android_kernel_xiaomi_sm8350/net/sctp/socket.c
Hideo Aoki 3ab224be6d [NET] CORE: Introducing new memory accounting interface.
This patch introduces new memory accounting functions for each network
protocol. Most of them are renamed from memory accounting functions
for stream protocols. At the same time, some stream memory accounting
functions are removed since other functions do same thing.

Renaming:
	sk_stream_free_skb()		->	sk_wmem_free_skb()
	__sk_stream_mem_reclaim()	->	__sk_mem_reclaim()
	sk_stream_mem_reclaim()		->	sk_mem_reclaim()
	sk_stream_mem_schedule 		->    	__sk_mem_schedule()
	sk_stream_pages()      		->	sk_mem_pages()
	sk_stream_rmem_schedule()	->	sk_rmem_schedule()
	sk_stream_wmem_schedule()	->	sk_wmem_schedule()
	sk_charge_skb()			->	sk_mem_charge()

Removeing
	sk_stream_rfree():	consolidates into sock_rfree()
	sk_stream_set_owner_r(): consolidates into skb_set_owner_r()
	sk_stream_mem_schedule()

The following functions are added.
    	sk_has_account(): check if the protocol supports accounting
	sk_mem_uncharge(): do the opposite of sk_mem_charge()

In addition, to achieve consolidation, updating sk_wmem_queued is
removed from sk_mem_charge().

Next, to consolidate memory accounting functions, this patch adds
memory accounting calls to network core functions. Moreover, present
memory accounting call is renamed to new accounting call.

Finally we replace present memory accounting calls with new interface
in TCP and SCTP.

Signed-off-by: Takahiro Yasui <tyasui@redhat.com>
Signed-off-by: Hideo Aoki <haoki@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-01-28 15:00:18 -08:00

6520 lines
182 KiB
C

/* SCTP kernel reference Implementation
* (C) Copyright IBM Corp. 2001, 2004
* Copyright (c) 1999-2000 Cisco, Inc.
* Copyright (c) 1999-2001 Motorola, Inc.
* Copyright (c) 2001-2003 Intel Corp.
* Copyright (c) 2001-2002 Nokia, Inc.
* Copyright (c) 2001 La Monte H.P. Yarroll
*
* This file is part of the SCTP kernel reference Implementation
*
* These functions interface with the sockets layer to implement the
* SCTP Extensions for the Sockets API.
*
* Note that the descriptions from the specification are USER level
* functions--this file is the functions which populate the struct proto
* for SCTP which is the BOTTOM of the sockets interface.
*
* The SCTP reference implementation is free software;
* you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* The SCTP reference implementation is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* ************************
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU CC; see the file COPYING. If not, write to
* the Free Software Foundation, 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*
* Please send any bug reports or fixes you make to the
* email address(es):
* lksctp developers <lksctp-developers@lists.sourceforge.net>
*
* Or submit a bug report through the following website:
* http://www.sf.net/projects/lksctp
*
* Written or modified by:
* La Monte H.P. Yarroll <piggy@acm.org>
* Narasimha Budihal <narsi@refcode.org>
* Karl Knutson <karl@athena.chicago.il.us>
* Jon Grimm <jgrimm@us.ibm.com>
* Xingang Guo <xingang.guo@intel.com>
* Daisy Chang <daisyc@us.ibm.com>
* Sridhar Samudrala <samudrala@us.ibm.com>
* Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
* Ardelle Fan <ardelle.fan@intel.com>
* Ryan Layer <rmlayer@us.ibm.com>
* Anup Pemmaiah <pemmaiah@cc.usu.edu>
* Kevin Gao <kevin.gao@intel.com>
*
* Any bugs reported given to us we will try to fix... any fixes shared will
* be incorporated into the next SCTP release.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/wait.h>
#include <linux/time.h>
#include <linux/ip.h>
#include <linux/capability.h>
#include <linux/fcntl.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/crypto.h>
#include <net/ip.h>
#include <net/icmp.h>
#include <net/route.h>
#include <net/ipv6.h>
#include <net/inet_common.h>
#include <linux/socket.h> /* for sa_family_t */
#include <net/sock.h>
#include <net/sctp/sctp.h>
#include <net/sctp/sm.h>
/* WARNING: Please do not remove the SCTP_STATIC attribute to
* any of the functions below as they are used to export functions
* used by a project regression testsuite.
*/
/* Forward declarations for internal helper functions. */
static int sctp_writeable(struct sock *sk);
static void sctp_wfree(struct sk_buff *skb);
static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
size_t msg_len);
static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
static int sctp_wait_for_accept(struct sock *sk, long timeo);
static void sctp_wait_for_close(struct sock *sk, long timeo);
static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
union sctp_addr *addr, int len);
static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
static int sctp_send_asconf(struct sctp_association *asoc,
struct sctp_chunk *chunk);
static int sctp_do_bind(struct sock *, union sctp_addr *, int);
static int sctp_autobind(struct sock *sk);
static void sctp_sock_migrate(struct sock *, struct sock *,
struct sctp_association *, sctp_socket_type_t);
static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
extern struct kmem_cache *sctp_bucket_cachep;
extern int sysctl_sctp_mem[3];
extern int sysctl_sctp_rmem[3];
extern int sysctl_sctp_wmem[3];
static int sctp_memory_pressure;
static atomic_t sctp_memory_allocated;
static atomic_t sctp_sockets_allocated;
static void sctp_enter_memory_pressure(void)
{
sctp_memory_pressure = 1;
}
/* Get the sndbuf space available at the time on the association. */
static inline int sctp_wspace(struct sctp_association *asoc)
{
int amt;
if (asoc->ep->sndbuf_policy)
amt = asoc->sndbuf_used;
else
amt = atomic_read(&asoc->base.sk->sk_wmem_alloc);
if (amt >= asoc->base.sk->sk_sndbuf) {
if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
amt = 0;
else {
amt = sk_stream_wspace(asoc->base.sk);
if (amt < 0)
amt = 0;
}
} else {
amt = asoc->base.sk->sk_sndbuf - amt;
}
return amt;
}
/* Increment the used sndbuf space count of the corresponding association by
* the size of the outgoing data chunk.
* Also, set the skb destructor for sndbuf accounting later.
*
* Since it is always 1-1 between chunk and skb, and also a new skb is always
* allocated for chunk bundling in sctp_packet_transmit(), we can use the
* destructor in the data chunk skb for the purpose of the sndbuf space
* tracking.
*/
static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
{
struct sctp_association *asoc = chunk->asoc;
struct sock *sk = asoc->base.sk;
/* The sndbuf space is tracked per association. */
sctp_association_hold(asoc);
skb_set_owner_w(chunk->skb, sk);
chunk->skb->destructor = sctp_wfree;
/* Save the chunk pointer in skb for sctp_wfree to use later. */
*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
sizeof(struct sk_buff) +
sizeof(struct sctp_chunk);
atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
sk->sk_wmem_queued += chunk->skb->truesize;
sk_mem_charge(sk, chunk->skb->truesize);
}
/* Verify that this is a valid address. */
static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
int len)
{
struct sctp_af *af;
/* Verify basic sockaddr. */
af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
if (!af)
return -EINVAL;
/* Is this a valid SCTP address? */
if (!af->addr_valid(addr, sctp_sk(sk), NULL))
return -EINVAL;
if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
return -EINVAL;
return 0;
}
/* Look up the association by its id. If this is not a UDP-style
* socket, the ID field is always ignored.
*/
struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
{
struct sctp_association *asoc = NULL;
/* If this is not a UDP-style socket, assoc id should be ignored. */
if (!sctp_style(sk, UDP)) {
/* Return NULL if the socket state is not ESTABLISHED. It
* could be a TCP-style listening socket or a socket which
* hasn't yet called connect() to establish an association.
*/
if (!sctp_sstate(sk, ESTABLISHED))
return NULL;
/* Get the first and the only association from the list. */
if (!list_empty(&sctp_sk(sk)->ep->asocs))
asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
struct sctp_association, asocs);
return asoc;
}
/* Otherwise this is a UDP-style socket. */
if (!id || (id == (sctp_assoc_t)-1))
return NULL;
spin_lock_bh(&sctp_assocs_id_lock);
asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
spin_unlock_bh(&sctp_assocs_id_lock);
if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
return NULL;
return asoc;
}
/* Look up the transport from an address and an assoc id. If both address and
* id are specified, the associations matching the address and the id should be
* the same.
*/
static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
struct sockaddr_storage *addr,
sctp_assoc_t id)
{
struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
struct sctp_transport *transport;
union sctp_addr *laddr = (union sctp_addr *)addr;
addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
laddr,
&transport);
if (!addr_asoc)
return NULL;
id_asoc = sctp_id2assoc(sk, id);
if (id_asoc && (id_asoc != addr_asoc))
return NULL;
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
(union sctp_addr *)addr);
return transport;
}
/* API 3.1.2 bind() - UDP Style Syntax
* The syntax of bind() is,
*
* ret = bind(int sd, struct sockaddr *addr, int addrlen);
*
* sd - the socket descriptor returned by socket().
* addr - the address structure (struct sockaddr_in or struct
* sockaddr_in6 [RFC 2553]),
* addr_len - the size of the address structure.
*/
SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
{
int retval = 0;
sctp_lock_sock(sk);
SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
sk, addr, addr_len);
/* Disallow binding twice. */
if (!sctp_sk(sk)->ep->base.bind_addr.port)
retval = sctp_do_bind(sk, (union sctp_addr *)addr,
addr_len);
else
retval = -EINVAL;
sctp_release_sock(sk);
return retval;
}
static long sctp_get_port_local(struct sock *, union sctp_addr *);
/* Verify this is a valid sockaddr. */
static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
union sctp_addr *addr, int len)
{
struct sctp_af *af;
/* Check minimum size. */
if (len < sizeof (struct sockaddr))
return NULL;
/* Does this PF support this AF? */
if (!opt->pf->af_supported(addr->sa.sa_family, opt))
return NULL;
/* If we get this far, af is valid. */
af = sctp_get_af_specific(addr->sa.sa_family);
if (len < af->sockaddr_len)
return NULL;
return af;
}
/* Bind a local address either to an endpoint or to an association. */
SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
struct sctp_bind_addr *bp = &ep->base.bind_addr;
struct sctp_af *af;
unsigned short snum;
int ret = 0;
/* Common sockaddr verification. */
af = sctp_sockaddr_af(sp, addr, len);
if (!af) {
SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
sk, addr, len);
return -EINVAL;
}
snum = ntohs(addr->v4.sin_port);
SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
", port: %d, new port: %d, len: %d)\n",
sk,
addr,
bp->port, snum,
len);
/* PF specific bind() address verification. */
if (!sp->pf->bind_verify(sp, addr))
return -EADDRNOTAVAIL;
/* We must either be unbound, or bind to the same port.
* It's OK to allow 0 ports if we are already bound.
* We'll just inhert an already bound port in this case
*/
if (bp->port) {
if (!snum)
snum = bp->port;
else if (snum != bp->port) {
SCTP_DEBUG_PRINTK("sctp_do_bind:"
" New port %d does not match existing port "
"%d.\n", snum, bp->port);
return -EINVAL;
}
}
if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
return -EACCES;
/* Make sure we are allowed to bind here.
* The function sctp_get_port_local() does duplicate address
* detection.
*/
addr->v4.sin_port = htons(snum);
if ((ret = sctp_get_port_local(sk, addr))) {
if (ret == (long) sk) {
/* This endpoint has a conflicting address. */
return -EINVAL;
} else {
return -EADDRINUSE;
}
}
/* Refresh ephemeral port. */
if (!bp->port)
bp->port = inet_sk(sk)->num;
/* Add the address to the bind address list.
* Use GFP_ATOMIC since BHs will be disabled.
*/
ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
/* Copy back into socket for getsockname() use. */
if (!ret) {
inet_sk(sk)->sport = htons(inet_sk(sk)->num);
af->to_sk_saddr(addr, sk);
}
return ret;
}
/* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
*
* R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
* at any one time. If a sender, after sending an ASCONF chunk, decides
* it needs to transfer another ASCONF Chunk, it MUST wait until the
* ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
* subsequent ASCONF. Note this restriction binds each side, so at any
* time two ASCONF may be in-transit on any given association (one sent
* from each endpoint).
*/
static int sctp_send_asconf(struct sctp_association *asoc,
struct sctp_chunk *chunk)
{
int retval = 0;
/* If there is an outstanding ASCONF chunk, queue it for later
* transmission.
*/
if (asoc->addip_last_asconf) {
list_add_tail(&chunk->list, &asoc->addip_chunk_list);
goto out;
}
/* Hold the chunk until an ASCONF_ACK is received. */
sctp_chunk_hold(chunk);
retval = sctp_primitive_ASCONF(asoc, chunk);
if (retval)
sctp_chunk_free(chunk);
else
asoc->addip_last_asconf = chunk;
out:
return retval;
}
/* Add a list of addresses as bind addresses to local endpoint or
* association.
*
* Basically run through each address specified in the addrs/addrcnt
* array/length pair, determine if it is IPv6 or IPv4 and call
* sctp_do_bind() on it.
*
* If any of them fails, then the operation will be reversed and the
* ones that were added will be removed.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
{
int cnt;
int retval = 0;
void *addr_buf;
struct sockaddr *sa_addr;
struct sctp_af *af;
SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
sk, addrs, addrcnt);
addr_buf = addrs;
for (cnt = 0; cnt < addrcnt; cnt++) {
/* The list may contain either IPv4 or IPv6 address;
* determine the address length for walking thru the list.
*/
sa_addr = (struct sockaddr *)addr_buf;
af = sctp_get_af_specific(sa_addr->sa_family);
if (!af) {
retval = -EINVAL;
goto err_bindx_add;
}
retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
af->sockaddr_len);
addr_buf += af->sockaddr_len;
err_bindx_add:
if (retval < 0) {
/* Failed. Cleanup the ones that have been added */
if (cnt > 0)
sctp_bindx_rem(sk, addrs, cnt);
return retval;
}
}
return retval;
}
/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
* associations that are part of the endpoint indicating that a list of local
* addresses are added to the endpoint.
*
* If any of the addresses is already in the bind address list of the
* association, we do not send the chunk for that association. But it will not
* affect other associations.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
static int sctp_send_asconf_add_ip(struct sock *sk,
struct sockaddr *addrs,
int addrcnt)
{
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sctp_association *asoc;
struct sctp_bind_addr *bp;
struct sctp_chunk *chunk;
struct sctp_sockaddr_entry *laddr;
union sctp_addr *addr;
union sctp_addr saveaddr;
void *addr_buf;
struct sctp_af *af;
struct list_head *pos;
struct list_head *p;
int i;
int retval = 0;
if (!sctp_addip_enable)
return retval;
sp = sctp_sk(sk);
ep = sp->ep;
SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
__FUNCTION__, sk, addrs, addrcnt);
list_for_each(pos, &ep->asocs) {
asoc = list_entry(pos, struct sctp_association, asocs);
if (!asoc->peer.asconf_capable)
continue;
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
continue;
if (!sctp_state(asoc, ESTABLISHED))
continue;
/* Check if any address in the packed array of addresses is
* in the bind address list of the association. If so,
* do not send the asconf chunk to its peer, but continue with
* other associations.
*/
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
addr = (union sctp_addr *)addr_buf;
af = sctp_get_af_specific(addr->v4.sin_family);
if (!af) {
retval = -EINVAL;
goto out;
}
if (sctp_assoc_lookup_laddr(asoc, addr))
break;
addr_buf += af->sockaddr_len;
}
if (i < addrcnt)
continue;
/* Use the first valid address in bind addr list of
* association as Address Parameter of ASCONF CHUNK.
*/
bp = &asoc->base.bind_addr;
p = bp->address_list.next;
laddr = list_entry(p, struct sctp_sockaddr_entry, list);
chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
addrcnt, SCTP_PARAM_ADD_IP);
if (!chunk) {
retval = -ENOMEM;
goto out;
}
retval = sctp_send_asconf(asoc, chunk);
if (retval)
goto out;
/* Add the new addresses to the bind address list with
* use_as_src set to 0.
*/
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
addr = (union sctp_addr *)addr_buf;
af = sctp_get_af_specific(addr->v4.sin_family);
memcpy(&saveaddr, addr, af->sockaddr_len);
retval = sctp_add_bind_addr(bp, &saveaddr,
SCTP_ADDR_NEW, GFP_ATOMIC);
addr_buf += af->sockaddr_len;
}
}
out:
return retval;
}
/* Remove a list of addresses from bind addresses list. Do not remove the
* last address.
*
* Basically run through each address specified in the addrs/addrcnt
* array/length pair, determine if it is IPv6 or IPv4 and call
* sctp_del_bind() on it.
