2f569afd9c
Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2286 lines
67 KiB
C
2286 lines
67 KiB
C
/*
|
|
* srmmu.c: SRMMU specific routines for memory management.
|
|
*
|
|
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
|
|
* Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
|
|
* Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
|
|
* Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
|
|
* Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/kdebug.h>
|
|
|
|
#include <asm/bitext.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/io.h>
|
|
#include <asm/vaddrs.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/mbus.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/oplib.h>
|
|
#include <asm/sbus.h>
|
|
#include <asm/asi.h>
|
|
#include <asm/msi.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/io-unit.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
/* Now the cpu specific definitions. */
|
|
#include <asm/viking.h>
|
|
#include <asm/mxcc.h>
|
|
#include <asm/ross.h>
|
|
#include <asm/tsunami.h>
|
|
#include <asm/swift.h>
|
|
#include <asm/turbosparc.h>
|
|
|
|
#include <asm/btfixup.h>
|
|
|
|
enum mbus_module srmmu_modtype;
|
|
unsigned int hwbug_bitmask;
|
|
int vac_cache_size;
|
|
int vac_line_size;
|
|
|
|
extern struct resource sparc_iomap;
|
|
|
|
extern unsigned long last_valid_pfn;
|
|
|
|
extern unsigned long page_kernel;
|
|
|
|
pgd_t *srmmu_swapper_pg_dir;
|
|
|
|
#ifdef CONFIG_SMP
|
|
#define FLUSH_BEGIN(mm)
|
|
#define FLUSH_END
|
|
#else
|
|
#define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
|
|
#define FLUSH_END }
|
|
#endif
|
|
|
|
BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
|
|
#define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
|
|
|
|
int flush_page_for_dma_global = 1;
|
|
|
|
#ifdef CONFIG_SMP
|
|
BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
|
|
#define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
|
|
#endif
|
|
|
|
char *srmmu_name;
|
|
|
|
ctxd_t *srmmu_ctx_table_phys;
|
|
ctxd_t *srmmu_context_table;
|
|
|
|
int viking_mxcc_present;
|
|
static DEFINE_SPINLOCK(srmmu_context_spinlock);
|
|
|
|
int is_hypersparc;
|
|
|
|
/*
|
|
* In general all page table modifications should use the V8 atomic
|
|
* swap instruction. This insures the mmu and the cpu are in sync
|
|
* with respect to ref/mod bits in the page tables.
|
|
*/
|
|
static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
|
|
{
|
|
__asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
|
|
return value;
|
|
}
|
|
|
|
static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
|
|
{
|
|
srmmu_swap((unsigned long *)ptep, pte_val(pteval));
|
|
}
|
|
|
|
/* The very generic SRMMU page table operations. */
|
|
static inline int srmmu_device_memory(unsigned long x)
|
|
{
|
|
return ((x & 0xF0000000) != 0);
|
|
}
|
|
|
|
int srmmu_cache_pagetables;
|
|
|
|
/* these will be initialized in srmmu_nocache_calcsize() */
|
|
unsigned long srmmu_nocache_size;
|
|
unsigned long srmmu_nocache_end;
|
|
|
|
/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
|
|
#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
|
|
|
|
/* The context table is a nocache user with the biggest alignment needs. */
|
|
#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
|
|
|
|
void *srmmu_nocache_pool;
|
|
void *srmmu_nocache_bitmap;
|
|
static struct bit_map srmmu_nocache_map;
|
|
|
|
static unsigned long srmmu_pte_pfn(pte_t pte)
|
|
{
|
|
if (srmmu_device_memory(pte_val(pte))) {
|
|
/* Just return something that will cause
|
|
* pfn_valid() to return false. This makes
|
|
* copy_one_pte() to just directly copy to
|
|
* PTE over.
|
|
*/
|
|
return ~0UL;
|
|
}
|
|
return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
|
|
}
|
|
|
|
static struct page *srmmu_pmd_page(pmd_t pmd)
|
|
{
|
|
|
|
if (srmmu_device_memory(pmd_val(pmd)))
|
|
BUG();
|
|
return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
|
|
}
|
|
|
|
static inline unsigned long srmmu_pgd_page(pgd_t pgd)
|
|
{ return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
|
|
|
|
|
|
static inline int srmmu_pte_none(pte_t pte)
|
|
{ return !(pte_val(pte) & 0xFFFFFFF); }
|
|
|
|
static inline int srmmu_pte_present(pte_t pte)
|
|
{ return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
|
|
|
|
static inline void srmmu_pte_clear(pte_t *ptep)
|
|
{ srmmu_set_pte(ptep, __pte(0)); }
|
|
|
|
static inline int srmmu_pmd_none(pmd_t pmd)
|
|
{ return !(pmd_val(pmd) & 0xFFFFFFF); }
|
|
|
|
static inline int srmmu_pmd_bad(pmd_t pmd)
|
|
{ return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
|
|
|
|
static inline int srmmu_pmd_present(pmd_t pmd)
|
|
{ return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
|
|
|
|
static inline void srmmu_pmd_clear(pmd_t *pmdp) {
|
|
int i;
|
|
for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
|
|
srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
|
|
}
|
|
|
|
static inline int srmmu_pgd_none(pgd_t pgd)
|
|
{ return !(pgd_val(pgd) & 0xFFFFFFF); }
|
|
|
|
static inline int srmmu_pgd_bad(pgd_t pgd)
|
|
{ return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
|
|
|
|
static inline int srmmu_pgd_present(pgd_t pgd)
|
|
{ return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
|
|
|
|
static inline void srmmu_pgd_clear(pgd_t * pgdp)
|
|
{ srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
|
|
|
|
static inline pte_t srmmu_pte_wrprotect(pte_t pte)
|
|
{ return __pte(pte_val(pte) & ~SRMMU_WRITE);}
|
|
|
|
static inline pte_t srmmu_pte_mkclean(pte_t pte)
|
|
{ return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
|
|
|
|
static inline pte_t srmmu_pte_mkold(pte_t pte)
|
|
{ return __pte(pte_val(pte) & ~SRMMU_REF);}
|
|
|
|
static inline pte_t srmmu_pte_mkwrite(pte_t pte)
|
|
{ return __pte(pte_val(pte) | SRMMU_WRITE);}
|
|
|
|
static inline pte_t srmmu_pte_mkdirty(pte_t pte)
|
|
{ return __pte(pte_val(pte) | SRMMU_DIRTY);}
|
|
|
|
static inline pte_t srmmu_pte_mkyoung(pte_t pte)
|
|
{ return __pte(pte_val(pte) | SRMMU_REF);}
|
|
|
|
/*
|
|
* Conversion functions: convert a page and protection to a page entry,
|
|
* and a page entry and page directory to the page they refer to.
|
|
*/
|
|
static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
|
|
{ return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
|
|
|
|
static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
|
|
{ return __pte(((page) >> 4) | pgprot_val(pgprot)); }
|
|
|
|
static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
|
|
{ return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
|
|
|
|
/* XXX should we hyper_flush_whole_icache here - Anton */
|
|
static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
|
|
{ srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
|
|
|
|
static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
|
|
{ srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
|
|
|
|
static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
|
|
{
|
|
unsigned long ptp; /* Physical address, shifted right by 4 */
|
|
int i;
|
|
|
|
ptp = __nocache_pa((unsigned long) ptep) >> 4;
|
|
for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
|
|
srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
|
|
ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
|
|
}
|
|
}
|
|
|
|
static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
|
|
{
|
|
unsigned long ptp; /* Physical address, shifted right by 4 */
|
|
int i;
|
|
|
|
ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
|
|
for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
|
|
srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
|
|
ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
|
|
}
|
|
}
|
|
|
|
static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
|
|
{ return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
|
|
|
|
/* to find an entry in a top-level page table... */
|
|
static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
|
|
{ return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
|
|
|
|
/* Find an entry in the second-level page table.. */
|
|
static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
|
|
{
|
|
return (pmd_t *) srmmu_pgd_page(*dir) +
|
|
((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
|
|
}
|
|
|
|
/* Find an entry in the third-level page table.. */
|
|
static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
|
|
{
|
|
void *pte;
|
|
|
|
pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
|
|
return (pte_t *) pte +
|
|
((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
|
|
}
|
|
|
|
static unsigned long srmmu_swp_type(swp_entry_t entry)
|
|
{
|
|
return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
|
|
}
|
|
|
|
static unsigned long srmmu_swp_offset(swp_entry_t entry)
|
|
{
|
|
return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
|
|
}
|
|
|
|
static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
|
|
{
|
|
return (swp_entry_t) {
|
|
(type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
|
|
| (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
|
|
}
|
|
|
|
/*
|
|
* size: bytes to allocate in the nocache area.
