android_kernel_xiaomi_sm8350/arch/x86/mm/ioremap.c
Christoph Lameter 2301696932 vmallocinfo: add caller information
Add caller information so that /proc/vmallocinfo shows where the allocation
request for a slice of vmalloc memory originated.

Results in output like this:

0xffffc20000000000-0xffffc20000801000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages
0xffffc20000801000-0xffffc20000806000   20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc
0xffffc20000806000-0xffffc20000c07000 4198400 alloc_large_system_hash+0x127/0x246 pages=1024 vmalloc vpages
0xffffc20000c07000-0xffffc20000c0a000   12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc
0xffffc20000c0a000-0xffffc20000c0c000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
0xffffc20000c0c000-0xffffc20000c0f000   12288 acpi_os_map_memory+0x13/0x1c phys=cff64000 ioremap
0xffffc20000c10000-0xffffc20000c15000   20480 acpi_os_map_memory+0x13/0x1c phys=cff65000 ioremap
0xffffc20000c16000-0xffffc20000c18000    8192 acpi_os_map_memory+0x13/0x1c phys=cff69000 ioremap
0xffffc20000c18000-0xffffc20000c1a000    8192 acpi_os_map_memory+0x13/0x1c phys=fed1f000 ioremap
0xffffc20000c1a000-0xffffc20000c1c000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
0xffffc20000c1c000-0xffffc20000c1e000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
0xffffc20000c1e000-0xffffc20000c20000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
0xffffc20000c20000-0xffffc20000c22000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
0xffffc20000c22000-0xffffc20000c24000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
0xffffc20000c24000-0xffffc20000c26000    8192 acpi_os_map_memory+0x13/0x1c phys=e0081000 ioremap
0xffffc20000c26000-0xffffc20000c28000    8192 acpi_os_map_memory+0x13/0x1c phys=e0080000 ioremap
0xffffc20000c28000-0xffffc20000c2d000   20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc
0xffffc20000c2d000-0xffffc20000c31000   16384 tcp_init+0xd5/0x31c pages=3 vmalloc
0xffffc20000c31000-0xffffc20000c34000   12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc
0xffffc20000c34000-0xffffc20000c36000    8192 init_vdso_vars+0xde/0x1f1
0xffffc20000c36000-0xffffc20000c38000    8192 pci_iomap+0x8a/0xb4 phys=d8e00000 ioremap
0xffffc20000c38000-0xffffc20000c3a000    8192 usb_hcd_pci_probe+0x139/0x295 [usbcore] phys=d8e00000 ioremap
0xffffc20000c3a000-0xffffc20000c3e000   16384 sys_swapon+0x509/0xa15 pages=3 vmalloc
0xffffc20000c40000-0xffffc20000c61000  135168 e1000_probe+0x1c4/0xa32 phys=d8a20000 ioremap
0xffffc20000c61000-0xffffc20000c6a000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc20000c6a000-0xffffc20000c73000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc20000c73000-0xffffc20000c7c000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc20000c7c000-0xffffc20000c7f000   12288 e1000e_setup_tx_resources+0x29/0xbe pages=2 vmalloc
0xffffc20000c80000-0xffffc20001481000 8392704 pci_mmcfg_arch_init+0x90/0x118 phys=e0000000 ioremap
0xffffc20001481000-0xffffc20001682000 2101248 alloc_large_system_hash+0x127/0x246 pages=512 vmalloc
0xffffc20001682000-0xffffc20001e83000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages
0xffffc20001e83000-0xffffc20002204000 3674112 alloc_large_system_hash+0x127/0x246 pages=896 vmalloc vpages
0xffffc20002204000-0xffffc2000220d000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc2000220d000-0xffffc20002216000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc20002216000-0xffffc2000221f000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc2000221f000-0xffffc20002228000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc20002228000-0xffffc20002231000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
0xffffc20002231000-0xffffc20002234000   12288 e1000e_setup_rx_resources+0x35/0x122 pages=2 vmalloc
0xffffc20002240000-0xffffc20002261000  135168 e1000_probe+0x1c4/0xa32 phys=d8a60000 ioremap
0xffffc20002261000-0xffffc2000270c000 4894720 sys_swapon+0x509/0xa15 pages=1194 vmalloc vpages
0xffffffffa0000000-0xffffffffa0022000  139264 module_alloc+0x4f/0x55 pages=33 vmalloc
0xffffffffa0022000-0xffffffffa0029000   28672 module_alloc+0x4f/0x55 pages=6 vmalloc
0xffffffffa002b000-0xffffffffa0034000   36864 module_alloc+0x4f/0x55 pages=8 vmalloc
0xffffffffa0034000-0xffffffffa003d000   36864 module_alloc+0x4f/0x55 pages=8 vmalloc
0xffffffffa003d000-0xffffffffa0049000   49152 module_alloc+0x4f/0x55 pages=11 vmalloc
0xffffffffa0049000-0xffffffffa0050000   28672 module_alloc+0x4f/0x55 pages=6 vmalloc

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:21 -07:00

616 lines
14 KiB
C

/*
* Re-map IO memory to kernel address space so that we can access it.