*
* If any of them fails, then the operation will be reversed and the
* ones that were removed will be added back.
*
* At least one address has to be left; if only one address is
* available, the operation will return -EBUSY.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
int cnt;
struct sctp_bind_addr *bp = &ep->base.bind_addr;
int retval = 0;
void *addr_buf;
union sctp_addr *sa_addr;
struct sctp_af *af;
SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
sk, addrs, addrcnt);
addr_buf = addrs;
for (cnt = 0; cnt < addrcnt; cnt++) {
/* If the bind address list is empty or if there is only one
* bind address, there is nothing more to be removed (we need
* at least one address here).
*/
if (list_empty(&bp->address_list) ||
(sctp_list_single_entry(&bp->address_list))) {
retval = -EBUSY;
goto err_bindx_rem;
}
sa_addr = (union sctp_addr *)addr_buf;
af = sctp_get_af_specific(sa_addr->sa.sa_family);
if (!af) {
retval = -EINVAL;
goto err_bindx_rem;
}
if (!af->addr_valid(sa_addr, sp, NULL)) {
retval = -EADDRNOTAVAIL;
goto err_bindx_rem;
}
if (sa_addr->v4.sin_port != htons(bp->port)) {
retval = -EINVAL;
goto err_bindx_rem;
}
/* FIXME - There is probably a need to check if sk->sk_saddr and
* sk->sk_rcv_addr are currently set to one of the addresses to
* be removed. This is something which needs to be looked into
* when we are fixing the outstanding issues with multi-homing
* socket routing and failover schemes. Refer to comments in
* sctp_do_bind(). -daisy
*/
retval = sctp_del_bind_addr(bp, sa_addr);
addr_buf += af->sockaddr_len;
err_bindx_rem:
if (retval < 0) {
/* Failed. Add the ones that has been removed back */
if (cnt > 0)
sctp_bindx_add(sk, addrs, cnt);
return retval;
}
}
return retval;
}
/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
* the associations that are part of the endpoint indicating that a list of
* local addresses are removed from the endpoint.
*
* If any of the addresses is already in the bind address list of the
* association, we do not send the chunk for that association. But it will not
* affect other associations.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
static int sctp_send_asconf_del_ip(struct sock *sk,
struct sockaddr *addrs,
int addrcnt)
{
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sctp_association *asoc;
struct sctp_transport *transport;
struct sctp_bind_addr *bp;
struct sctp_chunk *chunk;
union sctp_addr *laddr;
void *addr_buf;
struct sctp_af *af;
struct list_head *pos, *pos1;
struct sctp_sockaddr_entry *saddr;
int i;
int retval = 0;
if (!sctp_addip_enable)
return retval;
sp = sctp_sk(sk);
ep = sp->ep;
SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
__FUNCTION__, sk, addrs, addrcnt);
list_for_each(pos, &ep->asocs) {
asoc = list_entry(pos, struct sctp_association, asocs);
if (!asoc->peer.asconf_capable)
continue;
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
continue;
if (!sctp_state(asoc, ESTABLISHED))
continue;
/* Check if any address in the packed array of addresses is
* not present in the bind address list of the association.
* If so, do not send the asconf chunk to its peer, but
* continue with other associations.
*/
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
laddr = (union sctp_addr *)addr_buf;
af = sctp_get_af_specific(laddr->v4.sin_family);
if (!af) {
retval = -EINVAL;
goto out;
}
if (!sctp_assoc_lookup_laddr(asoc, laddr))
break;
addr_buf += af->sockaddr_len;
}
if (i < addrcnt)
continue;
/* Find one address in the association's bind address list
* that is not in the packed array of addresses. This is to
* make sure that we do not delete all the addresses in the
* association.
*/
bp = &asoc->base.bind_addr;
laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
addrcnt, sp);
if (!laddr)
continue;
/* We do not need RCU protection throughout this loop
* because this is done under a socket lock from the
* setsockopt call.
*/
chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
SCTP_PARAM_DEL_IP);
if (!chunk) {
retval = -ENOMEM;
goto out;
}
/* Reset use_as_src flag for the addresses in the bind address
* list that are to be deleted.
*/
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
laddr = (union sctp_addr *)addr_buf;
af = sctp_get_af_specific(laddr->v4.sin_family);
list_for_each_entry(saddr, &bp->address_list, list) {
if (sctp_cmp_addr_exact(&saddr->a, laddr))
saddr->state = SCTP_ADDR_DEL;
}
addr_buf += af->sockaddr_len;
}
/* Update the route and saddr entries for all the transports
* as some of the addresses in the bind address list are
* about to be deleted and cannot be used as source addresses.
*/
list_for_each(pos1, &asoc->peer.transport_addr_list) {
transport = list_entry(pos1, struct sctp_transport,
transports);
dst_release(transport->dst);
sctp_transport_route(transport, NULL,
sctp_sk(asoc->base.sk));
}
retval = sctp_send_asconf(asoc, chunk);
}
out:
return retval;
}
/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
*
* API 8.1
* int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
* int flags);
*
* If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
* If the sd is an IPv6 socket, the addresses passed can either be IPv4
* or IPv6 addresses.
*
* A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
* Section 3.1.2 for this usage.
*
* addrs is a pointer to an array of one or more socket addresses. Each
* address is contained in its appropriate structure (i.e. struct
* sockaddr_in or struct sockaddr_in6) the family of the address type
* must be used to distinguish the address length (note that this
* representation is termed a "packed array" of addresses). The caller
* specifies the number of addresses in the array with addrcnt.
*
* On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
* -1, and sets errno to the appropriate error code.
*
* For SCTP, the port given in each socket address must be the same, or
* sctp_bindx() will fail, setting errno to EINVAL.
*
* The flags parameter is formed from the bitwise OR of zero or more of
* the following currently defined flags:
*
* SCTP_BINDX_ADD_ADDR
*
* SCTP_BINDX_REM_ADDR
*
* SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
* association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
* addresses from the association. The two flags are mutually exclusive;
* if both are given, sctp_bindx() will fail with EINVAL. A caller may
* not remove all addresses from an association; sctp_bindx() will
* reject such an attempt with EINVAL.
*
* An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
* additional addresses with an endpoint after calling bind(). Or use
* sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
* socket is associated with so that no new association accepted will be
* associated with those addresses. If the endpoint supports dynamic
* address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
* endpoint to send the appropriate message to the peer to change the
* peers address lists.
*
* Adding and removing addresses from a connected association is
* optional functionality. Implementations that do not support this
* functionality should return EOPNOTSUPP.
*
* Basically do nothing but copying the addresses from user to kernel
* land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
* This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
* from userspace.
*
* We don't use copy_from_user() for optimization: we first do the
* sanity checks (buffer size -fast- and access check-healthy
* pointer); if all of those succeed, then we can alloc the memory
* (expensive operation) needed to copy the data to kernel. Then we do
* the copying without checking the user space area
* (__copy_from_user()).
*
* On exit there is no need to do sockfd_put(), sys_setsockopt() does
* it.
*
* sk The sk of the socket
* addrs The pointer to the addresses in user land
* addrssize Size of the addrs buffer
* op Operation to perform (add or remove, see the flags of
* sctp_bindx)
*
* Returns 0 if ok, <0 errno code on error.
*/
SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
struct sockaddr __user *addrs,
int addrs_size, int op)
{
struct sockaddr *kaddrs;
int err;
int addrcnt = 0;
int walk_size = 0;
struct sockaddr *sa_addr;
void *addr_buf;
struct sctp_af *af;
SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
" addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
if (unlikely(addrs_size <= 0))
return -EINVAL;
/* Check the user passed a healthy pointer. */
if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
return -EFAULT;
/* Alloc space for the address array in kernel memory. */
kaddrs = kmalloc(addrs_size, GFP_KERNEL);
if (unlikely(!kaddrs))
return -ENOMEM;
if (__copy_from_user(kaddrs, addrs, addrs_size)) {
kfree(kaddrs);
return -EFAULT;
}
/* Walk through the addrs buffer and count the number of addresses. */
addr_buf = kaddrs;
while (walk_size < addrs_size) {
sa_addr = (struct sockaddr *)addr_buf;
af = sctp_get_af_specific(sa_addr->sa_family);
/* If the address family is not supported or if this address
* causes the address buffer to overflow return EINVAL.
*/
if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
kfree(kaddrs);
return -EINVAL;
}
addrcnt++;
addr_buf += af->sockaddr_len;
walk_size += af->sockaddr_len;
}
/* Do the work. */
switch (op) {
case SCTP_BINDX_ADD_ADDR:
err = sctp_bindx_add(sk, kaddrs, addrcnt);
if (err)
goto out;
err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
break;
case SCTP_BINDX_REM_ADDR:
err = sctp_bindx_rem(sk, kaddrs, addrcnt);
if (err)
goto out;
err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
break;
default:
err = -EINVAL;
break;
}
out:
kfree(kaddrs);
return err;
}
/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
*
* Common routine for handling connect() and sctp_connectx().
* Connect will come in with just a single address.
*/
static int __sctp_connect(struct sock* sk,
struct sockaddr *kaddrs,
int addrs_size)
{
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sctp_association *asoc = NULL;
struct sctp_association *asoc2;
struct sctp_transport *transport;
union sctp_addr to;
struct sctp_af *af;
sctp_scope_t scope;
long timeo;
int err = 0;
int addrcnt = 0;
int walk_size = 0;
union sctp_addr *sa_addr = NULL;
void *addr_buf;
unsigned short port;
unsigned int f_flags = 0;
sp = sctp_sk(sk);
ep = sp->ep;
/* connect() cannot be done on a socket that is already in ESTABLISHED
* state - UDP-style peeled off socket or a TCP-style socket that
* is already connected.
* It cannot be done even on a TCP-style listening socket.
*/
if (sctp_sstate(sk, ESTABLISHED) ||
(sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
err = -EISCONN;
goto out_free;
}
/* Walk through the addrs buffer and count the number of addresses. */
addr_buf = kaddrs;
while (walk_size < addrs_size) {
sa_addr = (union sctp_addr *)addr_buf;
af = sctp_get_af_specific(sa_addr->sa.sa_family);
port = ntohs(sa_addr->v4.sin_port);
/* If the address family is not supported or if this address
* causes the address buffer to overflow return EINVAL.
*/
if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
err = -EINVAL;
goto out_free;
}
/* Save current address so we can work with it */
memcpy(&to, sa_addr, af->sockaddr_len);
err = sctp_verify_addr(sk, &to, af->sockaddr_len);
if (err)
goto out_free;
/* Make sure the destination port is correctly set
* in all addresses.
*/
if (asoc && asoc->peer.port && asoc->peer.port != port)
goto out_free;
/* Check if there already is a matching association on the
* endpoint (other than the one created here).
*/
asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
if (asoc2 && asoc2 != asoc) {
if (asoc2->state >= SCTP_STATE_ESTABLISHED)
err = -EISCONN;
else
err = -EALREADY;
goto out_free;
}
/* If we could not find a matching association on the endpoint,
* make sure that there is no peeled-off association matching
* the peer address even on another socket.
*/
if (sctp_endpoint_is_peeled_off(ep, &to)) {
err = -EADDRNOTAVAIL;
goto out_free;
}
if (!asoc) {
/* If a bind() or sctp_bindx() is not called prior to
* an sctp_connectx() call, the system picks an
* ephemeral port and will choose an address set
* equivalent to binding with a wildcard address.
*/
if (!ep->base.bind_addr.port) {
if (sctp_autobind(sk)) {
err = -EAGAIN;
goto out_free;
}
} else {
/*
* If an unprivileged user inherits a 1-many
* style socket with open associations on a
* privileged port, it MAY be permitted to
* accept new associations, but it SHOULD NOT
* be permitted to open new associations.
*/
if (ep->base.bind_addr.port < PROT_SOCK &&
!capable(CAP_NET_BIND_SERVICE)) {
err = -EACCES;
goto out_free;
}
}
scope = sctp_scope(&to);
asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
if (!asoc) {
err = -ENOMEM;
goto out_free;
}
}
/* Prime the peer's transport structures. */
transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
SCTP_UNKNOWN);
if (!transport) {
err = -ENOMEM;
goto out_free;
}
addrcnt++;
addr_buf += af->sockaddr_len;
walk_size += af->sockaddr_len;
}
err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
if (err < 0) {
goto out_free;
}
err = sctp_primitive_ASSOCIATE(asoc, NULL);
if (err < 0) {
goto out_free;
}
/* Initialize sk's dport and daddr for getpeername() */
inet_sk(sk)->dport = htons(asoc->peer.port);
af = sctp_get_af_specific(sa_addr->sa.sa_family);
af->to_sk_daddr(sa_addr, sk);
sk->sk_err = 0;
/* in-kernel sockets don't generally have a file allocated to them
* if all they do is call sock_create_kern().
*/
if (sk->sk_socket->file)
f_flags = sk->sk_socket->file->f_flags;
timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
err = sctp_wait_for_connect(asoc, &timeo);
/* Don't free association on exit. */
asoc = NULL;
out_free:
SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
" kaddrs: %p err: %d\n",
asoc, kaddrs, err);
if (asoc)
sctp_association_free(asoc);
return err;
}
/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
*
* API 8.9
* int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
*
* If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
* If the sd is an IPv6 socket, the addresses passed can either be IPv4
* or IPv6 addresses.
*
* A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
* Section 3.1.2 for this usage.
*
* addrs is a pointer to an array of one or more socket addresses. Each
* address is contained in its appropriate structure (i.e. struct
* sockaddr_in or struct sockaddr_in6) the family of the address type
* must be used to distengish the address length (note that this
* representation is termed a "packed array" of addresses). The caller
* specifies the number of addresses in the array with addrcnt.
*
* On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
* -1, and sets errno to the appropriate error code.
*
* For SCTP, the port given in each socket address must be the same, or
* sctp_connectx() will fail, setting errno to EINVAL.
*
* An application can use sctp_connectx to initiate an association with
* an endpoint that is multi-homed. Much like sctp_bindx() this call
* allows a caller to specify multiple addresses at which a peer can be
* reached. The way the SCTP stack uses the list of addresses to set up
* the association is implementation dependant. This function only
* specifies that the stack will try to make use of all the addresses in
* the list when needed.
*
* Note that the list of addresses passed in is only used for setting up
* the association. It does not necessarily equal the set of addresses
* the peer uses for the resulting association. If the caller wants to
* find out the set of peer addresses, it must use sctp_getpaddrs() to
* retrieve them after the association has been set up.
*
* Basically do nothing but copying the addresses from user to kernel
* land and invoking either sctp_connectx(). This is used for tunneling
* the sctp_connectx() request through sctp_setsockopt() from userspace.
*
* We don't use copy_from_user() for optimization: we first do the
* sanity checks (buffer size -fast- and access check-healthy
* pointer); if all of those succeed, then we can alloc the memory
* (expensive operation) needed to copy the data to kernel. Then we do
* the copying without checking the user space area
* (__copy_from_user()).
*
* On exit there is no need to do sockfd_put(), sys_setsockopt() does
* it.
*
* sk The sk of the socket
* addrs The pointer to the addresses in user land
* addrssize Size of the addrs buffer
*
* Returns 0 if ok, <0 errno code on error.
*/
SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
struct sockaddr __user *addrs,
int addrs_size)
{
int err = 0;
struct sockaddr *kaddrs;
SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
__FUNCTION__, sk, addrs, addrs_size);
if (unlikely(addrs_size <= 0))
return -EINVAL;
/* Check the user passed a healthy pointer. */
if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
return -EFAULT;
/* Alloc space for the address array in kernel memory. */
kaddrs = kmalloc(addrs_size, GFP_KERNEL);
if (unlikely(!kaddrs))
return -ENOMEM;
if (__copy_from_user(kaddrs, addrs, addrs_size)) {
err = -EFAULT;
} else {
err = __sctp_connect(sk, kaddrs, addrs_size);
}
kfree(kaddrs);
return err;
}
/* API 3.1.4 close() - UDP Style Syntax
* Applications use close() to perform graceful shutdown (as described in
* Section 10.1 of [SCTP]) on ALL the associations currently represented
* by a UDP-style socket.
*
* The syntax is
*
* ret = close(int sd);
*
* sd - the socket descriptor of the associations to be closed.
*
* To gracefully shutdown a specific association represented by the
* UDP-style socket, an application should use the sendmsg() call,
* passing no user data, but including the appropriate flag in the
* ancillary data (see Section xxxx).
*
* If sd in the close() call is a branched-off socket representing only
* one association, the shutdown is performed on that association only.
*
* 4.1.6 close() - TCP Style Syntax
*
* Applications use close() to gracefully close down an association.
*
* The syntax is:
*
* int close(int sd);
*
* sd - the socket descriptor of the association to be closed.