|
|
* align: bytes, number to align at.
|
|
* Returns the virtual address of the allocated area.
|
|
*/
|
|
static unsigned long __srmmu_get_nocache(int size, int align)
|
|
{
|
|
int offset;
|
|
|
|
if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
|
|
printk("Size 0x%x too small for nocache request\n", size);
|
|
size = SRMMU_NOCACHE_BITMAP_SHIFT;
|
|
}
|
|
if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
|
|
printk("Size 0x%x unaligned int nocache request\n", size);
|
|
size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
|
|
}
|
|
BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
|
|
|
|
offset = bit_map_string_get(&srmmu_nocache_map,
|
|
size >> SRMMU_NOCACHE_BITMAP_SHIFT,
|
|
align >> SRMMU_NOCACHE_BITMAP_SHIFT);
|
|
if (offset == -1) {
|
|
printk("srmmu: out of nocache %d: %d/%d\n",
|
|
size, (int) srmmu_nocache_size,
|
|
srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
|
|
return 0;
|
|
}
|
|
|
|
return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
|
|
}
|
|
|
|
unsigned inline long srmmu_get_nocache(int size, int align)
|
|
{
|
|
unsigned long tmp;
|
|
|
|
tmp = __srmmu_get_nocache(size, align);
|
|
|
|
if (tmp)
|
|
memset((void *)tmp, 0, size);
|
|
|
|
return tmp;
|
|
}
|
|
|
|
void srmmu_free_nocache(unsigned long vaddr, int size)
|
|
{
|
|
int offset;
|
|
|
|
if (vaddr < SRMMU_NOCACHE_VADDR) {
|
|
printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
|
|
vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
|
|
BUG();
|
|
}
|
|
if (vaddr+size > srmmu_nocache_end) {
|
|
printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
|
|
vaddr, srmmu_nocache_end);
|
|
BUG();
|
|
}
|
|
if (size & (size-1)) {
|
|
printk("Size 0x%x is not a power of 2\n", size);
|
|
BUG();
|
|
}
|
|
if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
|
|
printk("Size 0x%x is too small\n", size);
|
|
BUG();
|
|
}
|
|
if (vaddr & (size-1)) {
|
|
printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
|
|
BUG();
|
|
}
|
|
|
|
offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
|
|
size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
|
|
|
|
bit_map_clear(&srmmu_nocache_map, offset, size);
|
|
}
|
|
|
|
void srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end);
|
|
|
|
extern unsigned long probe_memory(void); /* in fault.c */
|
|
|
|
/*
|
|
* Reserve nocache dynamically proportionally to the amount of
|
|
* system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
|
|
*/
|
|
void srmmu_nocache_calcsize(void)
|
|
{
|
|
unsigned long sysmemavail = probe_memory() / 1024;
|
|
int srmmu_nocache_npages;
|
|
|
|
srmmu_nocache_npages =
|
|
sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
|
|
|
|
/* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
|
|
// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
|
|
if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
|
|
srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
|
|
|
|
/* anything above 1280 blows up */
|
|
if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
|
|
srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
|
|
|
|
srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
|
|
srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
|
|
}
|
|
|
|
void __init srmmu_nocache_init(void)
|
|
{
|
|
unsigned int bitmap_bits;
|
|
pgd_t *pgd;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
unsigned long paddr, vaddr;
|
|
unsigned long pteval;
|
|
|
|
bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
|
|
|
|
srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
|
|
SRMMU_NOCACHE_ALIGN_MAX, 0UL);
|
|
memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
|
|
|
|
srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
|
|
bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
|
|
|
|
srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
|
|
memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
|
|
init_mm.pgd = srmmu_swapper_pg_dir;
|
|
|
|
srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
|
|
|
|
paddr = __pa((unsigned long)srmmu_nocache_pool);
|
|
vaddr = SRMMU_NOCACHE_VADDR;
|
|
|
|
while (vaddr < srmmu_nocache_end) {
|
|
pgd = pgd_offset_k(vaddr);
|
|
pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
|
|
pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
|
|
|
|
pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
|
|
|
|
if (srmmu_cache_pagetables)
|
|
pteval |= SRMMU_CACHE;
|
|
|
|
srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
|
|
|
|
vaddr += PAGE_SIZE;
|
|
paddr += PAGE_SIZE;
|
|
}
|
|
|
|
flush_cache_all();
|
|
flush_tlb_all();
|
|
}
|
|
|
|
static inline pgd_t *srmmu_get_pgd_fast(void)
|
|
{
|
|
pgd_t *pgd = NULL;
|
|
|
|
pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
|
|
if (pgd) {
|
|
pgd_t *init = pgd_offset_k(0);
|
|
memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
|
|
memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
|
|
(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
|
|
}
|
|
|
|
return pgd;
|
|
}
|
|
|
|
static void srmmu_free_pgd_fast(pgd_t *pgd)
|
|
{
|
|
srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
|
|
}
|
|
|
|
static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
|
|
{
|
|
return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
|
|
}
|
|
|
|
static void srmmu_pmd_free(pmd_t * pmd)
|
|
{
|
|
srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Hardware needs alignment to 256 only, but we align to whole page size
|
|
* to reduce fragmentation problems due to the buddy principle.
|
|
* XXX Provide actual fragmentation statistics in /proc.
|
|
*
|
|
* Alignments up to the page size are the same for physical and virtual
|
|
* addresses of the nocache area.
|
|
*/
|
|
static pte_t *
|
|
srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
|
|
{
|
|
return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
|
|
}
|
|
|
|
static pgtable_t
|
|
srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
|
|
{
|
|
unsigned long pte;
|
|
struct page *page;
|
|
|
|
if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
|
|
return NULL;
|
|
page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
|
|
pgtable_page_ctor(page);
|
|
return page;
|
|
}
|
|
|
|
static void srmmu_free_pte_fast(pte_t *pte)
|
|
{
|
|
srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
|
|
}
|
|
|
|
static void srmmu_pte_free(pgtable_t pte)
|
|
{
|
|
unsigned long p;
|
|
|
|
pgtable_page_dtor(pte);
|
|
p = (unsigned long)page_address(pte); /* Cached address (for test) */
|
|
if (p == 0)
|
|
BUG();
|
|
p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
|
|
p = (unsigned long) __nocache_va(p); /* Nocached virtual */
|
|
srmmu_free_nocache(p, PTE_SIZE);
|
|
}
|
|
|
|
/*
|
|
*/
|
|
static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
|
|
{
|
|
struct ctx_list *ctxp;
|
|
|
|
ctxp = ctx_free.next;
|
|
if(ctxp != &ctx_free) {
|
|
remove_from_ctx_list(ctxp);
|
|
add_to_used_ctxlist(ctxp);
|
|
mm->context = ctxp->ctx_number;
|
|
ctxp->ctx_mm = mm;
|
|
return;
|
|
}
|
|
ctxp = ctx_used.next;
|
|
if(ctxp->ctx_mm == old_mm)
|
|
ctxp = ctxp->next;
|
|
if(ctxp == &ctx_used)
|
|
panic("out of mmu contexts");
|
|
flush_cache_mm(ctxp->ctx_mm);
|
|
flush_tlb_mm(ctxp->ctx_mm);
|
|
remove_from_ctx_list(ctxp);
|
|
add_to_used_ctxlist(ctxp);
|
|
ctxp->ctx_mm->context = NO_CONTEXT;
|
|
ctxp->ctx_mm = mm;
|
|
mm->context = ctxp->ctx_number;
|
|
}
|
|
|
|
static inline void free_context(int context)
|
|
{
|
|
struct ctx_list *ctx_old;
|
|
|
|
ctx_old = ctx_list_pool + context;
|
|
remove_from_ctx_list(ctx_old);
|
|
add_to_free_ctxlist(ctx_old);
|
|
}
|
|
|
|
|
|
static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
|
|
struct task_struct *tsk, int cpu)
|
|
{
|
|
if(mm->context == NO_CONTEXT) {
|
|
spin_lock(&srmmu_context_spinlock);
|
|
alloc_context(old_mm, mm);
|
|
spin_unlock(&srmmu_context_spinlock);
|
|
srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
|
|
}
|
|
|
|
if (is_hypersparc)
|
|
hyper_flush_whole_icache();
|
|
|
|
srmmu_set_context(mm->context);
|
|
}
|
|
|
|
/* Low level IO area allocation on the SRMMU. */
|
|
static inline void srmmu_mapioaddr(unsigned long physaddr,
|
|
unsigned long virt_addr, int bus_type)
|
|
{
|
|
pgd_t *pgdp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
unsigned long tmp;
|
|
|
|
physaddr &= PAGE_MASK;
|
|
pgdp = pgd_offset_k(virt_addr);
|
|
pmdp = srmmu_pmd_offset(pgdp, virt_addr);
|
|
ptep = srmmu_pte_offset(pmdp, virt_addr);
|
|
tmp = (physaddr >> 4) | SRMMU_ET_PTE;
|
|
|
|
/*
|
|
* I need to test whether this is consistent over all
|
|
* sun4m's. The bus_type represents the upper 4 bits of
|
|
* 36-bit physical address on the I/O space lines...