* This is needed for high PCI addresses that aren't mapped in the
* 640k-1MB IO memory area on PC's
*
* (C) Copyright 1995 1996 Linus Torvalds
*/
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <asm/cacheflush.h>
#include <asm/e820.h>
#include <asm/fixmap.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/pgalloc.h>
#include <asm/pat.h>
#ifdef CONFIG_X86_64
unsigned long __phys_addr(unsigned long x)
{
if (x >= __START_KERNEL_map)
return x - __START_KERNEL_map + phys_base;
return x - PAGE_OFFSET;
}
EXPORT_SYMBOL(__phys_addr);
static inline int phys_addr_valid(unsigned long addr)
{
return addr < (1UL << boot_cpu_data.x86_phys_bits);
}
#else
static inline int phys_addr_valid(unsigned long addr)
{
return 1;
}
#endif
int page_is_ram(unsigned long pagenr)
{
resource_size_t addr, end;
int i;
/*
* A special case is the first 4Kb of memory;
* This is a BIOS owned area, not kernel ram, but generally
* not listed as such in the E820 table.
*/
if (pagenr == 0)
return 0;
/*
* Second special case: Some BIOSen report the PC BIOS
* area (640->1Mb) as ram even though it is not.
*/
if (pagenr >= (BIOS_BEGIN >> PAGE_SHIFT) &&
pagenr < (BIOS_END >> PAGE_SHIFT))
return 0;
for (i = 0; i < e820.nr_map; i++) {
/*
* Not usable memory:
*/
if (e820.map[i].type != E820_RAM)
continue;
addr = (e820.map[i].addr + PAGE_SIZE-1) >> PAGE_SHIFT;
end = (e820.map[i].addr + e820.map[i].size) >> PAGE_SHIFT;
if ((pagenr >= addr) && (pagenr < end))
return 1;
}
return 0;
}
/*
* Fix up the linear direct mapping of the kernel to avoid cache attribute
* conflicts.
*/
int ioremap_change_attr(unsigned long vaddr, unsigned long size,
unsigned long prot_val)
{
unsigned long nrpages = size >> PAGE_SHIFT;
int err;
switch (prot_val) {
case _PAGE_CACHE_UC:
default:
err = _set_memory_uc(vaddr, nrpages);
break;
case _PAGE_CACHE_WC:
err = _set_memory_wc(vaddr, nrpages);
break;
case _PAGE_CACHE_WB:
err = _set_memory_wb(vaddr, nrpages);
break;
}
return err;
}
/*
* Remap an arbitrary physical address space into the kernel virtual
* address space. Needed when the kernel wants to access high addresses
* directly.
*
* NOTE! We need to allow non-page-aligned mappings too: we will obviously
* have to convert them into an offset in a page-aligned mapping, but the
* caller shouldn't need to know that small detail.
*/
static void __iomem *__ioremap_caller(resource_size_t phys_addr,
unsigned long size, unsigned long prot_val, void *caller)
{
unsigned long pfn, offset, vaddr;
resource_size_t last_addr;
struct vm_struct *area;
unsigned long new_prot_val;
pgprot_t prot;
int retval;
/* Don't allow wraparound or zero size */
last_addr = phys_addr + size - 1;
if (!size || last_addr < phys_addr)
return NULL;
if (!phys_addr_valid(phys_addr)) {
printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
(unsigned long long)phys_addr);
WARN_ON_ONCE(1);
return NULL;
}
/*
* Don't remap the low PCI/ISA area, it's always mapped..