*
* After an application calls close() on a socket descriptor, no further
* socket operations will succeed on that descriptor.
*
* API 7.1.4 SO_LINGER
*
* An application using the TCP-style socket can use this option to
* perform the SCTP ABORT primitive. The linger option structure is:
*
* struct linger {
* int l_onoff; // option on/off
* int l_linger; // linger time
* };
*
* To enable the option, set l_onoff to 1. If the l_linger value is set
* to 0, calling close() is the same as the ABORT primitive. If the
* value is set to a negative value, the setsockopt() call will return
* an error. If the value is set to a positive value linger_time, the
* close() can be blocked for at most linger_time ms. If the graceful
* shutdown phase does not finish during this period, close() will
* return but the graceful shutdown phase continues in the system.
*/
SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
{
struct sctp_endpoint *ep;
struct sctp_association *asoc;
struct list_head *pos, *temp;
SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
sctp_lock_sock(sk);
sk->sk_shutdown = SHUTDOWN_MASK;
ep = sctp_sk(sk)->ep;
/* Walk all associations on an endpoint. */
list_for_each_safe(pos, temp, &ep->asocs) {
asoc = list_entry(pos, struct sctp_association, asocs);
if (sctp_style(sk, TCP)) {
/* A closed association can still be in the list if
* it belongs to a TCP-style listening socket that is
* not yet accepted. If so, free it. If not, send an
* ABORT or SHUTDOWN based on the linger options.
*/
if (sctp_state(asoc, CLOSED)) {
sctp_unhash_established(asoc);
sctp_association_free(asoc);
continue;
}
}
if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
struct sctp_chunk *chunk;
chunk = sctp_make_abort_user(asoc, NULL, 0);
if (chunk)
sctp_primitive_ABORT(asoc, chunk);
} else
sctp_primitive_SHUTDOWN(asoc, NULL);
}
/* Clean up any skbs sitting on the receive queue. */
sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
/* On a TCP-style socket, block for at most linger_time if set. */
if (sctp_style(sk, TCP) && timeout)
sctp_wait_for_close(sk, timeout);
/* This will run the backlog queue. */
sctp_release_sock(sk);
/* Supposedly, no process has access to the socket, but
* the net layers still may.
*/
sctp_local_bh_disable();
sctp_bh_lock_sock(sk);
/* Hold the sock, since sk_common_release() will put sock_put()
* and we have just a little more cleanup.
*/
sock_hold(sk);
sk_common_release(sk);
sctp_bh_unlock_sock(sk);
sctp_local_bh_enable();
sock_put(sk);
SCTP_DBG_OBJCNT_DEC(sock);
}
/* Handle EPIPE error. */
static int sctp_error(struct sock *sk, int flags, int err)
{
if (err == -EPIPE)
err = sock_error(sk) ? : -EPIPE;
if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
send_sig(SIGPIPE, current, 0);
return err;
}
/* API 3.1.3 sendmsg() - UDP Style Syntax
*
* An application uses sendmsg() and recvmsg() calls to transmit data to
* and receive data from its peer.
*
* ssize_t sendmsg(int socket, const struct msghdr *message,
* int flags);
*
* socket - the socket descriptor of the endpoint.
* message - pointer to the msghdr structure which contains a single
* user message and possibly some ancillary data.
*
* See Section 5 for complete description of the data
* structures.
*
* flags - flags sent or received with the user message, see Section
* 5 for complete description of the flags.
*
* Note: This function could use a rewrite especially when explicit
* connect support comes in.
*/
/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
struct msghdr *msg, size_t msg_len)
{
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sctp_association *new_asoc=NULL, *asoc=NULL;
struct sctp_transport *transport, *chunk_tp;
struct sctp_chunk *chunk;
union sctp_addr to;
struct sockaddr *msg_name = NULL;
struct sctp_sndrcvinfo default_sinfo = { 0 };
struct sctp_sndrcvinfo *sinfo;
struct sctp_initmsg *sinit;
sctp_assoc_t associd = 0;
sctp_cmsgs_t cmsgs = { NULL };
int err;
sctp_scope_t scope;
long timeo;
__u16 sinfo_flags = 0;
struct sctp_datamsg *datamsg;
struct list_head *pos;
int msg_flags = msg->msg_flags;
SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
sk, msg, msg_len);
err = 0;
sp = sctp_sk(sk);
ep = sp->ep;
SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
/* We cannot send a message over a TCP-style listening socket. */
if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
err = -EPIPE;
goto out_nounlock;
}
/* Parse out the SCTP CMSGs. */
err = sctp_msghdr_parse(msg, &cmsgs);
if (err) {
SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
goto out_nounlock;
}
/* Fetch the destination address for this packet. This
* address only selects the association--it is not necessarily
* the address we will send to.
* For a peeled-off socket, msg_name is ignored.
*/
if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
int msg_namelen = msg->msg_namelen;
err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
msg_namelen);
if (err)
return err;
if (msg_namelen > sizeof(to))
msg_namelen = sizeof(to);
memcpy(&to, msg->msg_name, msg_namelen);
msg_name = msg->msg_name;
}
sinfo = cmsgs.info;
sinit = cmsgs.init;
/* Did the user specify SNDRCVINFO? */
if (sinfo) {
sinfo_flags = sinfo->sinfo_flags;
associd = sinfo->sinfo_assoc_id;
}
SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
msg_len, sinfo_flags);
/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
err = -EINVAL;
goto out_nounlock;
}
/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
* length messages when SCTP_EOF|SCTP_ABORT is not set.
* If SCTP_ABORT is set, the message length could be non zero with
* the msg_iov set to the user abort reason.
*/
if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
(!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
err = -EINVAL;
goto out_nounlock;
}
/* If SCTP_ADDR_OVER is set, there must be an address
* specified in msg_name.
*/
if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
err = -EINVAL;
goto out_nounlock;
}
transport = NULL;
SCTP_DEBUG_PRINTK("About to look up association.\n");
sctp_lock_sock(sk);
/* If a msg_name has been specified, assume this is to be used. */
if (msg_name) {
/* Look for a matching association on the endpoint. */
asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
if (!asoc) {
/* If we could not find a matching association on the
* endpoint, make sure that it is not a TCP-style
* socket that already has an association or there is
* no peeled-off association on another socket.
*/
if ((sctp_style(sk, TCP) &&
sctp_sstate(sk, ESTABLISHED)) ||
sctp_endpoint_is_peeled_off(ep, &to)) {
err = -EADDRNOTAVAIL;
goto out_unlock;
}
}
} else {
asoc = sctp_id2assoc(sk, associd);
if (!asoc) {
err = -EPIPE;
goto out_unlock;
}
}
if (asoc) {
SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
* socket that has an association in CLOSED state. This can
* happen when an accepted socket has an association that is
* already CLOSED.
*/
if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
err = -EPIPE;
goto out_unlock;
}
if (sinfo_flags & SCTP_EOF) {
SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
asoc);
sctp_primitive_SHUTDOWN(asoc, NULL);
err = 0;
goto out_unlock;
}
if (sinfo_flags & SCTP_ABORT) {
chunk = sctp_make_abort_user(asoc, msg, msg_len);
if (!chunk) {
err = -ENOMEM;
goto out_unlock;
}
SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
sctp_primitive_ABORT(asoc, chunk);
err = 0;
goto out_unlock;
}
}
/* Do we need to create the association? */
if (!asoc) {
SCTP_DEBUG_PRINTK("There is no association yet.\n");
if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
err = -EINVAL;
goto out_unlock;
}
/* Check for invalid stream against the stream counts,
* either the default or the user specified stream counts.
*/
if (sinfo) {
if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
/* Check against the defaults. */
if (sinfo->sinfo_stream >=
sp->initmsg.sinit_num_ostreams) {
err = -EINVAL;
goto out_unlock;
}
} else {
/* Check against the requested. */
if (sinfo->sinfo_stream >=
sinit->sinit_num_ostreams) {
err = -EINVAL;
goto out_unlock;
}
}
}
/*
* API 3.1.2 bind() - UDP Style Syntax
* If a bind() or sctp_bindx() is not called prior to a
* sendmsg() call that initiates a new association, the
* system picks an ephemeral port and will choose an address
* set equivalent to binding with a wildcard address.
*/
if (!ep->base.bind_addr.port) {
if (sctp_autobind(sk)) {
err = -EAGAIN;
goto out_unlock;
}
} else {
/*
* If an unprivileged user inherits a one-to-many
* style socket with open associations on a privileged
* port, it MAY be permitted to accept new associations,
* but it SHOULD NOT be permitted to open new
* associations.
*/
if (ep->base.bind_addr.port < PROT_SOCK &&
!capable(CAP_NET_BIND_SERVICE)) {
err = -EACCES;
goto out_unlock;
}
}
scope = sctp_scope(&to);
new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
if (!new_asoc) {
err = -ENOMEM;
goto out_unlock;
}
asoc = new_asoc;
/* If the SCTP_INIT ancillary data is specified, set all
* the association init values accordingly.
*/
if (sinit) {
if (sinit->sinit_num_ostreams) {
asoc->c.sinit_num_ostreams =
sinit->sinit_num_ostreams;
}
if (sinit->sinit_max_instreams) {
asoc->c.sinit_max_instreams =
sinit->sinit_max_instreams;
}
if (sinit->sinit_max_attempts) {
asoc->max_init_attempts
= sinit->sinit_max_attempts;
}
if (sinit->sinit_max_init_timeo) {
asoc->max_init_timeo =
msecs_to_jiffies(sinit->sinit_max_init_timeo);
}
}
/* Prime the peer's transport structures. */
transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
if (!transport) {
err = -ENOMEM;
goto out_free;
}
err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
if (err < 0) {
err = -ENOMEM;
goto out_free;
}
}
/* ASSERT: we have a valid association at this point. */
SCTP_DEBUG_PRINTK("We have a valid association.\n");
if (!sinfo) {
/* If the user didn't specify SNDRCVINFO, make up one with
* some defaults.
*/
default_sinfo.sinfo_stream = asoc->default_stream;
default_sinfo.sinfo_flags = asoc->default_flags;
default_sinfo.sinfo_ppid = asoc->default_ppid;
default_sinfo.sinfo_context = asoc->default_context;
default_sinfo.sinfo_timetolive = asoc->default_timetolive;
default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
sinfo = &default_sinfo;
}
/* API 7.1.7, the sndbuf size per association bounds the
* maximum size of data that can be sent in a single send call.
*/
if (msg_len > sk->sk_sndbuf) {
err = -EMSGSIZE;
goto out_free;
}
if (asoc->pmtu_pending)
sctp_assoc_pending_pmtu(asoc);
/* If fragmentation is disabled and the message length exceeds the
* association fragmentation point, return EMSGSIZE. The I-D
* does not specify what this error is, but this looks like
* a great fit.
*/
if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
err = -EMSGSIZE;
goto out_free;
}
if (sinfo) {
/* Check for invalid stream. */
if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
err = -EINVAL;
goto out_free;
}
}
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
if (!sctp_wspace(asoc)) {
err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
if (err)
goto out_free;
}
/* If an address is passed with the sendto/sendmsg call, it is used
* to override the primary destination address in the TCP model, or
* when SCTP_ADDR_OVER flag is set in the UDP model.
*/
if ((sctp_style(sk, TCP) && msg_name) ||
(sinfo_flags & SCTP_ADDR_OVER)) {
chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
if (!chunk_tp) {
err = -EINVAL;
goto out_free;
}
} else
chunk_tp = NULL;
/* Auto-connect, if we aren't connected already. */
if (sctp_state(asoc, CLOSED)) {
err = sctp_primitive_ASSOCIATE(asoc, NULL);
if (err < 0)
goto out_free;
SCTP_DEBUG_PRINTK("We associated primitively.\n");
}
/* Break the message into multiple chunks of maximum size. */
datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
if (!datamsg) {
err = -ENOMEM;
goto out_free;
}
/* Now send the (possibly) fragmented message. */
list_for_each(pos, &datamsg->chunks) {
chunk = list_entry(pos, struct sctp_chunk, frag_list);
sctp_datamsg_track(chunk);
/* Do accounting for the write space. */
sctp_set_owner_w(chunk);
chunk->transport = chunk_tp;
/* Send it to the lower layers. Note: all chunks
* must either fail or succeed. The lower layer
* works that way today. Keep it that way or this
* breaks.
*/
err = sctp_primitive_SEND(asoc, chunk);
/* Did the lower layer accept the chunk? */
if (err)
sctp_chunk_free(chunk);
SCTP_DEBUG_PRINTK("We sent primitively.\n");
}
sctp_datamsg_free(datamsg);
if (err)
goto out_free;
else
err = msg_len;
/* If we are already past ASSOCIATE, the lower
* layers are responsible for association cleanup.
*/
goto out_unlock;
out_free:
if (new_asoc)
sctp_association_free(asoc);
out_unlock:
sctp_release_sock(sk);
out_nounlock:
return sctp_error(sk, msg_flags, err);
#if 0
do_sock_err:
if (msg_len)
err = msg_len;
else
err = sock_error(sk);
goto out;
do_interrupted:
if (msg_len)
err = msg_len;
goto out;
#endif /* 0 */
}
/* This is an extended version of skb_pull() that removes the data from the
* start of a skb even when data is spread across the list of skb's in the
* frag_list. len specifies the total amount of data that needs to be removed.
* when 'len' bytes could be removed from the skb, it returns 0.
* If 'len' exceeds the total skb length, it returns the no. of bytes that
* could not be removed.
*/
static int sctp_skb_pull(struct sk_buff *skb, int len)
{
struct sk_buff *list;
int skb_len = skb_headlen(skb);
int rlen;
if (len <= skb_len) {
__skb_pull(skb, len);
return 0;
}
len -= skb_len;
__skb_pull(skb, skb_len);
for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
rlen = sctp_skb_pull(list, len);
skb->len -= (len-rlen);
skb->data_len -= (len-rlen);
if (!rlen)
return 0;
len = rlen;
}
return len;
}
/* API 3.1.3 recvmsg() - UDP Style Syntax
*
* ssize_t recvmsg(int socket, struct msghdr *message,
* int flags);
*
* socket - the socket descriptor of the endpoint.
* message - pointer to the msghdr structure which contains a single
* user message and possibly some ancillary data.
*
* See Section 5 for complete description of the data
* structures.
*
* flags - flags sent or received with the user message, see Section
* 5 for complete description of the flags.
*/
static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
struct msghdr *msg, size_t len, int noblock,
int flags, int *addr_len)
{
struct sctp_ulpevent *event = NULL;
struct sctp_sock *sp = sctp_sk(sk);
struct sk_buff *skb;
int copied;
int err = 0;
int skb_len;
SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
"0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
"len", len, "knoblauch", noblock,
"flags", flags, "addr_len", addr_len);
sctp_lock_sock(sk);
if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
err = -ENOTCONN;
goto out;
}
skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
if (!skb)
goto out;
/* Get the total length of the skb including any skb's in the
* frag_list.
*/
skb_len = skb->len;
copied = skb_len;
if (copied > len)
copied = len;
err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
event = sctp_skb2event(skb);
if (err)
goto out_free;
sock_recv_timestamp(msg, sk, skb);
if (sctp_ulpevent_is_notification(event)) {
msg->msg_flags |= MSG_NOTIFICATION;
sp->pf->event_msgname(event, msg->msg_name, addr_len);
} else {
sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
}
/* Check if we allow SCTP_SNDRCVINFO. */
if (sp->subscribe.sctp_data_io_event)
sctp_ulpevent_read_sndrcvinfo(event, msg);
#if 0
/* FIXME: we should be calling IP/IPv6 layers. */
if (sk->sk_protinfo.af_inet.cmsg_flags)
ip_cmsg_recv(msg, skb);
#endif
err = copied;
/* If skb's length exceeds the user's buffer, update the skb and
* push it back to the receive_queue so that the next call to
* recvmsg() will return the remaining data. Don't set MSG_EOR.
*/
if (skb_len > copied) {
msg->msg_flags &= ~MSG_EOR;
if (flags & MSG_PEEK)
goto out_free;
sctp_skb_pull(skb, copied);
skb_queue_head(&sk->sk_receive_queue, skb);
/* When only partial message is copied to the user, increase
* rwnd by that amount. If all the data in the skb is read,
* rwnd is updated when the event is freed.
*/
sctp_assoc_rwnd_increase(event->asoc, copied);
goto out;
} else if ((event->msg_flags & MSG_NOTIFICATION) ||
(event->msg_flags & MSG_EOR))
msg->msg_flags |= MSG_EOR;
else
msg->msg_flags &= ~MSG_EOR;
out_free:
if (flags & MSG_PEEK) {
/* Release the skb reference acquired after peeking the skb in
* sctp_skb_recv_datagram().
