android_kernel_xiaomi_sm8350/drivers/video/chipsfb.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

521 lines
12 KiB
C

/*
* drivers/video/chipsfb.c -- frame buffer device for
* Chips & Technologies 65550 chip.
*
* Copyright (C) 1998-2002 Paul Mackerras
*
* This file is derived from the Powermac "chips" driver:
* Copyright (C) 1997 Fabio Riccardi.
* And from the frame buffer device for Open Firmware-initialized devices:
* Copyright (C) 1997 Geert Uytterhoeven.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/fb.h>
#include <linux/pm.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/console.h>
#include <asm/io.h>
#ifdef CONFIG_PMAC_BACKLIGHT
#include <asm/backlight.h>
#endif
/*
* Since we access the display with inb/outb to fixed port numbers,
* we can only handle one 6555x chip. -- paulus
*/
#define write_ind(num, val, ap, dp) do { \
outb((num), (ap)); outb((val), (dp)); \
} while (0)
#define read_ind(num, var, ap, dp) do { \
outb((num), (ap)); var = inb((dp)); \
} while (0)
/* extension registers */
#define write_xr(num, val) write_ind(num, val, 0x3d6, 0x3d7)
#define read_xr(num, var) read_ind(num, var, 0x3d6, 0x3d7)
/* flat panel registers */
#define write_fr(num, val) write_ind(num, val, 0x3d0, 0x3d1)
#define read_fr(num, var) read_ind(num, var, 0x3d0, 0x3d1)
/* CRTC registers */
#define write_cr(num, val) write_ind(num, val, 0x3d4, 0x3d5)
#define read_cr(num, var) read_ind(num, var, 0x3d4, 0x3d5)
/* graphics registers */
#define write_gr(num, val) write_ind(num, val, 0x3ce, 0x3cf)
#define read_gr(num, var) read_ind(num, var, 0x3ce, 0x3cf)
/* sequencer registers */
#define write_sr(num, val) write_ind(num, val, 0x3c4, 0x3c5)
#define read_sr(num, var) read_ind(num, var, 0x3c4, 0x3c5)
/* attribute registers - slightly strange */
#define write_ar(num, val) do { \
inb(0x3da); write_ind(num, val, 0x3c0, 0x3c0); \
} while (0)
#define read_ar(num, var) do { \
inb(0x3da); read_ind(num, var, 0x3c0, 0x3c1); \
} while (0)
/*
* Exported functions
*/
int chips_init(void);
static int chipsfb_pci_init(struct pci_dev *dp, const struct pci_device_id *);
static int chipsfb_check_var(struct fb_var_screeninfo *var,
struct fb_info *info);
static int chipsfb_set_par(struct fb_info *info);
static int chipsfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *info);
static int chipsfb_blank(int blank, struct fb_info *info);
static struct fb_ops chipsfb_ops = {
.owner = THIS_MODULE,
.fb_check_var = chipsfb_check_var,
.fb_set_par = chipsfb_set_par,
.fb_setcolreg = chipsfb_setcolreg,
.fb_blank = chipsfb_blank,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
};
static int chipsfb_check_var(struct fb_var_screeninfo *var,
struct fb_info *info)
{
if (var->xres > 800 || var->yres > 600
|| var->xres_virtual > 800 || var->yres_virtual > 600
|| (var->bits_per_pixel != 8 && var->bits_per_pixel != 16)
|| var->nonstd
|| (var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
return -EINVAL;
var->xres = var->xres_virtual = 800;