*/
if (phys_addr >= ISA_START_ADDRESS && last_addr < ISA_END_ADDRESS)
return (__force void __iomem *)phys_to_virt(phys_addr);
/*
* Don't allow anybody to remap normal RAM that we're using..
*/
for (pfn = phys_addr >> PAGE_SHIFT;
(pfn << PAGE_SHIFT) < last_addr; pfn++) {
int is_ram = page_is_ram(pfn);
if (is_ram && pfn_valid(pfn) && !PageReserved(pfn_to_page(pfn)))
return NULL;
WARN_ON_ONCE(is_ram);
}
/*
* Mappings have to be page-aligned
*/
offset = phys_addr & ~PAGE_MASK;
phys_addr &= PAGE_MASK;
size = PAGE_ALIGN(last_addr+1) - phys_addr;
retval = reserve_memtype(phys_addr, phys_addr + size,
prot_val, &new_prot_val);
if (retval) {
pr_debug("Warning: reserve_memtype returned %d\n", retval);
return NULL;
}
if (prot_val != new_prot_val) {
/*
* Do not fallback to certain memory types with certain
* requested type:
* - request is uncached, return cannot be write-back
* - request is uncached, return cannot be write-combine
* - request is write-combine, return cannot be write-back
*/
if ((prot_val == _PAGE_CACHE_UC &&
(new_prot_val == _PAGE_CACHE_WB ||
new_prot_val == _PAGE_CACHE_WC)) ||
(prot_val == _PAGE_CACHE_WC &&
new_prot_val == _PAGE_CACHE_WB)) {
pr_debug(
"ioremap error for 0x%llx-0x%llx, requested 0x%lx, got 0x%lx\n",
(unsigned long long)phys_addr,
(unsigned long long)(phys_addr + size),
prot_val, new_prot_val);
free_memtype(phys_addr, phys_addr + size);
return NULL;
}
prot_val = new_prot_val;
}
switch (prot_val) {
case _PAGE_CACHE_UC:
default:
prot = PAGE_KERNEL_NOCACHE;
break;
case _PAGE_CACHE_WC:
prot = PAGE_KERNEL_WC;
break;
case _PAGE_CACHE_WB:
prot = PAGE_KERNEL;
break;
}
/*
* Ok, go for it..
*/
area = get_vm_area_caller(size, VM_IOREMAP, caller);
if (!area)
return NULL;
area->phys_addr = phys_addr;
vaddr = (unsigned long) area->addr;
if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) {
free_memtype(phys_addr, phys_addr + size);
free_vm_area(area);
return NULL;
}
if (ioremap_change_attr(vaddr, size, prot_val) < 0) {
free_memtype(phys_addr, phys_addr + size);
vunmap(area->addr);
return NULL;
}
return (void __iomem *) (vaddr + offset);
}
/**
* ioremap_nocache - map bus memory into CPU space
* @offset: bus address of the memory
* @size: size of the resource to map
*
* ioremap_nocache performs a platform specific sequence of operations to
* make bus memory CPU accessible via the readb/readw/readl/writeb/
* writew/writel functions and the other mmio helpers. The returned
* address is not guaranteed to be usable directly as a virtual
* address.
*
* This version of ioremap ensures that the memory is marked uncachable
* on the CPU as well as honouring existing caching rules from things like
* the PCI bus. Note that there are other caches and buffers on many
* busses. In particular driver authors should read up on PCI writes
*
* It's useful if some control registers are in such an area and
* write combining or read caching is not desirable:
*
* Must be freed with iounmap.
*/
void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
{
return __ioremap_caller(phys_addr, size, _PAGE_CACHE_UC,
__builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap_nocache);
/**
* ioremap_wc - map memory into CPU space write combined
* @offset: bus address of the memory
* @size: size of the resource to map
*
* This version of ioremap ensures that the memory is marked write combining.
* Write combining allows faster writes to some hardware devices.
*
* Must be freed with iounmap.
*/
void __iomem *ioremap_wc(unsigned long phys_addr, unsigned long size)
{
if (pat_wc_enabled)
return __ioremap_caller(phys_addr, size, _PAGE_CACHE_WC,
__builtin_return_address(0));
else
return ioremap_nocache(phys_addr, size);
}
EXPORT_SYMBOL(ioremap_wc);
void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
{
return __ioremap_caller(phys_addr, size, _PAGE_CACHE_WB,
__builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap_cache);
/**
* iounmap - Free a IO remapping
* @addr: virtual address from ioremap_*
*
* Caller must ensure there is only one unmapping for the same pointer.