*/
kfree_skb(skb);
} else {
/* Free the event which includes releasing the reference to
* the owner of the skb, freeing the skb and updating the
* rwnd.
*/
sctp_ulpevent_free(event);
}
out:
sctp_release_sock(sk);
return err;
}
/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
*
* This option is a on/off flag. If enabled no SCTP message
* fragmentation will be performed. Instead if a message being sent
* exceeds the current PMTU size, the message will NOT be sent and
* instead a error will be indicated to the user.
*/
static int sctp_setsockopt_disable_fragments(struct sock *sk,
char __user *optval, int optlen)
{
int val;
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
return 0;
}
static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
int optlen)
{
if (optlen != sizeof(struct sctp_event_subscribe))
return -EINVAL;
if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
return -EFAULT;
return 0;
}
/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
*
* This socket option is applicable to the UDP-style socket only. When
* set it will cause associations that are idle for more than the
* specified number of seconds to automatically close. An association
* being idle is defined an association that has NOT sent or received
* user data. The special value of '0' indicates that no automatic
* close of any associations should be performed. The option expects an
* integer defining the number of seconds of idle time before an
* association is closed.
*/
static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
/* Applicable to UDP-style socket only */
if (sctp_style(sk, TCP))
return -EOPNOTSUPP;
if (optlen != sizeof(int))
return -EINVAL;
if (copy_from_user(&sp->autoclose, optval, optlen))
return -EFAULT;
return 0;
}
/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
*
* Applications can enable or disable heartbeats for any peer address of
* an association, modify an address's heartbeat interval, force a
* heartbeat to be sent immediately, and adjust the address's maximum
* number of retransmissions sent before an address is considered
* unreachable. The following structure is used to access and modify an
* address's parameters:
*
* struct sctp_paddrparams {
* sctp_assoc_t spp_assoc_id;
* struct sockaddr_storage spp_address;
* uint32_t spp_hbinterval;
* uint16_t spp_pathmaxrxt;
* uint32_t spp_pathmtu;
* uint32_t spp_sackdelay;
* uint32_t spp_flags;
* };
*
* spp_assoc_id - (one-to-many style socket) This is filled in the
* application, and identifies the association for
* this query.
* spp_address - This specifies which address is of interest.
* spp_hbinterval - This contains the value of the heartbeat interval,
* in milliseconds. If a value of zero
* is present in this field then no changes are to
* be made to this parameter.
* spp_pathmaxrxt - This contains the maximum number of
* retransmissions before this address shall be
* considered unreachable. If a value of zero
* is present in this field then no changes are to
* be made to this parameter.
* spp_pathmtu - When Path MTU discovery is disabled the value
* specified here will be the "fixed" path mtu.
* Note that if the spp_address field is empty
* then all associations on this address will
* have this fixed path mtu set upon them.
*
* spp_sackdelay - When delayed sack is enabled, this value specifies
* the number of milliseconds that sacks will be delayed
* for. This value will apply to all addresses of an
* association if the spp_address field is empty. Note
* also, that if delayed sack is enabled and this
* value is set to 0, no change is made to the last
* recorded delayed sack timer value.
*
* spp_flags - These flags are used to control various features
* on an association. The flag field may contain
* zero or more of the following options.
*
* SPP_HB_ENABLE - Enable heartbeats on the
* specified address. Note that if the address
* field is empty all addresses for the association
* have heartbeats enabled upon them.
*
* SPP_HB_DISABLE - Disable heartbeats on the
* speicifed address. Note that if the address
* field is empty all addresses for the association
* will have their heartbeats disabled. Note also
* that SPP_HB_ENABLE and SPP_HB_DISABLE are
* mutually exclusive, only one of these two should
* be specified. Enabling both fields will have
* undetermined results.
*
* SPP_HB_DEMAND - Request a user initiated heartbeat
* to be made immediately.
*
* SPP_HB_TIME_IS_ZERO - Specify's that the time for
* heartbeat delayis to be set to the value of 0
* milliseconds.
*
* SPP_PMTUD_ENABLE - This field will enable PMTU
* discovery upon the specified address. Note that
* if the address feild is empty then all addresses
* on the association are effected.
*
* SPP_PMTUD_DISABLE - This field will disable PMTU
* discovery upon the specified address. Note that
* if the address feild is empty then all addresses
* on the association are effected. Not also that
* SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
* exclusive. Enabling both will have undetermined
* results.
*
* SPP_SACKDELAY_ENABLE - Setting this flag turns
* on delayed sack. The time specified in spp_sackdelay
* is used to specify the sack delay for this address. Note
* that if spp_address is empty then all addresses will
* enable delayed sack and take on the sack delay
* value specified in spp_sackdelay.
* SPP_SACKDELAY_DISABLE - Setting this flag turns
* off delayed sack. If the spp_address field is blank then
* delayed sack is disabled for the entire association. Note
* also that this field is mutually exclusive to
* SPP_SACKDELAY_ENABLE, setting both will have undefined
* results.
*/
static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
struct sctp_transport *trans,
struct sctp_association *asoc,
struct sctp_sock *sp,
int hb_change,
int pmtud_change,
int sackdelay_change)
{
int error;
if (params->spp_flags & SPP_HB_DEMAND && trans) {
error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
if (error)
return error;
}
/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
* this field is ignored. Note also that a value of zero indicates
* the current setting should be left unchanged.
*/
if (params->spp_flags & SPP_HB_ENABLE) {
/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
* set. This lets us use 0 value when this flag
* is set.
*/
if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
params->spp_hbinterval = 0;
if (params->spp_hbinterval ||
(params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
if (trans) {
trans->hbinterval =
msecs_to_jiffies(params->spp_hbinterval);
} else if (asoc) {
asoc->hbinterval =
msecs_to_jiffies(params->spp_hbinterval);
} else {
sp->hbinterval = params->spp_hbinterval;
}
}
}
if (hb_change) {
if (trans) {
trans->param_flags =
(trans->param_flags & ~SPP_HB) | hb_change;
} else if (asoc) {
asoc->param_flags =
(asoc->param_flags & ~SPP_HB) | hb_change;
} else {
sp->param_flags =
(sp->param_flags & ~SPP_HB) | hb_change;
}
}
/* When Path MTU discovery is disabled the value specified here will
* be the "fixed" path mtu (i.e. the value of the spp_flags field must
* include the flag SPP_PMTUD_DISABLE for this field to have any
* effect).
*/
if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
if (trans) {
trans->pathmtu = params->spp_pathmtu;
sctp_assoc_sync_pmtu(asoc);
} else if (asoc) {
asoc->pathmtu = params->spp_pathmtu;
sctp_frag_point(sp, params->spp_pathmtu);
} else {
sp->pathmtu = params->spp_pathmtu;
}
}
if (pmtud_change) {
if (trans) {
int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
(params->spp_flags & SPP_PMTUD_ENABLE);
trans->param_flags =
(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
if (update) {
sctp_transport_pmtu(trans);
sctp_assoc_sync_pmtu(asoc);
}
} else if (asoc) {
asoc->param_flags =
(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
} else {
sp->param_flags =
(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
}
}
/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
* value of this field is ignored. Note also that a value of zero
* indicates the current setting should be left unchanged.
*/
if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
if (trans) {
trans->sackdelay =
msecs_to_jiffies(params->spp_sackdelay);
} else if (asoc) {
asoc->sackdelay =
msecs_to_jiffies(params->spp_sackdelay);
} else {
sp->sackdelay = params->spp_sackdelay;
}
}
if (sackdelay_change) {
if (trans) {
trans->param_flags =
(trans->param_flags & ~SPP_SACKDELAY) |
sackdelay_change;
} else if (asoc) {
asoc->param_flags =
(asoc->param_flags & ~SPP_SACKDELAY) |
sackdelay_change;
} else {
sp->param_flags =
(sp->param_flags & ~SPP_SACKDELAY) |
sackdelay_change;
}
}
/* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
* of this field is ignored. Note also that a value of zero
* indicates the current setting should be left unchanged.
*/
if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
if (trans) {
trans->pathmaxrxt = params->spp_pathmaxrxt;
} else if (asoc) {
asoc->pathmaxrxt = params->spp_pathmaxrxt;
} else {
sp->pathmaxrxt = params->spp_pathmaxrxt;
}
}
return 0;
}
static int sctp_setsockopt_peer_addr_params(struct sock *sk,
char __user *optval, int optlen)
{
struct sctp_paddrparams params;
struct sctp_transport *trans = NULL;
struct sctp_association *asoc = NULL;
struct sctp_sock *sp = sctp_sk(sk);
int error;
int hb_change, pmtud_change, sackdelay_change;
if (optlen != sizeof(struct sctp_paddrparams))
return - EINVAL;
if (copy_from_user(&params, optval, optlen))
return -EFAULT;
/* Validate flags and value parameters. */
hb_change = params.spp_flags & SPP_HB;
pmtud_change = params.spp_flags & SPP_PMTUD;
sackdelay_change = params.spp_flags & SPP_SACKDELAY;
if (hb_change == SPP_HB ||
pmtud_change == SPP_PMTUD ||
sackdelay_change == SPP_SACKDELAY ||
params.spp_sackdelay > 500 ||
(params.spp_pathmtu
&& params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
return -EINVAL;
/* If an address other than INADDR_ANY is specified, and
* no transport is found, then the request is invalid.
*/
if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
trans = sctp_addr_id2transport(sk, &params.spp_address,
params.spp_assoc_id);
if (!trans)
return -EINVAL;
}
/* Get association, if assoc_id != 0 and the socket is a one
* to many style socket, and an association was not found, then
* the id was invalid.
*/
asoc = sctp_id2assoc(sk, params.spp_assoc_id);
if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
/* Heartbeat demand can only be sent on a transport or
* association, but not a socket.
*/
if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
return -EINVAL;
/* Process parameters. */
error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
hb_change, pmtud_change,
sackdelay_change);
if (error)
return error;
/* If changes are for association, also apply parameters to each
* transport.
*/
if (!trans && asoc) {
struct list_head *pos;
list_for_each(pos, &asoc->peer.transport_addr_list) {
trans = list_entry(pos, struct sctp_transport,
transports);
sctp_apply_peer_addr_params(&params, trans, asoc, sp,
hb_change, pmtud_change,
sackdelay_change);
}
}
return 0;
}
/* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
*
* This options will get or set the delayed ack timer. The time is set
* in milliseconds. If the assoc_id is 0, then this sets or gets the
* endpoints default delayed ack timer value. If the assoc_id field is
* non-zero, then the set or get effects the specified association.
*
* struct sctp_assoc_value {
* sctp_assoc_t assoc_id;
* uint32_t assoc_value;
* };
*
* assoc_id - This parameter, indicates which association the
* user is preforming an action upon. Note that if
* this field's value is zero then the endpoints
* default value is changed (effecting future
* associations only).
*
* assoc_value - This parameter contains the number of milliseconds
* that the user is requesting the delayed ACK timer
* be set to. Note that this value is defined in
* the standard to be between 200 and 500 milliseconds.
*
* Note: a value of zero will leave the value alone,
* but disable SACK delay. A non-zero value will also
* enable SACK delay.
*/
static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
char __user *optval, int optlen)
{
struct sctp_assoc_value params;
struct sctp_transport *trans = NULL;
struct sctp_association *asoc = NULL;
struct sctp_sock *sp = sctp_sk(sk);
if (optlen != sizeof(struct sctp_assoc_value))
return - EINVAL;
if (copy_from_user(&params, optval, optlen))
return -EFAULT;
/* Validate value parameter. */
if (params.assoc_value > 500)
return -EINVAL;
/* Get association, if assoc_id != 0 and the socket is a one
* to many style socket, and an association was not found, then
* the id was invalid.
*/
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc && params.assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (params.assoc_value) {
if (asoc) {
asoc->sackdelay =
msecs_to_jiffies(params.assoc_value);
asoc->param_flags =
(asoc->param_flags & ~SPP_SACKDELAY) |
SPP_SACKDELAY_ENABLE;
} else {
sp->sackdelay = params.assoc_value;
sp->param_flags =
(sp->param_flags & ~SPP_SACKDELAY) |
SPP_SACKDELAY_ENABLE;
}
} else {
if (asoc) {
asoc->param_flags =
(asoc->param_flags & ~SPP_SACKDELAY) |
SPP_SACKDELAY_DISABLE;
} else {
sp->param_flags =
(sp->param_flags & ~SPP_SACKDELAY) |
SPP_SACKDELAY_DISABLE;
}
}
/* If change is for association, also apply to each transport. */
if (asoc) {
struct list_head *pos;
list_for_each(pos, &asoc->peer.transport_addr_list) {
trans = list_entry(pos, struct sctp_transport,
transports);
if (params.assoc_value) {
trans->sackdelay =
msecs_to_jiffies(params.assoc_value);
trans->param_flags =
(trans->param_flags & ~SPP_SACKDELAY) |
SPP_SACKDELAY_ENABLE;
} else {
trans->param_flags =
(trans->param_flags & ~SPP_SACKDELAY) |
SPP_SACKDELAY_DISABLE;
}
}
}
return 0;
}
/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
*
* Applications can specify protocol parameters for the default association
* initialization. The option name argument to setsockopt() and getsockopt()
* is SCTP_INITMSG.
*
* Setting initialization parameters is effective only on an unconnected
* socket (for UDP-style sockets only future associations are effected
* by the change). With TCP-style sockets, this option is inherited by
* sockets derived from a listener socket.
*/
static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
{
struct sctp_initmsg sinit;
struct sctp_sock *sp = sctp_sk(sk);
if (optlen != sizeof(struct sctp_initmsg))
return -EINVAL;
if (copy_from_user(&sinit, optval, optlen))
return -EFAULT;
if (sinit.sinit_num_ostreams)
sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
if (sinit.sinit_max_instreams)
sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
if (sinit.sinit_max_attempts)
sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
if (sinit.sinit_max_init_timeo)
sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
return 0;
}
/*
* 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
*
* Applications that wish to use the sendto() system call may wish to
* specify a default set of parameters that would normally be supplied
* through the inclusion of ancillary data. This socket option allows
* such an application to set the default sctp_sndrcvinfo structure.
* The application that wishes to use this socket option simply passes
* in to this call the sctp_sndrcvinfo structure defined in Section
* 5.2.2) The input parameters accepted by this call include
* sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
* sinfo_timetolive. The user must provide the sinfo_assoc_id field in
* to this call if the caller is using the UDP model.
*/
static int sctp_setsockopt_default_send_param(struct sock *sk,
char __user *optval, int optlen)
{
struct sctp_sndrcvinfo info;
struct sctp_association *asoc;
struct sctp_sock *sp = sctp_sk(sk);
if (optlen != sizeof(struct sctp_sndrcvinfo))
return -EINVAL;
if (copy_from_user(&info, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
asoc->default_stream = info.sinfo_stream;
asoc->default_flags = info.sinfo_flags;
asoc->default_ppid = info.sinfo_ppid;
asoc->default_context = info.sinfo_context;
asoc->default_timetolive = info.sinfo_timetolive;
} else {
sp->default_stream = info.sinfo_stream;
sp->default_flags = info.sinfo_flags;
sp->default_ppid = info.sinfo_ppid;
sp->default_context = info.sinfo_context;
sp->default_timetolive = info.sinfo_timetolive;
}
return 0;
}
/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
*
* Requests that the local SCTP stack use the enclosed peer address as
* the association primary. The enclosed address must be one of the
* association peer's addresses.
*/
static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
int optlen)
{
struct sctp_prim prim;
struct sctp_transport *trans;
if (optlen != sizeof(struct sctp_prim))
return -EINVAL;
if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
return -EFAULT;
trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
if (!trans)
return -EINVAL;
sctp_assoc_set_primary(trans->asoc, trans);
return 0;
}
/*
* 7.1.5 SCTP_NODELAY
*
* Turn on/off any Nagle-like algorithm. This means that packets are
* generally sent as soon as possible and no unnecessary delays are
* introduced, at the cost of more packets in the network. Expects an
* integer boolean flag.
*/
static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
int optlen)
{
int val;
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
return 0;
}
/*
*
* 7.1.1 SCTP_RTOINFO
*
* The protocol parameters used to initialize and bound retransmission
* timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
* and modify these parameters.
* All parameters are time values, in milliseconds. A value of 0, when
* modifying the parameters, indicates that the current value should not
* be changed.
*
*/
static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
struct sctp_rtoinfo rtoinfo;
struct sctp_association *asoc;
if (optlen != sizeof (struct sctp_rtoinfo))
return -EINVAL;
if (copy_from_user(&rtoinfo, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
/* Set the values to the specific association */
if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
if (rtoinfo.srto_initial != 0)
asoc->rto_initial =
msecs_to_jiffies(rtoinfo.srto_initial);
if (rtoinfo.srto_max != 0)
asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
if (rtoinfo.srto_min != 0)
asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
} else {
/* If there is no association or the association-id = 0
* set the values to the endpoint.