|
|
*/
|
|
tmp |= (bus_type << 28);
|
|
tmp |= SRMMU_PRIV;
|
|
__flush_page_to_ram(virt_addr);
|
|
srmmu_set_pte(ptep, __pte(tmp));
|
|
}
|
|
|
|
static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
|
|
unsigned long xva, unsigned int len)
|
|
{
|
|
while (len != 0) {
|
|
len -= PAGE_SIZE;
|
|
srmmu_mapioaddr(xpa, xva, bus);
|
|
xva += PAGE_SIZE;
|
|
xpa += PAGE_SIZE;
|
|
}
|
|
flush_tlb_all();
|
|
}
|
|
|
|
static inline void srmmu_unmapioaddr(unsigned long virt_addr)
|
|
{
|
|
pgd_t *pgdp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
|
|
pgdp = pgd_offset_k(virt_addr);
|
|
pmdp = srmmu_pmd_offset(pgdp, virt_addr);
|
|
ptep = srmmu_pte_offset(pmdp, virt_addr);
|
|
|
|
/* No need to flush uncacheable page. */
|
|
srmmu_pte_clear(ptep);
|
|
}
|
|
|
|
static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
|
|
{
|
|
while (len != 0) {
|
|
len -= PAGE_SIZE;
|
|
srmmu_unmapioaddr(virt_addr);
|
|
virt_addr += PAGE_SIZE;
|
|
}
|
|
flush_tlb_all();
|
|
}
|
|
|
|
/*
|
|
* On the SRMMU we do not have the problems with limited tlb entries
|
|
* for mapping kernel pages, so we just take things from the free page
|
|
* pool. As a side effect we are putting a little too much pressure
|
|
* on the gfp() subsystem. This setup also makes the logic of the
|
|
* iommu mapping code a lot easier as we can transparently handle
|
|
* mappings on the kernel stack without any special code as we did
|
|
* need on the sun4c.
|
|
*/
|
|
struct thread_info *srmmu_alloc_thread_info(void)
|
|
{
|
|
struct thread_info *ret;
|
|
|
|
ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
|
|
THREAD_INFO_ORDER);
|
|
#ifdef CONFIG_DEBUG_STACK_USAGE
|
|
if (ret)
|
|
memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
|
|
#endif /* DEBUG_STACK_USAGE */
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void srmmu_free_thread_info(struct thread_info *ti)
|
|
{
|
|
free_pages((unsigned long)ti, THREAD_INFO_ORDER);
|
|
}
|
|
|
|
/* tsunami.S */
|
|
extern void tsunami_flush_cache_all(void);
|
|
extern void tsunami_flush_cache_mm(struct mm_struct *mm);
|
|
extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
|
|
extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
|
|
extern void tsunami_flush_page_to_ram(unsigned long page);
|
|
extern void tsunami_flush_page_for_dma(unsigned long page);
|
|
extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
|
|
extern void tsunami_flush_tlb_all(void);
|
|
extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
|
|
extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
|
|
extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
|
|
extern void tsunami_setup_blockops(void);
|
|
|
|
/*
|
|
* Workaround, until we find what's going on with Swift. When low on memory,
|
|
* it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
|
|
* out it is already in page tables/ fault again on the same instruction.
|
|
* I really don't understand it, have checked it and contexts
|
|
* are right, flush_tlb_all is done as well, and it faults again...
|
|
* Strange. -jj
|
|
*
|
|
* The following code is a deadwood that may be necessary when
|
|
* we start to make precise page flushes again. --zaitcev
|
|
*/
|
|
static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
|
|
{
|
|
#if 0
|
|
static unsigned long last;
|
|
unsigned int val;
|
|
/* unsigned int n; */
|
|
|
|
if (address == last) {
|
|
val = srmmu_hwprobe(address);
|
|
if (val != 0 && pte_val(pte) != val) {
|
|
printk("swift_update_mmu_cache: "
|
|
"addr %lx put %08x probed %08x from %p\n",
|
|
address, pte_val(pte), val,
|
|
__builtin_return_address(0));
|
|
srmmu_flush_whole_tlb();
|
|
}
|
|
}
|
|
last = address;
|
|
#endif
|
|
}
|
|
|
|
/* swift.S */
|
|
extern void swift_flush_cache_all(void);
|
|
extern void swift_flush_cache_mm(struct mm_struct *mm);
|
|
extern void swift_flush_cache_range(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end);
|
|
extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
|
|
extern void swift_flush_page_to_ram(unsigned long page);
|
|
extern void swift_flush_page_for_dma(unsigned long page);
|
|
extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
|
|
extern void swift_flush_tlb_all(void);
|
|
extern void swift_flush_tlb_mm(struct mm_struct *mm);
|
|
extern void swift_flush_tlb_range(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end);
|
|
extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
|
|
|
|
#if 0 /* P3: deadwood to debug precise flushes on Swift. */
|
|
void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
|
|
{
|
|
int cctx, ctx1;
|
|
|
|
page &= PAGE_MASK;
|
|
if ((ctx1 = vma->vm_mm->context) != -1) {
|
|
cctx = srmmu_get_context();
|
|
/* Is context # ever different from current context? P3 */
|
|
if (cctx != ctx1) {
|
|
printk("flush ctx %02x curr %02x\n", ctx1, cctx);
|
|
srmmu_set_context(ctx1);
|
|
swift_flush_page(page);
|
|
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
|
|
"r" (page), "i" (ASI_M_FLUSH_PROBE));
|
|
srmmu_set_context(cctx);
|
|
} else {
|
|
/* Rm. prot. bits from virt. c. */
|
|
/* swift_flush_cache_all(); */
|
|
/* swift_flush_cache_page(vma, page); */
|
|
swift_flush_page(page);
|
|
|
|
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
|
|
"r" (page), "i" (ASI_M_FLUSH_PROBE));
|
|
/* same as above: srmmu_flush_tlb_page() */
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The following are all MBUS based SRMMU modules, and therefore could
|
|
* be found in a multiprocessor configuration. On the whole, these
|
|
* chips seems to be much more touchy about DVMA and page tables
|
|
* with respect to cache coherency.