*/
void iounmap(volatile void __iomem *addr)
{
struct vm_struct *p, *o;
if ((void __force *)addr <= high_memory)
return;
/*
* __ioremap special-cases the PCI/ISA range by not instantiating a
* vm_area and by simply returning an address into the kernel mapping
* of ISA space. So handle that here.
*/
if (addr >= phys_to_virt(ISA_START_ADDRESS) &&
addr < phys_to_virt(ISA_END_ADDRESS))
return;
addr = (volatile void __iomem *)
(PAGE_MASK & (unsigned long __force)addr);
/* Use the vm area unlocked, assuming the caller
ensures there isn't another iounmap for the same address
in parallel. Reuse of the virtual address is prevented by
leaving it in the global lists until we're done with it.
cpa takes care of the direct mappings. */
read_lock(&vmlist_lock);
for (p = vmlist; p; p = p->next) {
if (p->addr == addr)
break;
}
read_unlock(&vmlist_lock);
if (!p) {
printk(KERN_ERR "iounmap: bad address %p\n", addr);
dump_stack();
return;
}
free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
/* Finally remove it */
o = remove_vm_area((void *)addr);
BUG_ON(p != o || o == NULL);
kfree(p);
}
EXPORT_SYMBOL(iounmap);
/*
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
* access
*/
void *xlate_dev_mem_ptr(unsigned long phys)
{
void *addr;
unsigned long start = phys & PAGE_MASK;
/* If page is RAM, we can use __va. Otherwise ioremap and unmap. */
if (page_is_ram(start >> PAGE_SHIFT))
return __va(phys);
addr = (void *)ioremap(start, PAGE_SIZE);
if (addr)
addr = (void *)((unsigned long)addr | (phys & ~PAGE_MASK));
return addr;
}
void unxlate_dev_mem_ptr(unsigned long phys, void *addr)
{
if (page_is_ram(phys >> PAGE_SHIFT))
return;
iounmap((void __iomem *)((unsigned long)addr & PAGE_MASK));
return;
}
#ifdef CONFIG_X86_32
int __initdata early_ioremap_debug;
static int __init early_ioremap_debug_setup(char *str)
{
early_ioremap_debug = 1;
return 0;
}
early_param("early_ioremap_debug", early_ioremap_debug_setup);
static __initdata int after_paging_init;
static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)]
__section(.bss.page_aligned);
static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
{
/* Don't assume we're using swapper_pg_dir at this point */
pgd_t *base = __va(read_cr3());
pgd_t *pgd = &base[pgd_index(addr)];
pud_t *pud = pud_offset(pgd, addr);
pmd_t *pmd = pmd_offset(pud, addr);
return pmd;
}
static inline pte_t * __init early_ioremap_pte(unsigned long addr)
{
return &bm_pte[pte_index(addr)];
}
void __init early_ioremap_init(void)
{
pmd_t *pmd;
if (early_ioremap_debug)
printk(KERN_INFO "early_ioremap_init()\n");
pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
memset(bm_pte, 0, sizeof(bm_pte));
pmd_populate_kernel(&init_mm, pmd, bm_pte);
/*
* The boot-ioremap range spans multiple pmds, for which
* we are not prepared:
*/
if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
WARN_ON(1);
printk(KERN_WARNING "pmd %p != %p\n",
pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
fix_to_virt(FIX_BTMAP_BEGIN));
printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
fix_to_virt(FIX_BTMAP_END));
printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
FIX_BTMAP_BEGIN);
}
}
void __init early_ioremap_clear(void)
{
pmd_t *pmd;
if (early_ioremap_debug)
printk(KERN_INFO "early_ioremap_clear()\n");
pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
pmd_clear(pmd);
paravirt_release_pte(__pa(bm_pte) >> PAGE_SHIFT);
__flush_tlb_all();
}