*/
struct sctp_sock *sp = sctp_sk(sk);
if (rtoinfo.srto_initial != 0)
sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
if (rtoinfo.srto_max != 0)
sp->rtoinfo.srto_max = rtoinfo.srto_max;
if (rtoinfo.srto_min != 0)
sp->rtoinfo.srto_min = rtoinfo.srto_min;
}
return 0;
}
/*
*
* 7.1.2 SCTP_ASSOCINFO
*
* This option is used to tune the maximum retransmission attempts
* of the association.
* Returns an error if the new association retransmission value is
* greater than the sum of the retransmission value of the peer.
* See [SCTP] for more information.
*
*/
static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
{
struct sctp_assocparams assocparams;
struct sctp_association *asoc;
if (optlen != sizeof(struct sctp_assocparams))
return -EINVAL;
if (copy_from_user(&assocparams, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
/* Set the values to the specific association */
if (asoc) {
if (assocparams.sasoc_asocmaxrxt != 0) {
__u32 path_sum = 0;
int paths = 0;
struct list_head *pos;
struct sctp_transport *peer_addr;
list_for_each(pos, &asoc->peer.transport_addr_list) {
peer_addr = list_entry(pos,
struct sctp_transport,
transports);
path_sum += peer_addr->pathmaxrxt;
paths++;
}
/* Only validate asocmaxrxt if we have more then
* one path/transport. We do this because path
* retransmissions are only counted when we have more
* then one path.
*/
if (paths > 1 &&
assocparams.sasoc_asocmaxrxt > path_sum)
return -EINVAL;
asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
}
if (assocparams.sasoc_cookie_life != 0) {
asoc->cookie_life.tv_sec =
assocparams.sasoc_cookie_life / 1000;
asoc->cookie_life.tv_usec =
(assocparams.sasoc_cookie_life % 1000)
* 1000;
}
} else {
/* Set the values to the endpoint */
struct sctp_sock *sp = sctp_sk(sk);
if (assocparams.sasoc_asocmaxrxt != 0)
sp->assocparams.sasoc_asocmaxrxt =
assocparams.sasoc_asocmaxrxt;
if (assocparams.sasoc_cookie_life != 0)
sp->assocparams.sasoc_cookie_life =
assocparams.sasoc_cookie_life;
}
return 0;
}
/*
* 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
*
* This socket option is a boolean flag which turns on or off mapped V4
* addresses. If this option is turned on and the socket is type
* PF_INET6, then IPv4 addresses will be mapped to V6 representation.
* If this option is turned off, then no mapping will be done of V4
* addresses and a user will receive both PF_INET6 and PF_INET type
* addresses on the socket.
*/
static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
{
int val;
struct sctp_sock *sp = sctp_sk(sk);
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
if (val)
sp->v4mapped = 1;
else
sp->v4mapped = 0;
return 0;
}
/*
* 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
*
* This socket option specifies the maximum size to put in any outgoing
* SCTP chunk. If a message is larger than this size it will be
* fragmented by SCTP into the specified size. Note that the underlying
* SCTP implementation may fragment into smaller sized chunks when the
* PMTU of the underlying association is smaller than the value set by
* the user.
*/
static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
{
struct sctp_association *asoc;
struct list_head *pos;
struct sctp_sock *sp = sctp_sk(sk);
int val;
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
return -EINVAL;
sp->user_frag = val;
/* Update the frag_point of the existing associations. */
list_for_each(pos, &(sp->ep->asocs)) {
asoc = list_entry(pos, struct sctp_association, asocs);
asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
}
return 0;
}
/*
* 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
*
* Requests that the peer mark the enclosed address as the association
* primary. The enclosed address must be one of the association's
* locally bound addresses. The following structure is used to make a
* set primary request:
*/
static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
int optlen)
{
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sctp_association *asoc = NULL;
struct sctp_setpeerprim prim;
struct sctp_chunk *chunk;
int err;
sp = sctp_sk(sk);
ep = sp->ep;
if (!sctp_addip_enable)
return -EPERM;
if (optlen != sizeof(struct sctp_setpeerprim))
return -EINVAL;
if (copy_from_user(&prim, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
if (!asoc)
return -EINVAL;
if (!asoc->peer.asconf_capable)
return -EPERM;
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
return -EPERM;
if (!sctp_state(asoc, ESTABLISHED))
return -ENOTCONN;
if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
return -EADDRNOTAVAIL;
/* Create an ASCONF chunk with SET_PRIMARY parameter */
chunk = sctp_make_asconf_set_prim(asoc,
(union sctp_addr *)&prim.sspp_addr);
if (!chunk)
return -ENOMEM;
err = sctp_send_asconf(asoc, chunk);
SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
return err;
}
static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
int optlen)
{
struct sctp_setadaptation adaptation;
if (optlen != sizeof(struct sctp_setadaptation))
return -EINVAL;
if (copy_from_user(&adaptation, optval, optlen))
return -EFAULT;
sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
return 0;
}
/*
* 7.1.29. Set or Get the default context (SCTP_CONTEXT)
*
* The context field in the sctp_sndrcvinfo structure is normally only
* used when a failed message is retrieved holding the value that was
* sent down on the actual send call. This option allows the setting of
* a default context on an association basis that will be received on
* reading messages from the peer. This is especially helpful in the
* one-2-many model for an application to keep some reference to an
* internal state machine that is processing messages on the
* association. Note that the setting of this value only effects
* received messages from the peer and does not effect the value that is
* saved with outbound messages.
*/
static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
int optlen)
{
struct sctp_assoc_value params;
struct sctp_sock *sp;
struct sctp_association *asoc;
if (optlen != sizeof(struct sctp_assoc_value))
return -EINVAL;
if (copy_from_user(&params, optval, optlen))
return -EFAULT;
sp = sctp_sk(sk);
if (params.assoc_id != 0) {
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc)
return -EINVAL;
asoc->default_rcv_context = params.assoc_value;
} else {
sp->default_rcv_context = params.assoc_value;
}
return 0;
}
/*
* 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
*
* This options will at a minimum specify if the implementation is doing
* fragmented interleave. Fragmented interleave, for a one to many
* socket, is when subsequent calls to receive a message may return
* parts of messages from different associations. Some implementations
* may allow you to turn this value on or off. If so, when turned off,
* no fragment interleave will occur (which will cause a head of line
* blocking amongst multiple associations sharing the same one to many
* socket). When this option is turned on, then each receive call may
* come from a different association (thus the user must receive data
* with the extended calls (e.g. sctp_recvmsg) to keep track of which
* association each receive belongs to.
*
* This option takes a boolean value. A non-zero value indicates that
* fragmented interleave is on. A value of zero indicates that
* fragmented interleave is off.
*
* Note that it is important that an implementation that allows this
* option to be turned on, have it off by default. Otherwise an unaware
* application using the one to many model may become confused and act
* incorrectly.
*/
static int sctp_setsockopt_fragment_interleave(struct sock *sk,
char __user *optval,
int optlen)
{
int val;
if (optlen != sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
return 0;
}
/*
* 7.1.25. Set or Get the sctp partial delivery point
* (SCTP_PARTIAL_DELIVERY_POINT)
* This option will set or get the SCTP partial delivery point. This
* point is the size of a message where the partial delivery API will be
* invoked to help free up rwnd space for the peer. Setting this to a
* lower value will cause partial delivery's to happen more often. The
* calls argument is an integer that sets or gets the partial delivery
* point.
*/
static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
char __user *optval,
int optlen)
{
u32 val;
if (optlen != sizeof(u32))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
sctp_sk(sk)->pd_point = val;
return 0; /* is this the right error code? */
}
/*
* 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
*
* This option will allow a user to change the maximum burst of packets
* that can be emitted by this association. Note that the default value
* is 4, and some implementations may restrict this setting so that it
* can only be lowered.
*
* NOTE: This text doesn't seem right. Do this on a socket basis with
* future associations inheriting the socket value.
*/
static int sctp_setsockopt_maxburst(struct sock *sk,
char __user *optval,
int optlen)
{
int val;
if (optlen != sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
if (val < 0)
return -EINVAL;
sctp_sk(sk)->max_burst = val;
return 0;
}
/*
* 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
*
* This set option adds a chunk type that the user is requesting to be
* received only in an authenticated way. Changes to the list of chunks
* will only effect future associations on the socket.
*/
static int sctp_setsockopt_auth_chunk(struct sock *sk,
char __user *optval,
int optlen)
{
struct sctp_authchunk val;
if (optlen != sizeof(struct sctp_authchunk))
return -EINVAL;
if (copy_from_user(&val, optval, optlen))
return -EFAULT;
switch (val.sauth_chunk) {
case SCTP_CID_INIT:
case SCTP_CID_INIT_ACK:
case SCTP_CID_SHUTDOWN_COMPLETE:
case SCTP_CID_AUTH:
return -EINVAL;
}
/* add this chunk id to the endpoint */
return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
}
/*
* 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
*
* This option gets or sets the list of HMAC algorithms that the local
* endpoint requires the peer to use.
*/
static int sctp_setsockopt_hmac_ident(struct sock *sk,
char __user *optval,
int optlen)
{
struct sctp_hmacalgo *hmacs;
int err;
if (optlen < sizeof(struct sctp_hmacalgo))
return -EINVAL;
hmacs = kmalloc(optlen, GFP_KERNEL);
if (!hmacs)
return -ENOMEM;
if (copy_from_user(hmacs, optval, optlen)) {
err = -EFAULT;
goto out;
}
if (hmacs->shmac_num_idents == 0 ||
hmacs->shmac_num_idents > SCTP_AUTH_NUM_HMACS) {
err = -EINVAL;
goto out;
}
err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
out:
kfree(hmacs);
return err;
}
/*
* 7.1.20. Set a shared key (SCTP_AUTH_KEY)
*
* This option will set a shared secret key which is used to build an
* association shared key.
*/
static int sctp_setsockopt_auth_key(struct sock *sk,
char __user *optval,
int optlen)
{
struct sctp_authkey *authkey;
struct sctp_association *asoc;
int ret;
if (optlen <= sizeof(struct sctp_authkey))
return -EINVAL;
authkey = kmalloc(optlen, GFP_KERNEL);
if (!authkey)
return -ENOMEM;
if (copy_from_user(authkey, optval, optlen)) {
ret = -EFAULT;
goto out;
}
asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
ret = -EINVAL;
goto out;
}
ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
out:
kfree(authkey);
return ret;
}
/*
* 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
*
* This option will get or set the active shared key to be used to build
* the association shared key.
*/
static int sctp_setsockopt_active_key(struct sock *sk,
char __user *optval,
int optlen)
{
struct sctp_authkeyid val;
struct sctp_association *asoc;
if (optlen != sizeof(struct sctp_authkeyid))
return -EINVAL;
if (copy_from_user(&val, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, val.scact_assoc_id);
if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
val.scact_keynumber);
}
/*
* 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
*
* This set option will delete a shared secret key from use.
*/
static int sctp_setsockopt_del_key(struct sock *sk,
char __user *optval,
int optlen)
{
struct sctp_authkeyid val;
struct sctp_association *asoc;
if (optlen != sizeof(struct sctp_authkeyid))
return -EINVAL;
if (copy_from_user(&val, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, val.scact_assoc_id);
if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
val.scact_keynumber);
}
/* API 6.2 setsockopt(), getsockopt()
*
* Applications use setsockopt() and getsockopt() to set or retrieve
* socket options. Socket options are used to change the default
* behavior of sockets calls. They are described in Section 7.
*
* The syntax is:
*
* ret = getsockopt(int sd, int level, int optname, void __user *optval,
* int __user *optlen);
* ret = setsockopt(int sd, int level, int optname, const void __user *optval,
* int optlen);
*
* sd - the socket descript.
* level - set to IPPROTO_SCTP for all SCTP options.
* optname - the option name.
* optval - the buffer to store the value of the option.
* optlen - the size of the buffer.
*/
SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
char __user *optval, int optlen)
{
int retval = 0;
SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
sk, optname);
/* I can hardly begin to describe how wrong this is. This is
* so broken as to be worse than useless. The API draft
* REALLY is NOT helpful here... I am not convinced that the
* semantics of setsockopt() with a level OTHER THAN SOL_SCTP
* are at all well-founded.
*/
if (level != SOL_SCTP) {
struct sctp_af *af = sctp_sk(sk)->pf->af;
retval = af->setsockopt(sk, level, optname, optval, optlen);
goto out_nounlock;
}
sctp_lock_sock(sk);
switch (optname) {
case SCTP_SOCKOPT_BINDX_ADD:
/* 'optlen' is the size of the addresses buffer. */
retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
optlen, SCTP_BINDX_ADD_ADDR);
break;
case SCTP_SOCKOPT_BINDX_REM:
/* 'optlen' is the size of the addresses buffer. */
retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
optlen, SCTP_BINDX_REM_ADDR);
break;
case SCTP_SOCKOPT_CONNECTX:
/* 'optlen' is the size of the addresses buffer. */
retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
optlen);
break;
case SCTP_DISABLE_FRAGMENTS:
retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
break;
case SCTP_EVENTS:
retval = sctp_setsockopt_events(sk, optval, optlen);
break;
case SCTP_AUTOCLOSE:
retval = sctp_setsockopt_autoclose(sk, optval, optlen);
break;
case SCTP_PEER_ADDR_PARAMS:
retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
break;
case SCTP_DELAYED_ACK_TIME:
retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
break;
case SCTP_PARTIAL_DELIVERY_POINT:
retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
break;
case SCTP_INITMSG:
retval = sctp_setsockopt_initmsg(sk, optval, optlen);
break;
case SCTP_DEFAULT_SEND_PARAM:
retval = sctp_setsockopt_default_send_param(sk, optval,
optlen);
break;
case SCTP_PRIMARY_ADDR:
retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
break;
case SCTP_SET_PEER_PRIMARY_ADDR:
retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
break;
case SCTP_NODELAY:
retval = sctp_setsockopt_nodelay(sk, optval, optlen);
break;
case SCTP_RTOINFO:
retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
break;
case SCTP_ASSOCINFO:
retval = sctp_setsockopt_associnfo(sk, optval, optlen);
break;
case SCTP_I_WANT_MAPPED_V4_ADDR:
retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
break;
case SCTP_MAXSEG:
retval = sctp_setsockopt_maxseg(sk, optval, optlen);
break;
case SCTP_ADAPTATION_LAYER:
retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
break;
case SCTP_CONTEXT:
retval = sctp_setsockopt_context(sk, optval, optlen);
break;
case SCTP_FRAGMENT_INTERLEAVE:
retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
break;
case SCTP_MAX_BURST:
retval = sctp_setsockopt_maxburst(sk, optval, optlen);
break;
case SCTP_AUTH_CHUNK:
retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
break;
case SCTP_HMAC_IDENT:
retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
break;
case SCTP_AUTH_KEY:
retval = sctp_setsockopt_auth_key(sk, optval, optlen);
break;
case SCTP_AUTH_ACTIVE_KEY:
retval = sctp_setsockopt_active_key(sk, optval, optlen);
break;
case SCTP_AUTH_DELETE_KEY:
retval = sctp_setsockopt_del_key(sk, optval, optlen);
break;
default:
retval = -ENOPROTOOPT;
break;
}
sctp_release_sock(sk);
out_nounlock:
return retval;
}
/* API 3.1.6 connect() - UDP Style Syntax
*
* An application may use the connect() call in the UDP model to initiate an
* association without sending data.
*
* The syntax is:
*
* ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
*
* sd: the socket descriptor to have a new association added to.
*
* nam: the address structure (either struct sockaddr_in or struct
* sockaddr_in6 defined in RFC2553 [7]).
*
* len: the size of the address.
*/
SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
int addr_len)
{
int err = 0;
struct sctp_af *af;
sctp_lock_sock(sk);
SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
__FUNCTION__, sk, addr, addr_len);
/* Validate addr_len before calling common connect/connectx routine. */
af = sctp_get_af_specific(addr->sa_family);
if (!af || addr_len < af->sockaddr_len) {
err = -EINVAL;
} else {
/* Pass correct addr len to common routine (so it knows there
* is only one address being passed.
*/
err = __sctp_connect(sk, addr, af->sockaddr_len);
}
sctp_release_sock(sk);
return err;
}
/* FIXME: Write comments. */
SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
{
return -EOPNOTSUPP; /* STUB */
}
/* 4.1.4 accept() - TCP Style Syntax
*
* Applications use accept() call to remove an established SCTP
* association from the accept queue of the endpoint. A new socket
* descriptor will be returned from accept() to represent the newly
* formed association.