var->yres = var->yres_virtual = 600;
return 0;
}
static int chipsfb_set_par(struct fb_info *info)
{
if (info->var.bits_per_pixel == 16) {
write_cr(0x13, 200); // Set line length (doublewords)
write_xr(0x81, 0x14); // 15 bit (555) color mode
write_xr(0x82, 0x00); // Disable palettes
write_xr(0x20, 0x10); // 16 bit blitter mode
info->fix.line_length = 800*2;
info->fix.visual = FB_VISUAL_TRUECOLOR;
info->var.red.offset = 10;
info->var.green.offset = 5;
info->var.blue.offset = 0;
info->var.red.length = info->var.green.length =
info->var.blue.length = 5;
} else {
/* p->var.bits_per_pixel == 8 */
write_cr(0x13, 100); // Set line length (doublewords)
write_xr(0x81, 0x12); // 8 bit color mode
write_xr(0x82, 0x08); // Graphics gamma enable
write_xr(0x20, 0x00); // 8 bit blitter mode
info->fix.line_length = 800;
info->fix.visual = FB_VISUAL_PSEUDOCOLOR;
info->var.red.offset = info->var.green.offset =
info->var.blue.offset = 0;
info->var.red.length = info->var.green.length =
info->var.blue.length = 8;
}
return 0;
}
static int chipsfb_blank(int blank, struct fb_info *info)
{
return 1; /* get fb_blank to set the colormap to all black */
}
static int chipsfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *info)
{
if (regno > 255)
return 1;
red >>= 8;
green >>= 8;
blue >>= 8;
outb(regno, 0x3c8);
udelay(1);
outb(red, 0x3c9);
outb(green, 0x3c9);
outb(blue, 0x3c9);
return 0;
}
struct chips_init_reg {
unsigned char addr;
unsigned char data;
};
static struct chips_init_reg chips_init_sr[] = {
{ 0x00, 0x03 },
{ 0x01, 0x01 },
{ 0x02, 0x0f },
{ 0x04, 0x0e }
};
static struct chips_init_reg chips_init_gr[] = {
{ 0x05, 0x00 },
{ 0x06, 0x0d },
{ 0x08, 0xff }
};
static struct chips_init_reg chips_init_ar[] = {
{ 0x10, 0x01 },
{ 0x12, 0x0f },
{ 0x13, 0x00 }
};
static struct chips_init_reg chips_init_cr[] = {
{ 0x00, 0x7f },
{ 0x01, 0x63 },
{ 0x02, 0x63 },
{ 0x03, 0x83 },
{ 0x04, 0x66 },
{ 0x05, 0x10 },
{ 0x06, 0x72 },
{ 0x07, 0x3e },
{ 0x08, 0x00 },
{ 0x09, 0x40 },
{ 0x0c, 0x00 },
{ 0x0d, 0x00 },
{ 0x10, 0x59 },
{ 0x11, 0x0d },
{ 0x12, 0x57 },
{ 0x13, 0x64 },
{ 0x14, 0x00 },
{ 0x15, 0x57 },
{ 0x16, 0x73 },
{ 0x17, 0xe3 },
{ 0x18, 0xff },
{ 0x30, 0x02 },
{ 0x31, 0x02 },
{ 0x32, 0x02 },
{ 0x33, 0x02 },
{ 0x40, 0x00 },
{ 0x41, 0x00 },
{ 0x40, 0x80 }
};
static struct chips_init_reg chips_init_fr[] = {
{ 0x01, 0x02 },
{ 0x03, 0x08 },
{ 0x04, 0x81 },
{ 0x05, 0x21 },
{ 0x08, 0x0c },
{ 0x0a, 0x74 },
{ 0x0b, 0x11 },
{ 0x10, 0x0c },
{ 0x11, 0xe0 },
/* { 0x12, 0x40 }, -- 3400 needs 40, 2400 needs 48, no way to tell */
{ 0x20, 0x63 },
{ 0x21, 0x68 },
{ 0x22, 0x19 },
{ 0x23, 0x7f },
{ 0x24, 0x68 },
{ 0x26, 0x00 },
{ 0x27, 0x0f },
{ 0x30, 0x57 },
{ 0x31, 0x58 },
{ 0x32, 0x0d },
{ 0x33, 0x72 },
{ 0x34, 0x02 },
{ 0x35, 0x22 },
{ 0x36, 0x02 },
{ 0x37, 0x00 }
};
static struct chips_init_reg chips_init_xr[] = {
{ 0xce, 0x00 }, /* set default memory clock */
{ 0xcc, 0x43 }, /* memory clock ratio */
{ 0xcd, 0x18 },
{ 0xce, 0xa1 },
{ 0xc8, 0x84 },
{ 0xc9, 0x0a },