void __init early_ioremap_reset(void)
{
enum fixed_addresses idx;
unsigned long addr, phys;
pte_t *pte;
after_paging_init = 1;
for (idx = FIX_BTMAP_BEGIN; idx >= FIX_BTMAP_END; idx--) {
addr = fix_to_virt(idx);
pte = early_ioremap_pte(addr);
if (pte_present(*pte)) {
phys = pte_val(*pte) & PAGE_MASK;
set_fixmap(idx, phys);
}
}
}
static void __init __early_set_fixmap(enum fixed_addresses idx,
unsigned long phys, pgprot_t flags)
{
unsigned long addr = __fix_to_virt(idx);
pte_t *pte;
if (idx >= __end_of_fixed_addresses) {
BUG();
return;
}
pte = early_ioremap_pte(addr);
if (pgprot_val(flags))
set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
else
pte_clear(NULL, addr, pte);
__flush_tlb_one(addr);
}
static inline void __init early_set_fixmap(enum fixed_addresses idx,
unsigned long phys)
{
if (after_paging_init)
set_fixmap(idx, phys);
else
__early_set_fixmap(idx, phys, PAGE_KERNEL);
}
static inline void __init early_clear_fixmap(enum fixed_addresses idx)
{
if (after_paging_init)
clear_fixmap(idx);
else
__early_set_fixmap(idx, 0, __pgprot(0));
}
int __initdata early_ioremap_nested;
static int __init check_early_ioremap_leak(void)
{
if (!early_ioremap_nested)
return 0;
printk(KERN_WARNING
"Debug warning: early ioremap leak of %d areas detected.\n",
early_ioremap_nested);
printk(KERN_WARNING
"please boot with early_ioremap_debug and report the dmesg.\n");
WARN_ON(1);
return 1;
}
late_initcall(check_early_ioremap_leak);
void __init *early_ioremap(unsigned long phys_addr, unsigned long size)
{
unsigned long offset, last_addr;
unsigned int nrpages, nesting;
enum fixed_addresses idx0, idx;
WARN_ON(system_state != SYSTEM_BOOTING);
nesting = early_ioremap_nested;
if (early_ioremap_debug) {
printk(KERN_INFO "early_ioremap(%08lx, %08lx) [%d] => ",
phys_addr, size, nesting);
dump_stack();
}
/* Don't allow wraparound or zero size */
last_addr = phys_addr + size - 1;
if (!size || last_addr < phys_addr) {
WARN_ON(1);
return NULL;
}
if (nesting >= FIX_BTMAPS_NESTING) {
WARN_ON(1);
return NULL;
}
early_ioremap_nested++;
/*
* Mappings have to be page-aligned
*/
offset = phys_addr & ~PAGE_MASK;
phys_addr &= PAGE_MASK;
size = PAGE_ALIGN(last_addr) - phys_addr;
/*
* Mappings have to fit in the FIX_BTMAP area.
*/
nrpages = size >> PAGE_SHIFT;
if (nrpages > NR_FIX_BTMAPS) {
WARN_ON(1);
return NULL;
}
/*
* Ok, go for it..
*/
idx0 = FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*nesting;
idx = idx0;
while (nrpages > 0) {
early_set_fixmap(idx, phys_addr);
phys_addr += PAGE_SIZE;
--idx;
--nrpages;
}
if (early_ioremap_debug)
printk(KERN_CONT "%08lx + %08lx\n", offset, fix_to_virt(idx0));
return (void *) (offset + fix_to_virt(idx0));
}
void __init early_iounmap(void *addr, unsigned long size)
{
unsigned long virt_addr;
unsigned long offset;
unsigned int nrpages;
enum fixed_addresses idx;
unsigned int nesting;
nesting = --early_ioremap_nested;
WARN_ON(nesting < 0);
if (early_ioremap_debug) {
printk(KERN_INFO "early_iounmap(%p, %08lx) [%d]\n", addr,
size, nesting);
dump_stack();
}
virt_addr = (unsigned long)addr;
if (virt_addr < fix_to_virt(FIX_BTMAP_BEGIN)) {
WARN_ON(1);
return;
}
offset = virt_addr & ~PAGE_MASK;
nrpages = PAGE_ALIGN(offset + size - 1) >> PAGE_SHIFT;
idx = FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*nesting;
while (nrpages > 0) {
early_clear_fixmap(idx);
--idx;
--nrpages;
}
}
void __this_fixmap_does_not_exist(void)
{
WARN_ON(1);
}
#endif /* CONFIG_X86_32 */