*/
SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
{
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sock *newsk = NULL;
struct sctp_association *asoc;
long timeo;
int error = 0;
sctp_lock_sock(sk);
sp = sctp_sk(sk);
ep = sp->ep;
if (!sctp_style(sk, TCP)) {
error = -EOPNOTSUPP;
goto out;
}
if (!sctp_sstate(sk, LISTENING)) {
error = -EINVAL;
goto out;
}
timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
error = sctp_wait_for_accept(sk, timeo);
if (error)
goto out;
/* We treat the list of associations on the endpoint as the accept
* queue and pick the first association on the list.
*/
asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
newsk = sp->pf->create_accept_sk(sk, asoc);
if (!newsk) {
error = -ENOMEM;
goto out;
}
/* Populate the fields of the newsk from the oldsk and migrate the
* asoc to the newsk.
*/
sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
out:
sctp_release_sock(sk);
*err = error;
return newsk;
}
/* The SCTP ioctl handler. */
SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
{
return -ENOIOCTLCMD;
}
/* This is the function which gets called during socket creation to
* initialized the SCTP-specific portion of the sock.
* The sock structure should already be zero-filled memory.
*/
SCTP_STATIC int sctp_init_sock(struct sock *sk)
{
struct sctp_endpoint *ep;
struct sctp_sock *sp;
SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
sp = sctp_sk(sk);
/* Initialize the SCTP per socket area. */
switch (sk->sk_type) {
case SOCK_SEQPACKET:
sp->type = SCTP_SOCKET_UDP;
break;
case SOCK_STREAM:
sp->type = SCTP_SOCKET_TCP;
break;
default:
return -ESOCKTNOSUPPORT;
}
/* Initialize default send parameters. These parameters can be
* modified with the SCTP_DEFAULT_SEND_PARAM socket option.
*/
sp->default_stream = 0;
sp->default_ppid = 0;
sp->default_flags = 0;
sp->default_context = 0;
sp->default_timetolive = 0;
sp->default_rcv_context = 0;
sp->max_burst = sctp_max_burst;
/* Initialize default setup parameters. These parameters
* can be modified with the SCTP_INITMSG socket option or
* overridden by the SCTP_INIT CMSG.
*/
sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
sp->initmsg.sinit_max_instreams = sctp_max_instreams;
sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
/* Initialize default RTO related parameters. These parameters can
* be modified for with the SCTP_RTOINFO socket option.
*/
sp->rtoinfo.srto_initial = sctp_rto_initial;
sp->rtoinfo.srto_max = sctp_rto_max;
sp->rtoinfo.srto_min = sctp_rto_min;
/* Initialize default association related parameters. These parameters
* can be modified with the SCTP_ASSOCINFO socket option.
*/
sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
sp->assocparams.sasoc_number_peer_destinations = 0;
sp->assocparams.sasoc_peer_rwnd = 0;
sp->assocparams.sasoc_local_rwnd = 0;
sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
/* Initialize default event subscriptions. By default, all the
* options are off.
*/
memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
/* Default Peer Address Parameters. These defaults can
* be modified via SCTP_PEER_ADDR_PARAMS
*/
sp->hbinterval = sctp_hb_interval;
sp->pathmaxrxt = sctp_max_retrans_path;
sp->pathmtu = 0; // allow default discovery
sp->sackdelay = sctp_sack_timeout;
sp->param_flags = SPP_HB_ENABLE |
SPP_PMTUD_ENABLE |
SPP_SACKDELAY_ENABLE;
/* If enabled no SCTP message fragmentation will be performed.
* Configure through SCTP_DISABLE_FRAGMENTS socket option.
*/
sp->disable_fragments = 0;
/* Enable Nagle algorithm by default. */
sp->nodelay = 0;
/* Enable by default. */
sp->v4mapped = 1;
/* Auto-close idle associations after the configured
* number of seconds. A value of 0 disables this
* feature. Configure through the SCTP_AUTOCLOSE socket option,
* for UDP-style sockets only.
*/
sp->autoclose = 0;
/* User specified fragmentation limit. */
sp->user_frag = 0;
sp->adaptation_ind = 0;
sp->pf = sctp_get_pf_specific(sk->sk_family);
/* Control variables for partial data delivery. */
atomic_set(&sp->pd_mode, 0);
skb_queue_head_init(&sp->pd_lobby);
sp->frag_interleave = 0;
/* Create a per socket endpoint structure. Even if we
* change the data structure relationships, this may still
* be useful for storing pre-connect address information.
*/
ep = sctp_endpoint_new(sk, GFP_KERNEL);
if (!ep)
return -ENOMEM;
sp->ep = ep;
sp->hmac = NULL;
SCTP_DBG_OBJCNT_INC(sock);
atomic_inc(&sctp_sockets_allocated);
return 0;
}
/* Cleanup any SCTP per socket resources. */
SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
{
struct sctp_endpoint *ep;
SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
/* Release our hold on the endpoint. */
ep = sctp_sk(sk)->ep;
sctp_endpoint_free(ep);
atomic_dec(&sctp_sockets_allocated);
return 0;
}
/* API 4.1.7 shutdown() - TCP Style Syntax
* int shutdown(int socket, int how);
*
* sd - the socket descriptor of the association to be closed.
* how - Specifies the type of shutdown. The values are
* as follows:
* SHUT_RD
* Disables further receive operations. No SCTP
* protocol action is taken.
* SHUT_WR
* Disables further send operations, and initiates
* the SCTP shutdown sequence.
* SHUT_RDWR
* Disables further send and receive operations
* and initiates the SCTP shutdown sequence.
*/
SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
{
struct sctp_endpoint *ep;
struct sctp_association *asoc;
if (!sctp_style(sk, TCP))
return;
if (how & SEND_SHUTDOWN) {
ep = sctp_sk(sk)->ep;
if (!list_empty(&ep->asocs)) {
asoc = list_entry(ep->asocs.next,
struct sctp_association, asocs);
sctp_primitive_SHUTDOWN(asoc, NULL);
}
}
}
/* 7.2.1 Association Status (SCTP_STATUS)
* Applications can retrieve current status information about an
* association, including association state, peer receiver window size,
* number of unacked data chunks, and number of data chunks pending
* receipt. This information is read-only.
*/
static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_status status;
struct sctp_association *asoc = NULL;
struct sctp_transport *transport;
sctp_assoc_t associd;
int retval = 0;
if (len < sizeof(status)) {
retval = -EINVAL;
goto out;
}
len = sizeof(status);
if (copy_from_user(&status, optval, len)) {
retval = -EFAULT;
goto out;
}
associd = status.sstat_assoc_id;
asoc = sctp_id2assoc(sk, associd);
if (!asoc) {
retval = -EINVAL;
goto out;
}
transport = asoc->peer.primary_path;
status.sstat_assoc_id = sctp_assoc2id(asoc);
status.sstat_state = asoc->state;
status.sstat_rwnd = asoc->peer.rwnd;
status.sstat_unackdata = asoc->unack_data;
status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
status.sstat_instrms = asoc->c.sinit_max_instreams;
status.sstat_outstrms = asoc->c.sinit_num_ostreams;
status.sstat_fragmentation_point = asoc->frag_point;
status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
transport->af_specific->sockaddr_len);
/* Map ipv4 address into v4-mapped-on-v6 address. */
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
(union sctp_addr *)&status.sstat_primary.spinfo_address);
status.sstat_primary.spinfo_state = transport->state;
status.sstat_primary.spinfo_cwnd = transport->cwnd;
status.sstat_primary.spinfo_srtt = transport->srtt;
status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
status.sstat_primary.spinfo_mtu = transport->pathmtu;
if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
status.sstat_primary.spinfo_state = SCTP_ACTIVE;
if (put_user(len, optlen)) {
retval = -EFAULT;
goto out;
}
SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
len, status.sstat_state, status.sstat_rwnd,
status.sstat_assoc_id);
if (copy_to_user(optval, &status, len)) {
retval = -EFAULT;
goto out;
}
out:
return (retval);
}
/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
*
* Applications can retrieve information about a specific peer address
* of an association, including its reachability state, congestion
* window, and retransmission timer values. This information is
* read-only.
*/
static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_paddrinfo pinfo;
struct sctp_transport *transport;
int retval = 0;
if (len < sizeof(pinfo)) {
retval = -EINVAL;
goto out;
}
len = sizeof(pinfo);
if (copy_from_user(&pinfo, optval, len)) {
retval = -EFAULT;
goto out;
}
transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
pinfo.spinfo_assoc_id);
if (!transport)
return -EINVAL;
pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
pinfo.spinfo_state = transport->state;
pinfo.spinfo_cwnd = transport->cwnd;
pinfo.spinfo_srtt = transport->srtt;
pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
pinfo.spinfo_mtu = transport->pathmtu;
if (pinfo.spinfo_state == SCTP_UNKNOWN)
pinfo.spinfo_state = SCTP_ACTIVE;
if (put_user(len, optlen)) {
retval = -EFAULT;
goto out;
}
if (copy_to_user(optval, &pinfo, len)) {
retval = -EFAULT;
goto out;
}
out:
return (retval);
}
/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
*
* This option is a on/off flag. If enabled no SCTP message
* fragmentation will be performed. Instead if a message being sent
* exceeds the current PMTU size, the message will NOT be sent and
* instead a error will be indicated to the user.
*/
static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = (sctp_sk(sk)->disable_fragments == 1);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
*
* This socket option is used to specify various notifications and
* ancillary data the user wishes to receive.
*/
static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
int __user *optlen)
{
if (len < sizeof(struct sctp_event_subscribe))
return -EINVAL;
len = sizeof(struct sctp_event_subscribe);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
return -EFAULT;
return 0;
}
/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
*
* This socket option is applicable to the UDP-style socket only. When
* set it will cause associations that are idle for more than the
* specified number of seconds to automatically close. An association
* being idle is defined an association that has NOT sent or received
* user data. The special value of '0' indicates that no automatic
* close of any associations should be performed. The option expects an
* integer defining the number of seconds of idle time before an
* association is closed.
*/
static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
{
/* Applicable to UDP-style socket only */
if (sctp_style(sk, TCP))
return -EOPNOTSUPP;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
return -EFAULT;
return 0;
}
/* Helper routine to branch off an association to a new socket. */
SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
struct socket **sockp)
{
struct sock *sk = asoc->base.sk;
struct socket *sock;
struct inet_sock *inetsk;
struct sctp_af *af;
int err = 0;
/* An association cannot be branched off from an already peeled-off
* socket, nor is this supported for tcp style sockets.
*/
if (!sctp_style(sk, UDP))
return -EINVAL;
/* Create a new socket. */
err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
if (err < 0)
return err;
/* Populate the fields of the newsk from the oldsk and migrate the
* asoc to the newsk.
*/
sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
/* Make peeled-off sockets more like 1-1 accepted sockets.
* Set the daddr and initialize id to something more random
*/
af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
af->to_sk_daddr(&asoc->peer.primary_addr, sk);
inetsk = inet_sk(sock->sk);
inetsk->id = asoc->next_tsn ^ jiffies;
*sockp = sock;
return err;
}
static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
{
sctp_peeloff_arg_t peeloff;
struct socket *newsock;
int retval = 0;
struct sctp_association *asoc;
if (len < sizeof(sctp_peeloff_arg_t))
return -EINVAL;
len = sizeof(sctp_peeloff_arg_t);
if (copy_from_user(&peeloff, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, peeloff.associd);
if (!asoc) {
retval = -EINVAL;
goto out;
}
SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
retval = sctp_do_peeloff(asoc, &newsock);
if (retval < 0)
goto out;
/* Map the socket to an unused fd that can be returned to the user. */
retval = sock_map_fd(newsock);
if (retval < 0) {
sock_release(newsock);
goto out;
}
SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
__FUNCTION__, sk, asoc, newsock->sk, retval);
/* Return the fd mapped to the new socket. */
peeloff.sd = retval;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &peeloff, len))
retval = -EFAULT;
out:
return retval;
}
/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
*
* Applications can enable or disable heartbeats for any peer address of
* an association, modify an address's heartbeat interval, force a
* heartbeat to be sent immediately, and adjust the address's maximum
* number of retransmissions sent before an address is considered
* unreachable. The following structure is used to access and modify an
* address's parameters:
*
* struct sctp_paddrparams {
* sctp_assoc_t spp_assoc_id;
* struct sockaddr_storage spp_address;
* uint32_t spp_hbinterval;
* uint16_t spp_pathmaxrxt;
* uint32_t spp_pathmtu;
* uint32_t spp_sackdelay;
* uint32_t spp_flags;
* };
*
* spp_assoc_id - (one-to-many style socket) This is filled in the
* application, and identifies the association for
* this query.
* spp_address - This specifies which address is of interest.
* spp_hbinterval - This contains the value of the heartbeat interval,
* in milliseconds. If a value of zero
* is present in this field then no changes are to
* be made to this parameter.
* spp_pathmaxrxt - This contains the maximum number of
* retransmissions before this address shall be
* considered unreachable. If a value of zero
* is present in this field then no changes are to
* be made to this parameter.
* spp_pathmtu - When Path MTU discovery is disabled the value
* specified here will be the "fixed" path mtu.
* Note that if the spp_address field is empty
* then all associations on this address will
* have this fixed path mtu set upon them.
*
* spp_sackdelay - When delayed sack is enabled, this value specifies
* the number of milliseconds that sacks will be delayed
* for. This value will apply to all addresses of an
* association if the spp_address field is empty. Note
* also, that if delayed sack is enabled and this
* value is set to 0, no change is made to the last
* recorded delayed sack timer value.
*
* spp_flags - These flags are used to control various features
* on an association. The flag field may contain
* zero or more of the following options.
*
* SPP_HB_ENABLE - Enable heartbeats on the
* specified address. Note that if the address
* field is empty all addresses for the association
* have heartbeats enabled upon them.
*
* SPP_HB_DISABLE - Disable heartbeats on the
* speicifed address. Note that if the address
* field is empty all addresses for the association
* will have their heartbeats disabled. Note also
* that SPP_HB_ENABLE and SPP_HB_DISABLE are
* mutually exclusive, only one of these two should
* be specified. Enabling both fields will have
* undetermined results.
*
* SPP_HB_DEMAND - Request a user initiated heartbeat
* to be made immediately.
*
* SPP_PMTUD_ENABLE - This field will enable PMTU
* discovery upon the specified address. Note that
* if the address feild is empty then all addresses
* on the association are effected.
*
* SPP_PMTUD_DISABLE - This field will disable PMTU
* discovery upon the specified address. Note that
* if the address feild is empty then all addresses
* on the association are effected. Not also that
* SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
* exclusive. Enabling both will have undetermined
* results.
*
* SPP_SACKDELAY_ENABLE - Setting this flag turns
* on delayed sack. The time specified in spp_sackdelay
* is used to specify the sack delay for this address. Note
* that if spp_address is empty then all addresses will
* enable delayed sack and take on the sack delay
* value specified in spp_sackdelay.
* SPP_SACKDELAY_DISABLE - Setting this flag turns
* off delayed sack. If the spp_address field is blank then
* delayed sack is disabled for the entire association. Note
* also that this field is mutually exclusive to
* SPP_SACKDELAY_ENABLE, setting both will have undefined
* results.
*/
static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_paddrparams params;
struct sctp_transport *trans = NULL;
struct sctp_association *asoc = NULL;
struct sctp_sock *sp = sctp_sk(sk);
if (len < sizeof(struct sctp_paddrparams))
return -EINVAL;
len = sizeof(struct sctp_paddrparams);
if (copy_from_user(&params, optval, len))
return -EFAULT;
/* If an address other than INADDR_ANY is specified, and
* no transport is found, then the request is invalid.
*/
if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
trans = sctp_addr_id2transport(sk, &params.spp_address,
params.spp_assoc_id);
if (!trans) {
SCTP_DEBUG_PRINTK("Failed no transport\n");
return -EINVAL;
}
}
/* Get association, if assoc_id != 0 and the socket is a one
* to many style socket, and an association was not found, then
* the id was invalid.
*/
asoc = sctp_id2assoc(sk, params.spp_assoc_id);
if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
SCTP_DEBUG_PRINTK("Failed no association\n");
return -EINVAL;
}
if (trans) {
/* Fetch transport values. */
params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
params.spp_pathmtu = trans->pathmtu;
params.spp_pathmaxrxt = trans->pathmaxrxt;
params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
/*draft-11 doesn't say what to return in spp_flags*/
params.spp_flags = trans->param_flags;
} else if (asoc) {
/* Fetch association values. */
params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
params.spp_pathmtu = asoc->pathmtu;
params.spp_pathmaxrxt = asoc->pathmaxrxt;
params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
/*draft-11 doesn't say what to return in spp_flags*/
params.spp_flags = asoc->param_flags;
} else {
/* Fetch socket values. */
params.spp_hbinterval = sp->hbinterval;
params.spp_pathmtu = sp->pathmtu;
params.spp_sackdelay = sp->sackdelay;
params.spp_pathmaxrxt = sp->pathmaxrxt;
/*draft-11 doesn't say what to return in spp_flags*/
params.spp_flags = sp->param_flags;
}
if (copy_to_user(optval, &params, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
/* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
*
* This options will get or set the delayed ack timer. The time is set
* in milliseconds. If the assoc_id is 0, then this sets or gets the
* endpoints default delayed ack timer value. If the assoc_id field is
* non-zero, then the set or get effects the specified association.