{ 0xca, 0x00 },
{ 0xcb, 0x20 },
{ 0xcf, 0x06 },
{ 0xd0, 0x0e },
{ 0x09, 0x01 },
{ 0x0a, 0x02 },
{ 0x0b, 0x01 },
{ 0x20, 0x00 },
{ 0x40, 0x03 },
{ 0x41, 0x01 },
{ 0x42, 0x00 },
{ 0x80, 0x82 },
{ 0x81, 0x12 },
{ 0x82, 0x08 },
{ 0xa0, 0x00 },
{ 0xa8, 0x00 }
};
static void __init chips_hw_init(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(chips_init_xr); ++i)
write_xr(chips_init_xr[i].addr, chips_init_xr[i].data);
outb(0x29, 0x3c2); /* set misc output reg */
for (i = 0; i < ARRAY_SIZE(chips_init_sr); ++i)
write_sr(chips_init_sr[i].addr, chips_init_sr[i].data);
for (i = 0; i < ARRAY_SIZE(chips_init_gr); ++i)
write_gr(chips_init_gr[i].addr, chips_init_gr[i].data);
for (i = 0; i < ARRAY_SIZE(chips_init_ar); ++i)
write_ar(chips_init_ar[i].addr, chips_init_ar[i].data);
for (i = 0; i < ARRAY_SIZE(chips_init_cr); ++i)
write_cr(chips_init_cr[i].addr, chips_init_cr[i].data);
for (i = 0; i < ARRAY_SIZE(chips_init_fr); ++i)
write_fr(chips_init_fr[i].addr, chips_init_fr[i].data);
}
static struct fb_fix_screeninfo chipsfb_fix __devinitdata = {
.id = "C&T 65550",
.type = FB_TYPE_PACKED_PIXELS,
.visual = FB_VISUAL_PSEUDOCOLOR,
.accel = FB_ACCEL_NONE,
.line_length = 800,
// FIXME: Assumes 1MB frame buffer, but 65550 supports 1MB or 2MB.
// * "3500" PowerBook G3 (the original PB G3) has 2MB.
// * 2400 has 1MB composed of 2 Mitsubishi M5M4V4265CTP DRAM chips.
// Motherboard actually supports 2MB -- there are two blank locations
// for a second pair of DRAMs. (Thanks, Apple!)
// * 3400 has 1MB (I think). Don't know if it's expandable.
// -- Tim Seufert
.smem_len = 0x100000, /* 1MB */
};
static struct fb_var_screeninfo chipsfb_var __devinitdata = {
.xres = 800,
.yres = 600,
.xres_virtual = 800,
.yres_virtual = 600,
.bits_per_pixel = 8,
.red = { .length = 8 },
.green = { .length = 8 },
.blue = { .length = 8 },
.height = -1,
.width = -1,
.vmode = FB_VMODE_NONINTERLACED,
.pixclock = 10000,
.left_margin = 16,
.right_margin = 16,
.upper_margin = 16,
.lower_margin = 16,
.hsync_len = 8,
.vsync_len = 8,
};
static void __devinit init_chips(struct fb_info *p, unsigned long addr)
{
memset(p->screen_base, 0, 0x100000);
p->fix = chipsfb_fix;
p->fix.smem_start = addr;
p->var = chipsfb_var;
p->fbops = &chipsfb_ops;
p->flags = FBINFO_DEFAULT;
fb_alloc_cmap(&p->cmap, 256, 0);
chips_hw_init();
}
static int __devinit
chipsfb_pci_init(struct pci_dev *dp, const struct pci_device_id *ent)
{
struct fb_info *p;
unsigned long addr, size;
unsigned short cmd;
int rc = -ENODEV;
if (pci_enable_device(dp) < 0) {
dev_err(&dp->dev, "Cannot enable PCI device\n");
goto err_out;
}
if ((dp->resource[0].flags & IORESOURCE_MEM) == 0)
goto err_disable;
addr = pci_resource_start(dp, 0);
size = pci_resource_len(dp, 0);
if (addr == 0)
goto err_disable;
p = framebuffer_alloc(0, &dp->dev);
if (p == NULL) {
dev_err(&dp->dev, "Cannot allocate framebuffer structure\n");
rc = -ENOMEM;
goto err_disable;
}
if (pci_request_region(dp, 0, "chipsfb") != 0) {
