrs);
model->shutdown(msrs);
free_msrs();
put_cpu_var(cpu_msrs);
}
static void nmi_cpu_start(void *dummy)
{
struct op_msrs const *msrs = &__get_cpu_var(cpu_msrs);
model->start(msrs);
}
static int nmi_start(void)
{
on_each_cpu(nmi_cpu_start, NULL, 1);
return 0;
}
static void nmi_cpu_stop(void *dummy)
{
struct op_msrs const *msrs = &__get_cpu_var(cpu_msrs);
model->stop(msrs);
}
static void nmi_stop(void)
{
on_each_cpu(nmi_cpu_stop, NULL, 1);
}
struct op_counter_config counter_config[OP_MAX_COUNTER];
static int nmi_create_files(struct super_block *sb, struct dentry *root)
{
unsigned int i;
for (i = 0; i < model->num_counters; ++i) {
struct dentry *dir;
char buf[4];
/* quick little hack to _not_ expose a counter if it is not
* available for use. This should protect userspace app.
* NOTE: assumes 1:1 mapping here (that counters are organized
* sequentially in their struct assignment).
*/
if (unlikely(!avail_to_resrv_perfctr_nmi_bit(i)))
continue;
snprintf(buf, sizeof(buf), "%d", i);
dir = oprofilefs_mkdir(sb, root, buf);
oprofilefs_create_ulong(sb, dir, "enabled", &counter_config[i].enabled);
oprofilefs_create_ulong(sb, dir, "event", &counter_config[i].event);
oprofilefs_create_ulong(sb, dir, "count", &counter_config[i].count);
oprofilefs_create_ulong(sb, dir, "unit_mask", &counter_config[i].unit_mask);
oprofilefs_create_ulong(sb, dir, "kernel", &counter_config[i].kernel);
oprofilefs_create_ulong(sb, dir, "user", &counter_config[i].user);
}
return 0;
}
static int p4force;
module_param(p4force, int, 0);
static int __init p4_init(char **cpu_type)
{
__u8 cpu_model = boot_cpu_data.x86_model;
if (!p4force && (cpu_model > 6 || cpu_model == 5))
return 0;
#ifndef CONFIG_SMP
*cpu_type = "i386/p4";
model = &op_p4_spec;
return 1;
#else
switch (smp_num_siblings) {
case 1:
*cpu_type = "i386/p4";
model = &op_p4_spec;
return 1;
case 2:
*cpu_type = "i386/p4-ht";
model = &op_p4_ht2_spec;
return 1;
}
#endif
printk(KERN_INFO "oprofile: P4 HyperThreading detected with > 2 threads\n");
printk(KERN_INFO "oprofile: Reverting to timer mode.\n");
return 0;
}
static int __init ppro_init(char **cpu_type)
{
__u8 cpu_model = boot_cpu_data.x86_model;
switch (cpu_model) {
case 0 ... 2:
*cpu_type = "i386/ppro";
break;
case 3 ... 5:
*cpu_type = "i386/pii";
break;
case 6 ... 8:
*cpu_type = "i386/piii";
break;
case 9:
*cpu_type = "i386/p6_mobile";
break;
case 10 ... 13:
*cpu_type = "i386/p6";
break;
case 14:
*cpu_type = "i386/core";
break;
case 15: case 23:
*cpu_type = "i386/core_2";
break;
default:
/* Unknown */
return 0;
}
model = &op_ppro_spec;
return 1;
}
static int __init arch_perfmon_init(char **cpu_type)
{
if (!cpu_has_arch_perfmon)
return 0;
*cpu_type = "i386/arch_perfmon";
model = &op_arch_perfmon_spec;
arch_perfmon_setup_counters();
return 1;
}
/* in order to get sysfs right */
static int using_nmi;
int __init op_nmi_init(struct oprofile_operations *ops)
{
__u8 vendor = boot_cpu_data.x86_vendor;
__u8 family = boot_cpu_data.x86;
char *cpu_type = NULL;
int ret = 0;
if (!cpu_has_apic)
return -ENODEV;
switch (vendor) {
case X86_VENDOR_AMD:
/* Needs to be at least an Athlon (or hammer in 32bit mode) */
switch (family) {
default:
return -ENODEV;
case 6:
model = &op_amd_spec;
cpu_type = "i386/athlon";
break;
case 0xf:
model = &op_amd_spec;
/* Actually it could be i386/hammer too, but give
user space an consistent name. */
cpu_type = "x86-64/hammer";
break;
case 0x10:
model = &op_amd_spec;
cpu_type = "x86-64/family10";
break;
case 0x11:
model = &op_amd_spec;
cpu_type = "x86-64/family11h";
break;
}
break;
case X86_VENDOR_INTEL:
switch (family) {
/* Pentium IV */
case 0xf:
p4_init(&cpu_type);
break;
/* A P6-class processor */
case 6:
ppro_init(&cpu_type);
break;
default:
break;
}
if (!cpu_type && !arch_perfmon_init(&cpu_type))
return -ENODEV;
break;
default:
return -ENODEV;
}
#ifdef CONFIG_SMP
register_cpu_notifier(&oprofile_cpu_nb);
#endif
/* default values, can be overwritten by model */
ops->create_files = nmi_create_files;
ops->setup = nmi_setup;
ops->shutdown = nmi_shutdown;
ops->start = nmi_start;
ops->stop = nmi_stop;
ops->cpu_type = cpu_type;
if (model->init)
ret = model->init(ops);
if (ret)
return ret;
init_sysfs();
using_nmi = 1;
printk(KERN_INFO "oprofile: using NMI interrupt.\n");
return 0;
}
void op_nmi_exit(void)
{
if (using_nmi) {
exit_sysfs();
#ifdef CONFIG_SMP
unregister_cpu_notifier(&oprofile_cpu_nb);
#endif
}
if (model->exit)
model->exit();
}