|
|
*/
|
|
|
|
/* Cypress flushes. */
|
|
static void cypress_flush_cache_all(void)
|
|
{
|
|
volatile unsigned long cypress_sucks;
|
|
unsigned long faddr, tagval;
|
|
|
|
flush_user_windows();
|
|
for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
|
|
__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
|
|
"=r" (tagval) :
|
|
"r" (faddr), "r" (0x40000),
|
|
"i" (ASI_M_DATAC_TAG));
|
|
|
|
/* If modified and valid, kick it. */
|
|
if((tagval & 0x60) == 0x60)
|
|
cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
|
|
}
|
|
}
|
|
|
|
static void cypress_flush_cache_mm(struct mm_struct *mm)
|
|
{
|
|
register unsigned long a, b, c, d, e, f, g;
|
|
unsigned long flags, faddr;
|
|
int octx;
|
|
|
|
FLUSH_BEGIN(mm)
|
|
flush_user_windows();
|
|
local_irq_save(flags);
|
|
octx = srmmu_get_context();
|
|
srmmu_set_context(mm->context);
|
|
a = 0x20; b = 0x40; c = 0x60;
|
|
d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
|
|
|
|
faddr = (0x10000 - 0x100);
|
|
goto inside;
|
|
do {
|
|
faddr -= 0x100;
|
|
inside:
|
|
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
|
|
"sta %%g0, [%0 + %2] %1\n\t"
|
|
"sta %%g0, [%0 + %3] %1\n\t"
|
|
"sta %%g0, [%0 + %4] %1\n\t"
|
|
"sta %%g0, [%0 + %5] %1\n\t"
|
|
"sta %%g0, [%0 + %6] %1\n\t"
|
|
"sta %%g0, [%0 + %7] %1\n\t"
|
|
"sta %%g0, [%0 + %8] %1\n\t" : :
|
|
"r" (faddr), "i" (ASI_M_FLUSH_CTX),
|
|
"r" (a), "r" (b), "r" (c), "r" (d),
|
|
"r" (e), "r" (f), "r" (g));
|
|
} while(faddr);
|
|
srmmu_set_context(octx);
|
|
local_irq_restore(flags);
|
|
FLUSH_END
|
|
}
|
|
|
|
static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
register unsigned long a, b, c, d, e, f, g;
|
|
unsigned long flags, faddr;
|
|
int octx;
|
|
|
|
FLUSH_BEGIN(mm)
|
|
flush_user_windows();
|
|
local_irq_save(flags);
|
|
octx = srmmu_get_context();
|
|
srmmu_set_context(mm->context);
|
|
a = 0x20; b = 0x40; c = 0x60;
|
|
d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
|
|
|
|
start &= SRMMU_REAL_PMD_MASK;
|
|
while(start < end) {
|
|
faddr = (start + (0x10000 - 0x100));
|
|
goto inside;
|
|
do {
|
|
faddr -= 0x100;
|
|
inside:
|
|
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
|
|
"sta %%g0, [%0 + %2] %1\n\t"
|
|
"sta %%g0, [%0 + %3] %1\n\t"
|
|
"sta %%g0, [%0 + %4] %1\n\t"
|
|
"sta %%g0, [%0 + %5] %1\n\t"
|
|
"sta %%g0, [%0 + %6] %1\n\t"
|
|
"sta %%g0, [%0 + %7] %1\n\t"
|
|
"sta %%g0, [%0 + %8] %1\n\t" : :
|
|
"r" (faddr),
|
|
"i" (ASI_M_FLUSH_SEG),
|
|
"r" (a), "r" (b), "r" (c), "r" (d),
|
|
"r" (e), "r" (f), "r" (g));
|
|
} while (faddr != start);
|
|
start += SRMMU_REAL_PMD_SIZE;
|
|
}
|
|
srmmu_set_context(octx);
|
|
local_irq_restore(flags);
|
|
FLUSH_END
|
|
}
|
|
|
|
static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
|
|
{
|
|
register unsigned long a, b, c, d, e, f, g;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long flags, line;
|
|
int octx;
|
|
|
|
FLUSH_BEGIN(mm)
|
|
flush_user_windows();
|
|
local_irq_save(flags);
|
|
octx = srmmu_get_context();
|
|
srmmu_set_context(mm->context);
|
|
a = 0x20; b = 0x40; c = 0x60;
|
|
d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
|
|
|
|
page &= PAGE_MASK;
|
|
line = (page + PAGE_SIZE) - 0x100;
|
|
goto inside;
|
|
do {
|
|
line -= 0x100;
|
|
inside:
|
|
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
|
|
"sta %%g0, [%0 + %2] %1\n\t"
|
|
"sta %%g0, [%0 + %3] %1\n\t"
|
|
"sta %%g0, [%0 + %4] %1\n\t"
|
|
"sta %%g0, [%0 + %5] %1\n\t"
|
|
"sta %%g0, [%0 + %6] %1\n\t"
|
|
"sta %%g0, [%0 + %7] %1\n\t"
|
|
"sta %%g0, [%0 + %8] %1\n\t" : :
|
|
"r" (line),
|
|
"i" (ASI_M_FLUSH_PAGE),
|
|
"r" (a), "r" (b), "r" (c), "r" (d),
|
|
"r" (e), "r" (f), "r" (g));
|
|
} while(line != page);
|
|
srmmu_set_context(octx);
|
|
local_irq_restore(flags);
|
|
FLUSH_END
|
|
}
|
|
|
|
/* Cypress is copy-back, at least that is how we configure it. */
|
|
static void cypress_flush_page_to_ram(unsigned long page)
|
|
{
|
|
register unsigned long a, b, c, d, e, f, g;
|
|
unsigned long line;
|
|
|
|
a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
|
|
page &= PAGE_MASK;
|
|
line = (page + PAGE_SIZE) - 0x100;
|
|
goto inside;
|
|
do {
|
|
line -= 0x100;
|
|
inside:
|
|
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
|
|
"sta %%g0, [%0 + %2] %1\n\t"
|
|
"sta %%g0, [%0 + %3] %1\n\t"
|
|
"sta %%g0, [%0 + %4] %1\n\t"
|
|
"sta %%g0, [%0 + %5] %1\n\t"
|
|
"sta %%g0, [%0 + %6] %1\n\t"
|
|
"sta %%g0, [%0 + %7] %1\n\t"
|
|
"sta %%g0, [%0 + %8] %1\n\t" : :
|
|
"r" (line),
|
|
"i" (ASI_M_FLUSH_PAGE),
|
|
"r" (a), "r" (b), "r" (c), "r" (d),
|
|
"r" (e), "r" (f), "r" (g));
|
|
} while(line != page);
|
|
}
|
|
|
|
/* Cypress is also IO cache coherent. */
|
|
static void cypress_flush_page_for_dma(unsigned long page)
|
|
{
|
|
}
|
|
|
|
/* Cypress has unified L2 VIPT, from which both instructions and data
|
|
* are stored. It does not have an onboard icache of any sort, therefore
|
|
* no flush is necessary.
|
|
*/
|
|
static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
|
|
{
|
|
}
|
|
|
|
static void cypress_flush_tlb_all(void)
|
|
{
|
|
srmmu_flush_whole_tlb();
|
|
}
|
|
|
|
static void cypress_flush_tlb_mm(struct mm_struct *mm)
|
|
{
|
|
FLUSH_BEGIN(mm)
|
|
__asm__ __volatile__(
|
|
"lda [%0] %3, %%g5\n\t"
|
|
"sta %2, [%0] %3\n\t"
|
|
"sta %%g0, [%1] %4\n\t"
|
|
"sta %%g5, [%0] %3\n"
|
|
: /* no outputs */
|
|
: "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
|
|
"i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
|
|
: "g5");
|
|
FLUSH_END
|
|
}
|
|
|
|
static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long size;
|
|
|
|
FLUSH_BEGIN(mm)
|
|
start &= SRMMU_PGDIR_MASK;
|
|
size = SRMMU_PGDIR_ALIGN(end) - start;
|
|
__asm__ __volatile__(
|
|
"lda [%0] %5, %%g5\n\t"
|
|
"sta %1, [%0] %5\n"
|
|
"1:\n\t"
|
|
"subcc %3, %4, %3\n\t"
|
|
"bne 1b\n\t"
|
|
" sta %%g0, [%2 + %3] %6\n\t"
|
|
"sta %%g5, [%0] %5\n"
|
|
: /* no outputs */
|
|
: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
|
|
"r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
|
|
"i" (ASI_M_FLUSH_PROBE)
|
|
: "g5", "cc");
|
|
FLUSH_END
|
|
}
|
|
|
|
static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
FLUSH_BEGIN(mm)
|
|
__asm__ __volatile__(
|
|
"lda [%0] %3, %%g5\n\t"
|
|
"sta %1, [%0] %3\n\t"
|
|
"sta %%g0, [%2] %4\n\t"
|
|
"sta %%g5, [%0] %3\n"
|
|
: /* no outputs */
|
|
: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
|
|
"i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
|
|
: "g5");
|
|
FLUSH_END
|
|
}
|
|
|
|
/* viking.S */
|
|
extern void viking_flush_cache_all(void);
|
|
extern void viking_flush_cache_mm(struct mm_struct *mm);
|
|
extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end);
|
|
extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
|
|
extern void viking_flush_page_to_ram(unsigned long page);
|
|
extern void viking_flush_page_for_dma(unsigned long page);
|
|
extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
|
|
extern void viking_flush_page(unsigned long page);
|
|
extern void viking_mxcc_flush_page(unsigned long page);
|
|
extern void viking_flush_tlb_all(void);
|
|
extern void viking_flush_tlb_mm(struct mm_struct *mm);
|
|
extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end);
|
|
extern void viking_flush_tlb_page(struct vm_area_struct *vma,
|
|
unsigned long page);
|
|
extern void sun4dsmp_flush_tlb_all(void);
|
|
extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
|
|
extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end);
|
|
extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
|
|
unsigned long page);
|
|
|
|
/* hypersparc.S */
|
|
extern void hypersparc_flush_cache_all(void);
|
|
extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
|
|
extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
|
|
extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
|
|
extern void hypersparc_flush_page_to_ram(unsigned long page);
|
|
extern void hypersparc_flush_page_for_dma(unsigned long page);
|
|
extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
|
|
extern void hypersparc_flush_tlb_all(void);
|
|
extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
|
|
extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
|
|
extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
|
|
extern void hypersparc_setup_blockops(void);
|
|
|
|
/*
|
|
* NOTE: All of this startup code assumes the low 16mb (approx.) of
|
|
* kernel mappings are done with one single contiguous chunk of
|
|
* ram. On small ram machines (classics mainly) we only get
|
|
* around 8mb mapped for us.