*
* struct sctp_assoc_value {
* sctp_assoc_t assoc_id;
* uint32_t assoc_value;
* };
*
* assoc_id - This parameter, indicates which association the
* user is preforming an action upon. Note that if
* this field's value is zero then the endpoints
* default value is changed (effecting future
* associations only).
*
* assoc_value - This parameter contains the number of milliseconds
* that the user is requesting the delayed ACK timer
* be set to. Note that this value is defined in
* the standard to be between 200 and 500 milliseconds.
*
* Note: a value of zero will leave the value alone,
* but disable SACK delay. A non-zero value will also
* enable SACK delay.
*/
static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc = NULL;
struct sctp_sock *sp = sctp_sk(sk);
if (len < sizeof(struct sctp_assoc_value))
return - EINVAL;
len = sizeof(struct sctp_assoc_value);
if (copy_from_user(&params, optval, len))
return -EFAULT;
/* Get association, if assoc_id != 0 and the socket is a one
* to many style socket, and an association was not found, then
* the id was invalid.
*/
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc && params.assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
/* Fetch association values. */
if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
params.assoc_value = jiffies_to_msecs(
asoc->sackdelay);
else
params.assoc_value = 0;
} else {
/* Fetch socket values. */
if (sp->param_flags & SPP_SACKDELAY_ENABLE)
params.assoc_value = sp->sackdelay;
else
params.assoc_value = 0;
}
if (copy_to_user(optval, &params, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
*
* Applications can specify protocol parameters for the default association
* initialization. The option name argument to setsockopt() and getsockopt()
* is SCTP_INITMSG.
*
* Setting initialization parameters is effective only on an unconnected
* socket (for UDP-style sockets only future associations are effected
* by the change). With TCP-style sockets, this option is inherited by
* sockets derived from a listener socket.
*/
static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
{
if (len < sizeof(struct sctp_initmsg))
return -EINVAL;
len = sizeof(struct sctp_initmsg);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
sctp_assoc_t id;
struct sctp_association *asoc;
struct list_head *pos;
int cnt = 0;
if (len < sizeof(sctp_assoc_t))
return -EINVAL;
if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
return -EFAULT;
/* For UDP-style sockets, id specifies the association to query. */
asoc = sctp_id2assoc(sk, id);
if (!asoc)
return -EINVAL;
list_for_each(pos, &asoc->peer.transport_addr_list) {
cnt ++;
}
return cnt;
}
/*
* Old API for getting list of peer addresses. Does not work for 32-bit
* programs running on a 64-bit kernel
*/
static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_association *asoc;
struct list_head *pos;
int cnt = 0;
struct sctp_getaddrs_old getaddrs;
struct sctp_transport *from;
void __user *to;
union sctp_addr temp;
struct sctp_sock *sp = sctp_sk(sk);
int addrlen;
if (len < sizeof(struct sctp_getaddrs_old))
return -EINVAL;
len = sizeof(struct sctp_getaddrs_old);
if (copy_from_user(&getaddrs, optval, len))
return -EFAULT;
if (getaddrs.addr_num <= 0) return -EINVAL;
/* For UDP-style sockets, id specifies the association to query. */
asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
if (!asoc)
return -EINVAL;
to = (void __user *)getaddrs.addrs;
list_for_each(pos, &asoc->peer.transport_addr_list) {
from = list_entry(pos, struct sctp_transport, transports);
memcpy(&temp, &from->ipaddr, sizeof(temp));
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
if (copy_to_user(to, &temp, addrlen))
return -EFAULT;
to += addrlen ;
cnt ++;
if (cnt >= getaddrs.addr_num) break;
}
getaddrs.addr_num = cnt;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &getaddrs, len))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_association *asoc;
struct list_head *pos;
int cnt = 0;
struct sctp_getaddrs getaddrs;
struct sctp_transport *from;
void __user *to;
union sctp_addr temp;
struct sctp_sock *sp = sctp_sk(sk);
int addrlen;
size_t space_left;
int bytes_copied;
if (len < sizeof(struct sctp_getaddrs))
return -EINVAL;
if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
return -EFAULT;
/* For UDP-style sockets, id specifies the association to query. */
asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
if (!asoc)
return -EINVAL;
to = optval + offsetof(struct sctp_getaddrs,addrs);
space_left = len - offsetof(struct sctp_getaddrs,addrs);
list_for_each(pos, &asoc->peer.transport_addr_list) {
from = list_entry(pos, struct sctp_transport, transports);
memcpy(&temp, &from->ipaddr, sizeof(temp));
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
if (space_left < addrlen)
return -ENOMEM;
if (copy_to_user(to, &temp, addrlen))
return -EFAULT;
to += addrlen;
cnt++;
space_left -= addrlen;
}
if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
return -EFAULT;
bytes_copied = ((char __user *)to) - optval;
if (put_user(bytes_copied, optlen))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
sctp_assoc_t id;
struct sctp_bind_addr *bp;
struct sctp_association *asoc;
struct sctp_sockaddr_entry *addr;
int cnt = 0;
if (len < sizeof(sctp_assoc_t))
return -EINVAL;
if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
return -EFAULT;
/*
* For UDP-style sockets, id specifies the association to query.
* If the id field is set to the value '0' then the locally bound
* addresses are returned without regard to any particular
* association.
*/
if (0 == id) {
bp = &sctp_sk(sk)->ep->base.bind_addr;
} else {
asoc = sctp_id2assoc(sk, id);
if (!asoc)
return -EINVAL;
bp = &asoc->base.bind_addr;
}
/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
* addresses from the global local address list.
*/
if (sctp_list_single_entry(&bp->address_list)) {
addr = list_entry(bp->address_list.next,
struct sctp_sockaddr_entry, list);
if (sctp_is_any(&addr->a)) {
rcu_read_lock();
list_for_each_entry_rcu(addr,
&sctp_local_addr_list, list) {
if (!addr->valid)
continue;
if ((PF_INET == sk->sk_family) &&
(AF_INET6 == addr->a.sa.sa_family))
continue;
cnt++;
}
rcu_read_unlock();
} else {
cnt = 1;
}
goto done;
}
/* Protection on the bound address list is not needed,
* since in the socket option context we hold the socket lock,
* so there is no way that the bound address list can change.
*/
list_for_each_entry(addr, &bp->address_list, list) {
cnt ++;
}
done:
return cnt;
}
/* Helper function that copies local addresses to user and returns the number
* of addresses copied.
*/
static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
int max_addrs, void *to,
int *bytes_copied)
{
struct sctp_sockaddr_entry *addr;
union sctp_addr temp;
int cnt = 0;
int addrlen;
rcu_read_lock();
list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
if (!addr->valid)
continue;
if ((PF_INET == sk->sk_family) &&
(AF_INET6 == addr->a.sa.sa_family))
continue;
memcpy(&temp, &addr->a, sizeof(temp));
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
&temp);
addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
memcpy(to, &temp, addrlen);
to += addrlen;
*bytes_copied += addrlen;
cnt ++;
if (cnt >= max_addrs) break;
}
rcu_read_unlock();
return cnt;
}
static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
size_t space_left, int *bytes_copied)
{
struct sctp_sockaddr_entry *addr;
union sctp_addr temp;
int cnt = 0;
int addrlen;
rcu_read_lock();
list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
if (!addr->valid)
continue;
if ((PF_INET == sk->sk_family) &&
(AF_INET6 == addr->a.sa.sa_family))
continue;
memcpy(&temp, &addr->a, sizeof(temp));
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
&temp);
addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
if (space_left < addrlen) {
cnt = -ENOMEM;
break;
}
memcpy(to, &temp, addrlen);
to += addrlen;
cnt ++;
space_left -= addrlen;
*bytes_copied += addrlen;
}
rcu_read_unlock();
return cnt;
}
/* Old API for getting list of local addresses. Does not work for 32-bit
* programs running on a 64-bit kernel
*/
static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_bind_addr *bp;
struct sctp_association *asoc;
int cnt = 0;
struct sctp_getaddrs_old getaddrs;
struct sctp_sockaddr_entry *addr;
void __user *to;
union sctp_addr temp;
struct sctp_sock *sp = sctp_sk(sk);
int addrlen;
int err = 0;
void *addrs;
void *buf;
int bytes_copied = 0;
if (len < sizeof(struct sctp_getaddrs_old))
return -EINVAL;
len = sizeof(struct sctp_getaddrs_old);
if (copy_from_user(&getaddrs, optval, len))
return -EFAULT;
if (getaddrs.addr_num <= 0) return -EINVAL;
/*
* For UDP-style sockets, id specifies the association to query.
* If the id field is set to the value '0' then the locally bound
* addresses are returned without regard to any particular
* association.
*/
if (0 == getaddrs.assoc_id) {
bp = &sctp_sk(sk)->ep->base.bind_addr;
} else {
asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
if (!asoc)
return -EINVAL;
bp = &asoc->base.bind_addr;
}
to = getaddrs.addrs;
/* Allocate space for a local instance of packed array to hold all
* the data. We store addresses here first and then put write them
* to the user in one shot.
*/
addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
GFP_KERNEL);
if (!addrs)
return -ENOMEM;
/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
* addresses from the global local address list.
*/
if (sctp_list_single_entry(&bp->address_list)) {
addr = list_entry(bp->address_list.next,
struct sctp_sockaddr_entry, list);
if (sctp_is_any(&addr->a)) {
cnt = sctp_copy_laddrs_old(sk, bp->port,
getaddrs.addr_num,
addrs, &bytes_copied);
goto copy_getaddrs;
}
}
buf = addrs;
/* Protection on the bound address list is not needed since
* in the socket option context we hold a socket lock and
* thus the bound address list can't change.
*/
list_for_each_entry(addr, &bp->address_list, list) {
memcpy(&temp, &addr->a, sizeof(temp));
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
memcpy(buf, &temp, addrlen);
buf += addrlen;
bytes_copied += addrlen;
cnt ++;
if (cnt >= getaddrs.addr_num) break;
}
copy_getaddrs:
/* copy the entire address list into the user provided space */
if (copy_to_user(to, addrs, bytes_copied)) {
err = -EFAULT;
goto error;
}
/* copy the leading structure back to user */
getaddrs.addr_num = cnt;
if (copy_to_user(optval, &getaddrs, len))
err = -EFAULT;
error:
kfree(addrs);
return err;
}
static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_bind_addr *bp;
struct sctp_association *asoc;
int cnt = 0;
struct sctp_getaddrs getaddrs;
struct sctp_sockaddr_entry *addr;
void __user *to;
union sctp_addr temp;
struct sctp_sock *sp = sctp_sk(sk);
int addrlen;
int err = 0;
size_t space_left;
int bytes_copied = 0;
void *addrs;
void *buf;
if (len < sizeof(struct sctp_getaddrs))
return -EINVAL;
if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
return -EFAULT;
/*
* For UDP-style sockets, id specifies the association to query.
* If the id field is set to the value '0' then the locally bound
* addresses are returned without regard to any particular
* association.
*/
if (0 == getaddrs.assoc_id) {
bp = &sctp_sk(sk)->ep->base.bind_addr;
} else {
asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
if (!asoc)
return -EINVAL;
bp = &asoc->base.bind_addr;
}
to = optval + offsetof(struct sctp_getaddrs,addrs);
space_left = len - offsetof(struct sctp_getaddrs,addrs);
addrs = kmalloc(space_left, GFP_KERNEL);
if (!addrs)
return -ENOMEM;
/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
* addresses from the global local address list.
*/
if (sctp_list_single_entry(&bp->address_list)) {
addr = list_entry(bp->address_list.next,
struct sctp_sockaddr_entry, list);
if (sctp_is_any(&addr->a)) {
cnt = sctp_copy_laddrs(sk, bp->port, addrs,
space_left, &bytes_copied);
if (cnt < 0) {
err = cnt;
goto out;
}
goto copy_getaddrs;
}
}
buf = addrs;
/* Protection on the bound address list is not needed since
* in the socket option context we hold a socket lock and
* thus the bound address list can't change.
*/
list_for_each_entry(addr, &bp->address_list, list) {
memcpy(&temp, &addr->a, sizeof(temp));
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
if (space_left < addrlen) {
err = -ENOMEM; /*fixme: right error?*/
goto out;
}
memcpy(buf, &temp, addrlen);
buf += addrlen;
bytes_copied += addrlen;
cnt ++;
space_left -= addrlen;
}
copy_getaddrs:
if (copy_to_user(to, addrs, bytes_copied)) {
err = -EFAULT;
goto out;
}
if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
err = -EFAULT;
goto out;
}
if (put_user(bytes_copied, optlen))
err = -EFAULT;
out:
kfree(addrs);
return err;
}
/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
*
* Requests that the local SCTP stack use the enclosed peer address as
* the association primary. The enclosed address must be one of the
* association peer's addresses.
*/
static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_prim prim;
struct sctp_association *asoc;
struct sctp_sock *sp = sctp_sk(sk);
if (len < sizeof(struct sctp_prim))
return -EINVAL;
len = sizeof(struct sctp_prim);
if (copy_from_user(&prim, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
if (!asoc)
return -EINVAL;
if (!asoc->peer.primary_path)
return -ENOTCONN;
memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
asoc->peer.primary_path->af_specific->sockaddr_len);
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
(union sctp_addr *)&prim.ssp_addr);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &prim, len))
return -EFAULT;
return 0;
}
/*
* 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
*
* Requests that the local endpoint set the specified Adaptation Layer
* Indication parameter for all future INIT and INIT-ACK exchanges.
*/
static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_setadaptation adaptation;
if (len < sizeof(struct sctp_setadaptation))
return -EINVAL;
len = sizeof(struct sctp_setadaptation);
adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &adaptation, len))
return -EFAULT;
return 0;
}
/*
*
* 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
*
* Applications that wish to use the sendto() system call may wish to
* specify a default set of parameters that would normally be supplied
* through the inclusion of ancillary data. This socket option allows
* such an application to set the default sctp_sndrcvinfo structure.
* The application that wishes to use this socket option simply passes
* in to this call the sctp_sndrcvinfo structure defined in Section
* 5.2.2) The input parameters accepted by this call include
* sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
* sinfo_timetolive. The user must provide the sinfo_assoc_id field in
* to this call if the caller is using the UDP model.
*
* For getsockopt, it get the default sctp_sndrcvinfo structure.
*/
static int sctp_getsockopt_default_send_param(struct sock *sk,
int len, char __user *optval,
int __user *optlen)
{
struct sctp_sndrcvinfo info;
struct sctp_association *asoc;
struct sctp_sock *sp = sctp_sk(sk);
if (len < sizeof(struct sctp_sndrcvinfo))
return -EINVAL;
len = sizeof(struct sctp_sndrcvinfo);
if (copy_from_user(&info, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
info.sinfo_stream = asoc->default_stream;
info.sinfo_flags = asoc->default_flags;
info.sinfo_ppid = asoc->default_ppid;
info.sinfo_context = asoc->default_context;
info.sinfo_timetolive = asoc->default_timetolive;
} else {
info.sinfo_stream = sp->default_stream;
info.sinfo_flags = sp->default_flags;
info.sinfo_ppid = sp->default_ppid;
info.sinfo_context = sp->default_context;
info.sinfo_timetolive = sp->default_timetolive;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &info, len))
return -EFAULT;
return 0;
}
/*
*
* 7.1.5 SCTP_NODELAY
*
* Turn on/off any Nagle-like algorithm. This means that packets are
* generally sent as soon as possible and no unnecessary delays are
* introduced, at the cost of more packets in the network. Expects an
* integer boolean flag.
*/
static int sctp_getsockopt_nodelay(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = (sctp_sk(sk)->nodelay == 1);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
*
* 7.1.1 SCTP_RTOINFO
*
* The protocol parameters used to initialize and bound retransmission
* timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
* and modify these parameters.
* All parameters are time values, in milliseconds. A value of 0, when
* modifying the parameters, indicates that the current value should not
* be changed.