dev_err(&dp->dev, "Cannot request framebuffer\n");
rc = -EBUSY;
goto err_release_fb;
}
#ifdef __BIG_ENDIAN
addr += 0x800000; // Use big-endian aperture
#endif
/* we should use pci_enable_device here, but,
the device doesn't declare its I/O ports in its BARs
so pci_enable_device won't turn on I/O responses */
pci_read_config_word(dp, PCI_COMMAND, &cmd);
cmd |= 3; /* enable memory and IO space */
pci_write_config_word(dp, PCI_COMMAND, cmd);
#ifdef CONFIG_PMAC_BACKLIGHT
/* turn on the backlight */
mutex_lock(&pmac_backlight_mutex);
if (pmac_backlight) {
pmac_backlight->props.power = FB_BLANK_UNBLANK;
backlight_update_status(pmac_backlight);
}
mutex_unlock(&pmac_backlight_mutex);
#endif /* CONFIG_PMAC_BACKLIGHT */
#ifdef CONFIG_PPC
p->screen_base = __ioremap(addr, 0x200000, _PAGE_NO_CACHE);
#else
p->screen_base = ioremap(addr, 0x200000);
#endif
if (p->screen_base == NULL) {
dev_err(&dp->dev, "Cannot map framebuffer\n");
rc = -ENOMEM;
goto err_release_pci;
}
pci_set_drvdata(dp, p);
init_chips(p, addr);
if (register_framebuffer(p) < 0) {
dev_err(&dp->dev,"C&T 65550 framebuffer failed to register\n");
goto err_unmap;
}
dev_info(&dp->dev,"fb%d: Chips 65550 frame buffer"
" (%dK RAM detected)\n",
p->node, p->fix.smem_len / 1024);
return 0;
err_unmap:
iounmap(p->screen_base);
err_release_pci:
pci_release_region(dp, 0);
err_release_fb:
framebuffer_release(p);
err_disable:
err_out:
return rc;
}
static void __devexit chipsfb_remove(struct pci_dev *dp)
{
struct fb_info *p = pci_get_drvdata(dp);
if (p->screen_base == NULL)
return;
unregister_framebuffer(p);
iounmap(p->screen_base);
p->screen_base = NULL;
pci_release_region(dp, 0);
}
#ifdef CONFIG_PM
static int chipsfb_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct fb_info *p = pci_get_drvdata(pdev);
if (state.event == pdev->dev.power.power_state.event)
return 0;
if (!(state.event & PM_EVENT_SLEEP))
goto done;
acquire_console_sem();
chipsfb_blank(1, p);
fb_set_suspend(p, 1);
release_console_sem();
done:
pdev->dev.power.power_state = state;
return 0;
}
static int chipsfb_pci_resume(struct pci_dev *pdev)
{
struct fb_info *p = pci_get_drvdata(pdev);
acquire_console_sem();
fb_set_suspend(p, 0);
chipsfb_blank(0, p);
release_console_sem();
pdev->dev.power.power_state = PMSG_ON;
return 0;
}
#endif /* CONFIG_PM */
static struct pci_device_id chipsfb_pci_tbl[] = {
{ PCI_VENDOR_ID_CT, PCI_DEVICE_ID_CT_65550, PCI_ANY_ID, PCI_ANY_ID },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, chipsfb_pci_tbl);
static struct pci_driver chipsfb_driver = {
.name = "chipsfb",
.id_table = chipsfb_pci_tbl,
.probe = chipsfb_pci_init,
.remove = __devexit_p(chipsfb_remove),
#ifdef CONFIG_PM
.suspend = chipsfb_pci_suspend,
.resume = chipsfb_pci_resume,
#endif
};
int __init chips_init(void)
{
if (fb_get_options("chipsfb", NULL))
return -ENODEV;
return pci_register_driver(&chipsfb_driver);
}
module_init(chips_init);
static void __exit chipsfb_exit(void)
{
pci_unregister_driver(&chipsfb_driver);
}
MODULE_LICENSE("GPL");