|
|
*/
|
|
|
|
void __init early_pgtable_allocfail(char *type)
|
|
{
|
|
prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
|
|
prom_halt();
|
|
}
|
|
|
|
void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end)
|
|
{
|
|
pgd_t *pgdp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
|
|
while(start < end) {
|
|
pgdp = pgd_offset_k(start);
|
|
if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
|
|
pmdp = (pmd_t *) __srmmu_get_nocache(
|
|
SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
|
|
if (pmdp == NULL)
|
|
early_pgtable_allocfail("pmd");
|
|
memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
|
|
srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
|
|
}
|
|
pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
|
|
if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
|
|
ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
|
|
if (ptep == NULL)
|
|
early_pgtable_allocfail("pte");
|
|
memset(__nocache_fix(ptep), 0, PTE_SIZE);
|
|
srmmu_pmd_set(__nocache_fix(pmdp), ptep);
|
|
}
|
|
if (start > (0xffffffffUL - PMD_SIZE))
|
|
break;
|
|
start = (start + PMD_SIZE) & PMD_MASK;
|
|
}
|
|
}
|
|
|
|
void __init srmmu_allocate_ptable_skeleton(unsigned long start, unsigned long end)
|
|
{
|
|
pgd_t *pgdp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
|
|
while(start < end) {
|
|
pgdp = pgd_offset_k(start);
|
|
if(srmmu_pgd_none(*pgdp)) {
|
|
pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
|
|
if (pmdp == NULL)
|
|
early_pgtable_allocfail("pmd");
|
|
memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
|
|
srmmu_pgd_set(pgdp, pmdp);
|
|
}
|
|
pmdp = srmmu_pmd_offset(pgdp, start);
|
|
if(srmmu_pmd_none(*pmdp)) {
|
|
ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
|
|
PTE_SIZE);
|
|
if (ptep == NULL)
|
|
early_pgtable_allocfail("pte");
|
|
memset(ptep, 0, PTE_SIZE);
|
|
srmmu_pmd_set(pmdp, ptep);
|
|
}
|
|
if (start > (0xffffffffUL - PMD_SIZE))
|
|
break;
|
|
start = (start + PMD_SIZE) & PMD_MASK;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is much cleaner than poking around physical address space
|
|
* looking at the prom's page table directly which is what most
|
|
* other OS's do. Yuck... this is much better.
|
|
*/
|
|
void __init srmmu_inherit_prom_mappings(unsigned long start,unsigned long end)
|
|
{
|
|
pgd_t *pgdp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
|
|
unsigned long prompte;
|
|
|
|
while(start <= end) {
|
|
if (start == 0)
|
|
break; /* probably wrap around */
|
|
if(start == 0xfef00000)
|
|
start = KADB_DEBUGGER_BEGVM;
|
|
if(!(prompte = srmmu_hwprobe(start))) {
|
|
start += PAGE_SIZE;
|
|
continue;
|
|
}
|
|
|
|
/* A red snapper, see what it really is. */
|
|
what = 0;
|
|
|
|
if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
|
|
if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
|
|
what = 1;
|
|
}
|
|
|
|
if(!(start & ~(SRMMU_PGDIR_MASK))) {
|
|
if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
|
|
prompte)
|
|
what = 2;
|
|
}
|
|
|
|
pgdp = pgd_offset_k(start);
|
|
if(what == 2) {
|
|
*(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
|
|
start += SRMMU_PGDIR_SIZE;
|
|
continue;
|
|
}
|
|
if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
|
|
pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
|
|
if (pmdp == NULL)
|
|
early_pgtable_allocfail("pmd");
|
|
memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
|
|
srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
|
|
}
|
|
pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
|
|
if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
|
|
ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
|
|
PTE_SIZE);
|
|
if (ptep == NULL)
|
|
early_pgtable_allocfail("pte");
|
|
memset(__nocache_fix(ptep), 0, PTE_SIZE);
|
|
srmmu_pmd_set(__nocache_fix(pmdp), ptep);
|
|
}
|
|
if(what == 1) {
|
|
/*
|
|
* We bend the rule where all 16 PTPs in a pmd_t point
|
|
* inside the same PTE page, and we leak a perfectly
|
|
* good hardware PTE piece. Alternatives seem worse.
|
|
*/
|
|
unsigned int x; /* Index of HW PMD in soft cluster */
|
|
x = (start >> PMD_SHIFT) & 15;
|
|
*(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
|
|
start += SRMMU_REAL_PMD_SIZE;
|
|
continue;
|
|
}
|
|
ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
|
|
*(pte_t *)__nocache_fix(ptep) = __pte(prompte);
|
|
start += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
|
|
|
|
/* Create a third-level SRMMU 16MB page mapping. */
|
|
static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
|
|
{
|
|
pgd_t *pgdp = pgd_offset_k(vaddr);
|
|
unsigned long big_pte;
|
|
|
|
big_pte = KERNEL_PTE(phys_base >> 4);
|
|
*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
|
|
}
|
|
|
|
/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
|
|
static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
|
|
{
|
|
unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
|
|
unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
|
|
unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
|
|
/* Map "low" memory only */
|
|
const unsigned long min_vaddr = PAGE_OFFSET;
|
|
const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
|
|
|
|
if (vstart < min_vaddr || vstart >= max_vaddr)
|
|
return vstart;
|
|
|
|
if (vend > max_vaddr || vend < min_vaddr)
|
|
vend = max_vaddr;
|
|
|
|
while(vstart < vend) {
|
|
do_large_mapping(vstart, pstart);
|
|
vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
|
|
}
|
|
return vstart;
|
|
}
|
|
|
|
static inline void memprobe_error(char *msg)
|
|
{
|
|
prom_printf(msg);
|
|
prom_printf("Halting now...\n");
|
|
prom_halt();
|
|
}
|
|
|
|
static inline void map_kernel(void)
|
|
{
|
|
int i;
|
|
|
|
if (phys_base > 0) {
|
|
do_large_mapping(PAGE_OFFSET, phys_base);
|
|
}
|
|
|
|
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
|
|
map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
|
|
}
|
|
|
|
BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
|
|
}
|
|
|
|
/* Paging initialization on the Sparc Reference MMU. */
|
|
extern void sparc_context_init(int);
|
|
|
|
void (*poke_srmmu)(void) __initdata = NULL;
|
|
|
|
extern unsigned long bootmem_init(unsigned long *pages_avail);
|
|
|
|
void __init srmmu_paging_init(void)
|
|
{
|
|
int i, cpunode;
|
|
char node_str[128];
|
|
pgd_t *pgd;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
unsigned long pages_avail;
|
|
|
|
sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
|
|
|
|
if (sparc_cpu_model == sun4d)
|
|
num_contexts = 65536; /* We know it is Viking */
|
|
else {
|
|
/* Find the number of contexts on the srmmu. */
|
|
cpunode = prom_getchild(prom_root_node);
|
|
num_contexts = 0;
|
|
while(cpunode != 0) {
|
|
prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
|
|
if(!strcmp(node_str, "cpu")) {
|
|
num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
|
|
break;
|
|
}
|
|
cpunode = prom_getsibling(cpunode);
|
|
}
|
|
}
|
|
|
|
if(!num_contexts) {
|
|
prom_printf("Something wrong, can't find cpu node in paging_init.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
pages_avail = 0;
|
|
last_valid_pfn = bootmem_init(&pages_avail);
|
|
|
|
srmmu_nocache_calcsize();
|
|
srmmu_nocache_init();
|
|
srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
|
|
map_kernel();
|
|
|
|
/* ctx table has to be physically aligned to its size */
|
|
srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
|
|
srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
|
|
|
|
for(i = 0; i < num_contexts; i++)
|
|
srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
|
|
|
|
flush_cache_all();
|
|
srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
|
|
#ifdef CONFIG_SMP
|
|
/* Stop from hanging here... */
|
|
local_flush_tlb_all();
|
|
#else
|
|
flush_tlb_all();
|
|
#endif
|
|
poke_srmmu();
|
|
|
|
#ifdef CONFIG_SUN_IO
|
|
srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
|
|
srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
|
|
#endif
|
|
|
|
srmmu_allocate_ptable_skeleton(
|
|
__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
|
|
srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
|
|
|
|
pgd = pgd_offset_k(PKMAP_BASE);
|
|
pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
|
|
pte = srmmu_pte_offset(pmd, PKMAP_BASE);
|
|
pkmap_page_table = pte;
|
|
|
|
flush_cache_all();
|
|
flush_tlb_all();
|
|
|
|
sparc_context_init(num_contexts);
|
|
|
|
kmap_init();
|
|
|
|
{
|
|
unsigned long zones_size[MAX_NR_ZONES];
|
|
unsigned long zholes_size[MAX_NR_ZONES];
|
|
unsigned long npages;
|
|
int znum;
|
|
|
|
for (znum = 0; znum < MAX_NR_ZONES; znum++)
|
|
zones_size[znum] = zholes_size[znum] = 0;
|
|
|
|
npages = max_low_pfn - pfn_base;
|
|
|
|
zones_size[ZONE_DMA] = npages;
|
|
zholes_size[ZONE_DMA] = npages - pages_avail;
|
|
|
|
npages = highend_pfn - max_low_pfn;
|
|
zones_size[ZONE_HIGHMEM] = npages;
|
|
zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
|
|
|
|
free_area_init_node(0, &contig_page_data, zones_size,
|
|
pfn_base, zholes_size);
|
|
}
|
|
}
|
|
|
|
static void srmmu_mmu_info(struct seq_file *m)
|
|
{
|
|
seq_printf(m,
|
|
"MMU type\t: %s\n"
|
|
"contexts\t: %d\n"
|
|
"nocache total\t: %ld\n"
|
|
"nocache used\t: %d\n",
|
|
srmmu_name,
|
|
num_contexts,
|
|
srmmu_nocache_size,
|
|
srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
|
|
}
|
|
|
|
static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
|
|
{
|
|
}
|
|
|
|
static void srmmu_destroy_context(struct mm_struct *mm)
|
|
{
|
|
|
|
if(mm->context != NO_CONTEXT) {
|
|
flush_cache_mm(mm);
|
|
srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
|
|
flush_tlb_mm(mm);
|
|
spin_lock(&srmmu_context_spinlock);
|
|
free_context(mm->context);
|
|
spin_unlock(&srmmu_context_spinlock);
|
|
mm->context = NO_CONTEXT;
|
|
}
|
|
}
|
|
|
|
/* Init various srmmu chip types. */
|
|
static void __init srmmu_is_bad(void)
|
|
{
|
|
prom_printf("Could not determine SRMMU chip type.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
static void __init init_vac_layout(void)
|
|
{
|
|
int nd, cache_lines;
|
|
char node_str[128];
|
|
#ifdef CONFIG_SMP
|
|
int cpu = 0;
|
|
unsigned long max_size = 0;
|
|
unsigned long min_line_size = 0x10000000;
|
|
#endif
|
|
|
|
nd = prom_getchild(prom_root_node);
|
|
while((nd = prom_getsibling(nd)) != 0) {
|
|
prom_getstring(nd, "device_type", node_str, sizeof(node_str));
|
|
if(!strcmp(node_str, "cpu")) {
|
|
vac_line_size = prom_getint(nd, "cache-line-size");
|
|
if (vac_line_size == -1) {
|
|
prom_printf("can't determine cache-line-size, "
|
|
"halting.\n");
|
|
prom_halt();
|
|
}
|
|
cache_lines = prom_getint(nd, "cache-nlines");
|
|
if (cache_lines == -1) {
|
|
prom_printf("can't determine cache-nlines, halting.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
vac_cache_size = cache_lines * vac_line_size;
|
|
#ifdef CONFIG_SMP
|
|
if(vac_cache_size > max_size)
|
|
max_size = vac_cache_size;
|
|
if(vac_line_size < min_line_size)
|
|
min_line_size = vac_line_size;
|
|
//FIXME: cpus not contiguous!!
|
|
cpu++;
|
|
if (cpu >= NR_CPUS || !cpu_online(cpu))
|
|
break;
|
|
#else
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
if(nd == 0) {
|
|
prom_printf("No CPU nodes found, halting.\n");
|
|
prom_halt();
|
|
}
|
|
#ifdef CONFIG_SMP
|
|
vac_cache_size = max_size;
|
|
vac_line_size = min_line_size;
|
|
#endif
|
|
printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
|
|
(int)vac_cache_size, (int)vac_line_size);
|
|
}
|
|
|
|
static void __init poke_hypersparc(void)
|
|
{
|
|
volatile unsigned long clear;
|
|
unsigned long mreg = srmmu_get_mmureg();
|
|
|
|
hyper_flush_unconditional_combined();
|
|
|
|
mreg &= ~(HYPERSPARC_CWENABLE);
|
|
mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
|
|
mreg |= (HYPERSPARC_CMODE);
|
|
|
|
srmmu_set_mmureg(mreg);
|
|
|
|
#if 0 /* XXX I think this is bad news... -DaveM */
|
|
hyper_clear_all_tags();
|
|
#endif
|
|
|
|
put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
|
|
hyper_flush_whole_icache();
|
|
clear = srmmu_get_faddr();
|
|
clear = srmmu_get_fstatus();
|
|
}
|
|
|
|
static void __init init_hypersparc(void)
|
|
{
|
|
srmmu_name = "ROSS HyperSparc";
|
|
srmmu_modtype = HyperSparc;
|
|
|
|
init_vac_layout();
|
|
|
|
is_hypersparc = 1;
|
|
|
|
BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
|
|
|
|
|
|
poke_srmmu = poke_hypersparc;
|
|
|
|
hypersparc_setup_blockops();
|
|
}
|
|
|
|
static void __init poke_cypress(void)
|
|
{
|
|
unsigned long mreg = srmmu_get_mmureg();
|
|
unsigned long faddr, tagval;
|
|
volatile unsigned long cypress_sucks;
|
|
volatile unsigned long clear;
|
|
|
|
clear = srmmu_get_faddr();
|
|
clear = srmmu_get_fstatus();
|
|
|
|
if (!(mreg & CYPRESS_CENABLE)) {
|
|
for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
|
|
__asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
|
|
"sta %%g0, [%0] %2\n\t" : :
|
|
"r" (faddr), "r" (0x40000),
|
|
"i" (ASI_M_DATAC_TAG));
|
|
}
|
|
} else {
|
|
for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
|
|
__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
|
|
"=r" (tagval) :
|
|
"r" (faddr), "r" (0x40000),
|
|
"i" (ASI_M_DATAC_TAG));
|
|
|
|
/* If modified and valid, kick it. */
|
|
if((tagval & 0x60) == 0x60)
|
|
cypress_sucks = *(unsigned long *)
|
|
(0xf0020000 + faddr);
|
|
}
|
|
}
|
|
|
|
/* And one more, for our good neighbor, Mr. Broken Cypress. */
|
|
clear = srmmu_get_faddr();
|
|
clear = srmmu_get_fstatus();
|
|
|
|
mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
|
|
srmmu_set_mmureg(mreg);
|
|
}
|
|
|
|
static void __init init_cypress_common(void)
|
|
{
|
|
init_vac_layout();
|
|
|
|
BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
|
|
|
|
|
|
BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
|
|
BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
|
|
|
|
poke_srmmu = poke_cypress;
|
|
}
|
|
|
|
static void __init init_cypress_604(void)
|
|
{
|
|
srmmu_name = "ROSS Cypress-604(UP)";
|
|
srmmu_modtype = Cypress;
|
|
init_cypress_common();
|
|
}
|
|
|
|
static void __init init_cypress_605(unsigned long mrev)
|
|
{
|
|
srmmu_name = "ROSS Cypress-605(MP)";
|
|
if(mrev == 0xe) {
|
|
srmmu_modtype = Cypress_vE;
|
|
hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
|
|
} else {
|
|
if(mrev == 0xd) {
|
|
srmmu_modtype = Cypress_vD;
|
|
hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
|
|
} else {
|
|
srmmu_modtype = Cypress;
|
|
}
|
|
}
|
|
init_cypress_common();
|
|
}
|
|
|
|
static void __init poke_swift(void)
|
|
{
|
|
unsigned long mreg;
|
|
|
|
/* Clear any crap from the cache or else... */
|
|
swift_flush_cache_all();
|
|
|
|
/* Enable I & D caches */
|
|
mreg = srmmu_get_mmureg();
|
|
mreg |= (SWIFT_IE | SWIFT_DE);
|
|
/*
|
|
* The Swift branch folding logic is completely broken. At
|
|
* trap time, if things are just right, if can mistakenly
|
|
* think that a trap is coming from kernel mode when in fact
|
|
* it is coming from user mode (it mis-executes the branch in
|
|
* the trap code). So you see things like crashme completely
|
|
* hosing your machine which is completely unacceptable. Turn
|
|
* this shit off... nice job Fujitsu.
|
|
*/
|
|
mreg &= ~(SWIFT_BF);
|
|
srmmu_set_mmureg(mreg);
|
|
}
|
|
|
|
#define SWIFT_MASKID_ADDR 0x10003018
|
|
static void __init init_swift(void)
|
|
{
|
|
unsigned long swift_rev;
|
|
|
|
__asm__ __volatile__("lda [%1] %2, %0\n\t"
|
|
"srl %0, 0x18, %0\n\t" :
|
|
"=r" (swift_rev) :
|
|
"r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
|
|
srmmu_name = "Fujitsu Swift";
|
|
switch(swift_rev) {
|
|
case 0x11:
|
|
case 0x20:
|
|
case 0x23:
|
|
case 0x30:
|
|
srmmu_modtype = Swift_lots_o_bugs;
|
|
hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
|
|
/*
|
|
* Gee george, I wonder why Sun is so hush hush about
|
|
* this hardware bug... really braindamage stuff going
|
|
* on here. However I think we can find a way to avoid
|
|
* all of the workaround overhead under Linux. Basically,
|
|
* any page fault can cause kernel pages to become user
|
|
* accessible (the mmu gets confused and clears some of
|
|
* the ACC bits in kernel ptes). Aha, sounds pretty
|
|
* horrible eh? But wait, after extensive testing it appears
|
|
* that if you use pgd_t level large kernel pte's (like the
|
|
* 4MB pages on the Pentium) the bug does not get tripped
|
|
* at all. This avoids almost all of the major overhead.
|
|
* Welcome to a world where your vendor tells you to,
|
|
* "apply this kernel patch" instead of "sorry for the
|
|
* broken hardware, send it back and we'll give you
|
|
* properly functioning parts"
|
|
*/
|
|
break;
|
|
case 0x25:
|
|
case 0x31:
|
|
srmmu_modtype = Swift_bad_c;
|
|
hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
|
|
/*
|
|
* You see Sun allude to this hardware bug but never
|
|
* admit things directly, they'll say things like,
|
|
* "the Swift chip cache problems" or similar.
|
|
*/
|
|
break;
|
|
default:
|
|
srmmu_modtype = Swift_ok;
|
|
break;
|
|
};
|
|
|
|
BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
|
|
|
|
|
|
BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
|
|
|
|
flush_page_for_dma_global = 0;
|
|
|
|
/*
|
|
* Are you now convinced that the Swift is one of the
|
|
* biggest VLSI abortions of all time? Bravo Fujitsu!
|
|
* Fujitsu, the !#?!%$'d up processor people. I bet if
|
|
* you examined the microcode of the Swift you'd find
|
|
* XXX's all over the place.
|
|
*/
|
|
poke_srmmu = poke_swift;
|
|
}
|
|
|
|
static void turbosparc_flush_cache_all(void)
|
|
{
|
|
flush_user_windows();
|
|
turbosparc_idflash_clear();
|
|
}
|
|
|
|
static void turbosparc_flush_cache_mm(struct mm_struct *mm)
|
|
{
|
|
FLUSH_BEGIN(mm)
|
|
flush_user_windows();
|
|
turbosparc_idflash_clear();
|
|
FLUSH_END
|
|
}
|
|
|
|
static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
|
|
{
|
|
FLUSH_BEGIN(vma->vm_mm)
|
|
flush_user_windows();
|
|
turbosparc_idflash_clear();
|
|
FLUSH_END
|
|
}
|
|
|
|
static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
|
|
{
|
|
FLUSH_BEGIN(vma->vm_mm)
|
|
flush_user_windows();
|
|
if (vma->vm_flags & VM_EXEC)
|
|
turbosparc_flush_icache();
|
|
turbosparc_flush_dcache();
|
|
FLUSH_END
|
|
}
|
|
|
|
/* TurboSparc is copy-back, if we turn it on, but this does not work. */
|
|
static void turbosparc_flush_page_to_ram(unsigned long page)
|
|
{
|
|
#ifdef TURBOSPARC_WRITEBACK
|
|
volatile unsigned long clear;
|
|
|
|
if (srmmu_hwprobe(page))
|
|
turbosparc_flush_page_cache(page);
|
|
clear = srmmu_get_fstatus();
|
|
#endif
|
|
}
|
|
|
|
static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
|
|
{
|
|
}
|
|
|
|
static void turbosparc_flush_page_for_dma(unsigned long page)
|
|
{
|
|
turbosparc_flush_dcache();
|
|
}
|
|
|
|
static void turbosparc_flush_tlb_all(void)
|
|
{
|
|
srmmu_flush_whole_tlb();
|
|
}
|
|
|
|
static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
|
|
{
|
|
FLUSH_BEGIN(mm)
|
|
srmmu_flush_whole_tlb();
|
|
FLUSH_END
|
|
}
|
|
|
|
static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
|
|
{
|
|
FLUSH_BEGIN(vma->vm_mm)
|
|
srmmu_flush_whole_tlb();
|
|
FLUSH_END
|
|
}
|
|
|
|
static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
|
|
{
|
|
FLUSH_BEGIN(vma->vm_mm)
|
|
srmmu_flush_whole_tlb();
|
|
FLUSH_END
|
|
}
|
|
|
|
|
|
static void __init poke_turbosparc(void)
|
|
{
|
|
unsigned long mreg = srmmu_get_mmureg();
|
|
unsigned long ccreg;
|
|
|
|
/* Clear any crap from the cache or else... */
|
|
turbosparc_flush_cache_all();
|
|
mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
|
|
mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
|
|
srmmu_set_mmureg(mreg);
|
|
|
|
ccreg = turbosparc_get_ccreg();
|
|
|
|
#ifdef TURBOSPARC_WRITEBACK
|
|
ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
|
|
ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
|
|
/* Write-back D-cache, emulate VLSI
|
|
* abortion number three, not number one */
|
|
#else
|
|
/* For now let's play safe, optimize later */
|
|
ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
|
|
/* Do DVMA snooping in Dcache, Write-thru D-cache */
|
|
ccreg &= ~(TURBOSPARC_uS2);
|
|
/* Emulate VLSI abortion number three, not number one */
|
|
#endif
|
|
|
|
switch (ccreg & 7) {
|
|
case 0: /* No SE cache */
|
|
case 7: /* Test mode */
|
|
break;
|
|
default:
|
|
ccreg |= (TURBOSPARC_SCENABLE);
|
|
}
|
|
turbosparc_set_ccreg (ccreg);
|
|
|
|
mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
|
|
mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
|
|
srmmu_set_mmureg(mreg);
|
|
}
|
|
|
|
static void __init init_turbosparc(void)
|
|
{
|
|
srmmu_name = "Fujitsu TurboSparc";
|
|
srmmu_modtype = TurboSparc;
|
|
|
|
BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
|
|
BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
|
|
|
|
poke_srmmu = poke_turbosparc;
|
|
}
|
|
|
|
static void __init poke_tsunami(void)
|
|
{
|
|
unsigned long mreg = srmmu_get_mmureg();
|
|
|
|
tsunami_flush_icache();
|
|
tsunami_flush_dcache();
|
|
mreg &= ~TSUNAMI_ITD;
|
|
mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
|
|
srmmu_set_mmureg(mreg);
|
|
}
|
|
|
|
static void __init init_tsunami(void)
|
|
{
|
|
/*
|
|
* Tsunami's pretty sane, Sun and TI actually got it
|
|
* somewhat right this time. Fujitsu should have
|
|
* taken some lessons from them.
|
|
*/
|
|
|
|
srmmu_name = "TI Tsunami";
|
|
srmmu_modtype = Tsunami;
|
|
|
|
BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
|
|
|
|
|
|
BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
|
|
BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
|
|
|
|
poke_srmmu = poke_tsunami;
|
|
|
|
tsunami_setup_blockops();
|
|
}
|
|
|
|
static void __init poke_viking(void)
|
|
{
|
|
unsigned long mreg = srmmu_get_mmureg();
|
|
static int smp_catch;
|
|
|
|
if(viking_mxcc_present) {
|
|
unsigned long mxcc_control = mxcc_get_creg();
|
|
|
|
mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
|
|
mxcc_control &= ~(MXCC_CTL_RRC);
|
|
mxcc_set_creg(mxcc_control);
|
|
|
|
/*
|
|
* We don't need memory parity checks.
|
|
* XXX This is a mess, have to dig out later. ecd.
|
|
viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
|
|
*/
|
|
|
|
/* We do cache ptables on MXCC. */
|
|
mreg |= VIKING_TCENABLE;
|
|
} else {
|
|
unsigned long bpreg;
|
|
|
|
mreg &= ~(VIKING_TCENABLE);
|
|
if(smp_catch++) {
|
|
/* Must disable mixed-cmd mode here for other cpu's. */
|
|
bpreg = viking_get_bpreg();
|
|
bpreg &= ~(VIKING_ACTION_MIX);
|
|
viking_set_bpreg(bpreg);
|
|
|
|
/* Just in case PROM does something funny. */
|
|
msi_set_sync();
|
|
}
|
|
}
|
|
|
|
mreg |= VIKING_SPENABLE;
|
|
mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
|
|
mreg |= VIKING_SBENABLE;
|
|
mreg &= ~(VIKING_ACENABLE);
|
|
srmmu_set_mmureg(mreg);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* Avoid unnecessary cross calls. */
|
|
BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
|
|
BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
|
|
BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
|
|
BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
|
|
BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
|
|
BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
|
|
BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
|
|
btfixup();
|
|
#endif
|
|
}
|
|
|
|
static void __init init_viking(void)
|
|
{
|
|
unsigned long mreg = srmmu_get_mmureg();
|
|
|
|
/* Ahhh, the viking. SRMMU VLSI abortion number two... */
|
|
if(mreg & VIKING_MMODE) {
|
|
srmmu_name = "TI Viking";
|
|
viking_mxcc_present = 0;
|
|
msi_set_sync();
|
|
|
|
BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
|
|
|
|
/*
|
|
* We need this to make sure old viking takes no hits
|
|
* on it's cache for dma snoops to workaround the
|
|
* "load from non-cacheable memory" interrupt bug.
|
|
* This is only necessary because of the new way in
|
|
* which we use the IOMMU.
|
|
*/
|
|
BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
|
|
|
|
flush_page_for_dma_global = 0;
|
|
} else {
|
|
srmmu_name = "TI Viking/MXCC";
|
|
viking_mxcc_present = 1;
|
|
|
|
srmmu_cache_pagetables = 1;
|
|
|
|
/* MXCC vikings lack the DMA snooping bug. */
|
|
BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
|
|
}
|
|
|
|
BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (sparc_cpu_model == sun4d) {
|
|
BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
|
|
} else
|
|
#endif
|
|
{
|
|
BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
|
|
}
|
|
|
|
BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
|
|
BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
|
|
|
|
poke_srmmu = poke_viking;
|
|
}
|
|
|
|
/* Probe for the srmmu chip version. */
|
|
static void __init get_srmmu_type(void)
|
|
{
|
|
unsigned long mreg, psr;
|
|
unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
|
|
|
|
srmmu_modtype = SRMMU_INVAL_MOD;
|
|
hwbug_bitmask = 0;
|
|
|
|
mreg = srmmu_get_mmureg(); psr = get_psr();
|
|
mod_typ = (mreg & 0xf0000000) >> 28;
|
|
mod_rev = (mreg & 0x0f000000) >> 24;
|
|
psr_typ = (psr >> 28) & 0xf;
|
|
psr_vers = (psr >> 24) & 0xf;
|
|
|
|
/* First, check for HyperSparc or Cypress. */
|
|
if(mod_typ == 1) {
|
|
switch(mod_rev) {
|
|
case 7:
|
|
/* UP or MP Hypersparc */
|
|
init_hypersparc();
|
|
break;
|
|
case 0:
|
|
case 2:
|
|
/* Uniprocessor Cypress */
|
|
init_cypress_604();
|
|
break;
|
|
case 10:
|
|
case 11:
|
|
case 12:
|
|
/* _REALLY OLD_ Cypress MP chips... */
|
|
case 13:
|
|
case 14:
|
|
case 15:
|
|
/* MP Cypress mmu/cache-controller */
|
|
init_cypress_605(mod_rev);
|
|
break;
|
|
default:
|
|
/* Some other Cypress revision, assume a 605. */
|
|
init_cypress_605(mod_rev);
|
|
break;
|
|
};
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now Fujitsu TurboSparc. It might happen that it is
|
|
* in Swift emulation mode, so we will check later...
|
|
*/
|
|
if (psr_typ == 0 && psr_vers == 5) {
|
|
init_turbosparc();
|
|
return;
|
|
}
|
|
|
|
/* Next check for Fujitsu Swift. */
|
|
if(psr_typ == 0 && psr_vers == 4) {
|
|
int cpunode;
|
|
char node_str[128];
|
|
|
|
/* Look if it is not a TurboSparc emulating Swift... */
|
|
cpunode = prom_getchild(prom_root_node);
|
|
while((cpunode = prom_getsibling(cpunode)) != 0) {
|
|
prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
|
|
if(!strcmp(node_str, "cpu")) {
|
|
if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
|
|
prom_getintdefault(cpunode, "psr-version", 1) == 5) {
|
|
init_turbosparc();
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
init_swift();
|
|
return;
|
|
}
|
|
|
|
/* Now the Viking family of srmmu. */
|
|
if(psr_typ == 4 &&
|
|
((psr_vers == 0) ||
|
|
((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
|
|
init_viking();
|
|
return;
|
|
}
|
|
|
|
/* Finally the Tsunami. */
|
|
if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
|
|
init_tsunami();
|
|
return;
|
|
}
|
|
|
|
/* Oh well */
|
|
srmmu_is_bad();
|
|
}
|
|
|
|
/* don't laugh, static pagetables */
|
|
static void srmmu_check_pgt_cache(int low, int high)
|
|
{
|
|
}
|
|
|
|
extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
|
|
tsetup_mmu_patchme, rtrap_mmu_patchme;
|
|
|
|
extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
|
|
tsetup_srmmu_stackchk, srmmu_rett_stackchk;
|
|
|
|
extern unsigned long srmmu_fault;
|
|
|
|
#define PATCH_BRANCH(insn, dest) do { \
|
|
iaddr = &(insn); \
|
|
daddr = &(dest); \
|
|
*iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
|
|
} while(0)
|
|
|
|
static void __init patch_window_trap_handlers(void)
|
|
{
|
|
unsigned long *iaddr, *daddr;
|
|
|
|
PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
|
|
PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
|
|
PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
|
|
PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
|
|
PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
|
|
PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
|
|
PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* Local cross-calls. */
|
|
static void smp_flush_page_for_dma(unsigned long page)
|
|
{
|
|
xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
|
|
local_flush_page_for_dma(page);
|
|
}
|
|
|
|
#endif
|
|
|
|
static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
|
|
{
|
|
return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
|
|
}
|
|
|
|
static unsigned long srmmu_pte_to_pgoff(pte_t pte)
|
|
{
|
|
return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
|
|
}
|
|
|
|
static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
|
|
{
|
|
prot &= ~__pgprot(SRMMU_CACHE);
|
|
|
|
return prot;
|
|
}
|
|
|
|
/* Load up routines and constants for sun4m and sun4d mmu */
|
|
void __init ld_mmu_srmmu(void)
|
|
{
|
|
extern void ld_mmu_iommu(void);
|
|
extern void ld_mmu_iounit(void);
|
|
extern void ___xchg32_sun4md(void);
|
|
|
|
BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
|
|
BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
|
|
BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
|
|
|
|
BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
|
|
BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
|
|
|
|
BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
|
|
PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
|
|
BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
|
|
BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
|
|
BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
|
|
page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
|
|
|
|
/* Functions */
|
|
BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
|
|
#ifndef CONFIG_SMP
|
|
BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
|
|
#endif
|
|
BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
|
|
|
|
BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
|
|
BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_SETHI(none_mask, 0xF0000000);
|
|
|
|
BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
|
|
|
|
BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
|
|
|
|
BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
|
|
|
|
BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
|
|
BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
|
|
BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
|
|
BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
|
|
BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
|
|
BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
|
|
BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
|
|
BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
|
|
BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
|
|
BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
|
|
BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
|
|
BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
|
|
BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
|
|
|
|
BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
|
|
|
|
get_srmmu_type();
|
|
patch_window_trap_handlers();
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* El switcheroo... */
|
|
|
|
BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
|
|
BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
|
|
BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
|
|
BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
|
|
BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
|
|
BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
|
|
BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
|
|
BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
|
|
BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
|
|
BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
|
|
BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
|
|
|
|
BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
|
|
if (sparc_cpu_model != sun4d) {
|
|
BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
|
|
}
|
|
BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
|
|
#endif
|
|
|
|
if (sparc_cpu_model == sun4d)
|
|
ld_mmu_iounit();
|
|
else
|
|
ld_mmu_iommu();
|
|
#ifdef CONFIG_SMP
|
|
if (sparc_cpu_model == sun4d)
|
|
sun4d_init_smp();
|
|
else
|
|
sun4m_init_smp();
|
|
#endif
|
|
}
|