*
*/
static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
char __user *optval,
int __user *optlen) {
struct sctp_rtoinfo rtoinfo;
struct sctp_association *asoc;
if (len < sizeof (struct sctp_rtoinfo))
return -EINVAL;
len = sizeof(struct sctp_rtoinfo);
if (copy_from_user(&rtoinfo, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
/* Values corresponding to the specific association. */
if (asoc) {
rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
} else {
/* Values corresponding to the endpoint. */
struct sctp_sock *sp = sctp_sk(sk);
rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
rtoinfo.srto_max = sp->rtoinfo.srto_max;
rtoinfo.srto_min = sp->rtoinfo.srto_min;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &rtoinfo, len))
return -EFAULT;
return 0;
}
/*
*
* 7.1.2 SCTP_ASSOCINFO
*
* This option is used to tune the maximum retransmission attempts
* of the association.
* Returns an error if the new association retransmission value is
* greater than the sum of the retransmission value of the peer.
* See [SCTP] for more information.
*
*/
static int sctp_getsockopt_associnfo(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assocparams assocparams;
struct sctp_association *asoc;
struct list_head *pos;
int cnt = 0;
if (len < sizeof (struct sctp_assocparams))
return -EINVAL;
len = sizeof(struct sctp_assocparams);
if (copy_from_user(&assocparams, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
/* Values correspoinding to the specific association */
if (asoc) {
assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
assocparams.sasoc_local_rwnd = asoc->a_rwnd;
assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
* 1000) +
(asoc->cookie_life.tv_usec
/ 1000);
list_for_each(pos, &asoc->peer.transport_addr_list) {
cnt ++;
}
assocparams.sasoc_number_peer_destinations = cnt;
} else {
/* Values corresponding to the endpoint */
struct sctp_sock *sp = sctp_sk(sk);
assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
assocparams.sasoc_cookie_life =
sp->assocparams.sasoc_cookie_life;
assocparams.sasoc_number_peer_destinations =
sp->assocparams.
sasoc_number_peer_destinations;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &assocparams, len))
return -EFAULT;
return 0;
}
/*
* 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
*
* This socket option is a boolean flag which turns on or off mapped V4
* addresses. If this option is turned on and the socket is type
* PF_INET6, then IPv4 addresses will be mapped to V6 representation.
* If this option is turned off, then no mapping will be done of V4
* addresses and a user will receive both PF_INET6 and PF_INET type
* addresses on the socket.
*/
static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val;
struct sctp_sock *sp = sctp_sk(sk);
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = sp->v4mapped;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
* 7.1.29. Set or Get the default context (SCTP_CONTEXT)
* (chapter and verse is quoted at sctp_setsockopt_context())
*/
static int sctp_getsockopt_context(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_sock *sp;
struct sctp_association *asoc;
if (len < sizeof(struct sctp_assoc_value))
return -EINVAL;
len = sizeof(struct sctp_assoc_value);
if (copy_from_user(&params, optval, len))
return -EFAULT;
sp = sctp_sk(sk);
if (params.assoc_id != 0) {
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc)
return -EINVAL;
params.assoc_value = asoc->default_rcv_context;
} else {
params.assoc_value = sp->default_rcv_context;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &params, len))
return -EFAULT;
return 0;
}
/*
* 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
*
* This socket option specifies the maximum size to put in any outgoing
* SCTP chunk. If a message is larger than this size it will be
* fragmented by SCTP into the specified size. Note that the underlying
* SCTP implementation may fragment into smaller sized chunks when the
* PMTU of the underlying association is smaller than the value set by
* the user.
*/
static int sctp_getsockopt_maxseg(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = sctp_sk(sk)->user_frag;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
* 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
* (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
*/
static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = sctp_sk(sk)->frag_interleave;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
* 7.1.25. Set or Get the sctp partial delivery point
* (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
*/
static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
u32 val;
if (len < sizeof(u32))
return -EINVAL;
len = sizeof(u32);
val = sctp_sk(sk)->pd_point;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return -ENOTSUPP;
}
/*
* 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
* (chapter and verse is quoted at sctp_setsockopt_maxburst())
*/
static int sctp_getsockopt_maxburst(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
int val;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = sctp_sk(sk)->max_burst;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return -ENOTSUPP;
}
static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_hmac_algo_param *hmacs;
__u16 param_len;
hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
param_len = ntohs(hmacs->param_hdr.length);
if (len < param_len)
return -EINVAL;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, hmacs->hmac_ids, len))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_active_key(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_authkeyid val;
struct sctp_association *asoc;
if (len < sizeof(struct sctp_authkeyid))
return -EINVAL;
if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
return -EFAULT;
asoc = sctp_id2assoc(sk, val.scact_assoc_id);
if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc)
val.scact_keynumber = asoc->active_key_id;
else
val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
return 0;
}
static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_authchunks __user *p = (void __user *)optval;
struct sctp_authchunks val;
struct sctp_association *asoc;
struct sctp_chunks_param *ch;
char __user *to;
if (len <= sizeof(struct sctp_authchunks))
return -EINVAL;
if (copy_from_user(&val, p, sizeof(struct sctp_authchunks)))
return -EFAULT;
to = p->gauth_chunks;
asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
if (!asoc)
return -EINVAL;
ch = asoc->peer.peer_chunks;
/* See if the user provided enough room for all the data */
if (len < ntohs(ch->param_hdr.length))
return -EINVAL;
len = ntohs(ch->param_hdr.length);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(to, ch->chunks, len))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_authchunks __user *p = (void __user *)optval;
struct sctp_authchunks val;
struct sctp_association *asoc;
struct sctp_chunks_param *ch;
char __user *to;
if (len <= sizeof(struct sctp_authchunks))
return -EINVAL;
if (copy_from_user(&val, p, sizeof(struct sctp_authchunks)))
return -EFAULT;
to = p->gauth_chunks;
asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc)
ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
else
ch = sctp_sk(sk)->ep->auth_chunk_list;
if (len < ntohs(ch->param_hdr.length))
return -EINVAL;
len = ntohs(ch->param_hdr.length);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(to, ch->chunks, len))
return -EFAULT;
return 0;
}
SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
char __user *optval, int __user *optlen)
{
int retval = 0;
int len;
SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
sk, optname);
/* I can hardly begin to describe how wrong this is. This is
* so broken as to be worse than useless. The API draft
* REALLY is NOT helpful here... I am not convinced that the
* semantics of getsockopt() with a level OTHER THAN SOL_SCTP
* are at all well-founded.
*/
if (level != SOL_SCTP) {
struct sctp_af *af = sctp_sk(sk)->pf->af;
retval = af->getsockopt(sk, level, optname, optval, optlen);
return retval;
}
if (get_user(len, optlen))
return -EFAULT;
sctp_lock_sock(sk);
switch (optname) {
case SCTP_STATUS:
retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
break;
case SCTP_DISABLE_FRAGMENTS:
retval = sctp_getsockopt_disable_fragments(sk, len, optval,
optlen);
break;
case SCTP_EVENTS:
retval = sctp_getsockopt_events(sk, len, optval, optlen);
break;
case SCTP_AUTOCLOSE:
retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
break;
case SCTP_SOCKOPT_PEELOFF:
retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
break;
case SCTP_PEER_ADDR_PARAMS:
retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
optlen);
break;
case SCTP_DELAYED_ACK_TIME:
retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
optlen);
break;
case SCTP_INITMSG:
retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
break;
case SCTP_GET_PEER_ADDRS_NUM_OLD:
retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
optlen);
break;
case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
optlen);
break;
case SCTP_GET_PEER_ADDRS_OLD:
retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
optlen);
break;
case SCTP_GET_LOCAL_ADDRS_OLD:
retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
optlen);
break;
case SCTP_GET_PEER_ADDRS:
retval = sctp_getsockopt_peer_addrs(sk, len, optval,
optlen);
break;
case SCTP_GET_LOCAL_ADDRS:
retval = sctp_getsockopt_local_addrs(sk, len, optval,
optlen);
break;
case SCTP_DEFAULT_SEND_PARAM:
retval = sctp_getsockopt_default_send_param(sk, len,
optval, optlen);
break;
case SCTP_PRIMARY_ADDR:
retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
break;
case SCTP_NODELAY:
retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
break;
case SCTP_RTOINFO:
retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
break;
case SCTP_ASSOCINFO:
retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
break;
case SCTP_I_WANT_MAPPED_V4_ADDR:
retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
break;
case SCTP_MAXSEG:
retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
break;
case SCTP_GET_PEER_ADDR_INFO:
retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
optlen);
break;
case SCTP_ADAPTATION_LAYER:
retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
optlen);
break;
case SCTP_CONTEXT:
retval = sctp_getsockopt_context(sk, len, optval, optlen);
break;
case SCTP_FRAGMENT_INTERLEAVE:
retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
optlen);
break;
case SCTP_PARTIAL_DELIVERY_POINT:
retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
optlen);
break;
case SCTP_MAX_BURST:
retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
break;
case SCTP_AUTH_KEY:
case SCTP_AUTH_CHUNK:
case SCTP_AUTH_DELETE_KEY:
retval = -EOPNOTSUPP;
break;
case SCTP_HMAC_IDENT:
retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
break;
case SCTP_AUTH_ACTIVE_KEY:
retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
break;
case SCTP_PEER_AUTH_CHUNKS:
retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
optlen);
break;
case SCTP_LOCAL_AUTH_CHUNKS:
retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
optlen);
break;
default:
retval = -ENOPROTOOPT;
break;
}
sctp_release_sock(sk);
return retval;
}
static void sctp_hash(struct sock *sk)
{
/* STUB */
}
static void sctp_unhash(struct sock *sk)
{
/* STUB */
}
/* Check if port is acceptable. Possibly find first available port.
*
* The port hash table (contained in the 'global' SCTP protocol storage
* returned by struct sctp_protocol *sctp_get_protocol()). The hash
* table is an array of 4096 lists (sctp_bind_hashbucket). Each
* list (the list number is the port number hashed out, so as you
* would expect from a hash function, all the ports in a given list have
* such a number that hashes out to the same list number; you were
* expecting that, right?); so each list has a set of ports, with a
* link to the socket (struct sock) that uses it, the port number and
* a fastreuse flag (FIXME: NPI ipg).
*/
static struct sctp_bind_bucket *sctp_bucket_create(
struct sctp_bind_hashbucket *head, unsigned short snum);
static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
{
struct sctp_bind_hashbucket *head; /* hash list */
struct sctp_bind_bucket *pp; /* hash list port iterator */
struct hlist_node *node;
unsigned short snum;
int ret;
snum = ntohs(addr->v4.sin_port);
SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
sctp_local_bh_disable();
if (snum == 0) {
/* Search for an available port. */
int low, high, remaining, index;
unsigned int rover;
inet_get_local_port_range(&low, &high);
remaining = (high - low) + 1;
rover = net_random() % remaining + low;
do {
rover++;
if ((rover < low) || (rover > high))
rover = low;
index = sctp_phashfn(rover);
head = &sctp_port_hashtable[index];
sctp_spin_lock(&head->lock);
sctp_for_each_hentry(pp, node, &head->chain)
if (pp->port == rover)
goto next;
break;
next:
sctp_spin_unlock(&head->lock);
} while (--remaining > 0);
/* Exhausted local port range during search? */
ret = 1;
if (remaining <= 0)
goto fail;
/* OK, here is the one we will use. HEAD (the port
* hash table list entry) is non-NULL and we hold it's
* mutex.
*/
snum = rover;
} else {
/* We are given an specific port number; we verify
* that it is not being used. If it is used, we will
* exahust the search in the hash list corresponding
* to the port number (snum) - we detect that with the
* port iterator, pp being NULL.
*/
head = &sctp_port_hashtable[sctp_phashfn(snum)];
sctp_spin_lock(&head->lock);
sctp_for_each_hentry(pp, node, &head->chain) {
if (pp->port == snum)
goto pp_found;
}
}
pp = NULL;
goto pp_not_found;
pp_found:
if (!hlist_empty(&pp->owner)) {
/* We had a port hash table hit - there is an
* available port (pp != NULL) and it is being
* used by other socket (pp->owner not empty); that other
* socket is going to be sk2.
*/
int reuse = sk->sk_reuse;
struct sock *sk2;
struct hlist_node *node;
SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
if (pp->fastreuse && sk->sk_reuse &&
sk->sk_state != SCTP_SS_LISTENING)
goto success;
/* Run through the list of sockets bound to the port
* (pp->port) [via the pointers bind_next and
* bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
* we get the endpoint they describe and run through
* the endpoint's list of IP (v4 or v6) addresses,
* comparing each of the addresses with the address of
* the socket sk. If we find a match, then that means
* that this port/socket (sk) combination are already
* in an endpoint.
*/
sk_for_each_bound(sk2, node, &pp->owner) {
struct sctp_endpoint *ep2;
ep2 = sctp_sk(sk2)->ep;
if (reuse && sk2->sk_reuse &&
sk2->sk_state != SCTP_SS_LISTENING)
continue;
if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
sctp_sk(sk))) {
ret = (long)sk2;
goto fail_unlock;
}
}
SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
}
pp_not_found:
/* If there was a hash table miss, create a new port. */
ret = 1;
if (!pp && !(pp = sctp_bucket_create(head, snum)))
goto fail_unlock;
/* In either case (hit or miss), make sure fastreuse is 1 only
* if sk->sk_reuse is too (that is, if the caller requested
* SO_REUSEADDR on this socket -sk-).
*/
if (hlist_empty(&pp->owner)) {
if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
pp->fastreuse = 1;
else
pp->fastreuse = 0;
} else if (pp->fastreuse &&
(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
pp->fastreuse = 0;
/* We are set, so fill up all the data in the hash table
* entry, tie the socket list information with the rest of the
* sockets FIXME: Blurry, NPI (ipg).
*/
success:
if (!sctp_sk(sk)->bind_hash) {
inet_sk(sk)->num = snum;
sk_add_bind_node(sk, &pp->owner);
sctp_sk(sk)->bind_hash = pp;
}
ret = 0;
fail_unlock:
sctp_spin_unlock(&head->lock);
fail:
sctp_local_bh_enable();
return ret;
}
/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
* port is requested.
*/
static int sctp_get_port(struct sock *sk, unsigned short snum)
{
long ret;
union sctp_addr addr;
struct sctp_af *af = sctp_sk(sk)->pf->af;
/* Set up a dummy address struct from the sk. */
af->from_sk(&addr, sk);
addr.v4.sin_port = htons(snum);
/* Note: sk->sk_num gets filled in if ephemeral port request. */
ret = sctp_get_port_local(sk, &addr);
return (ret ? 1 : 0);
}
/*
* 3.1.3 listen() - UDP Style Syntax
*
* By default, new associations are not accepted for UDP style sockets.
* An application uses listen() to mark a socket as being able to
* accept new associations.
*/
SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
/* Only UDP style sockets that are not peeled off are allowed to
* listen().
*/
if (!sctp_style(sk, UDP))
return -EINVAL;
/* If backlog is zero, disable listening. */
if (!backlog) {
if (sctp_sstate(sk, CLOSED))
return 0;
sctp_unhash_endpoint(ep);
sk->sk_state = SCTP_SS_CLOSED;
return 0;
}
/* Return if we are already listening. */
if (sctp_sstate(sk, LISTENING))
return 0;
/*
* If a bind() or sctp_bindx() is not called prior to a listen()
* call that allows new associations to be accepted, the system
* picks an ephemeral port and will choose an address set equivalent
* to binding with a wildcard address.
*
* This is not currently spelled out in the SCTP sockets
* extensions draft, but follows the practice as seen in TCP
* sockets.
*
* Additionally, turn off fastreuse flag since we are not listening
*/
sk->sk_state = SCTP_SS_LISTENING;
if (!ep->base.bind_addr.port) {
if (sctp_autobind(sk))
return -EAGAIN;
} else
sctp_sk(sk)->bind_hash->fastreuse = 0;
sctp_hash_endpoint(ep);
return 0;
}
/*
* 4.1.3 listen() - TCP Style Syntax
*
* Applications uses listen() to ready the SCTP endpoint for accepting
* inbound associations.
*/
SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
/* If backlog is zero, disable listening. */
if (!backlog) {
if (sctp_sstate(sk, CLOSED))
return 0;
sctp_unhash_endpoint(ep);
sk->sk_state = SCTP_SS_CLOSED;
return 0;
}
if (sctp_sstate(sk, LISTENING))
return 0;
/*
* If a bind() or sctp_bindx() is not called prior to a listen()
* call that allows new associations to be accepted, the system
* picks an ephemeral port and will choose an address set equivalent
* to binding with a wildcard address.
*
* This is not currently spelled out in the SCTP sockets
* extensions draft, but follows the practice as seen in TCP
* sockets.
*/
sk->sk_state = SCTP_SS_LISTENING;
if (!ep->base.bind_addr.port) {
if (sctp_autobind(sk))
return -EAGAIN;
} else
sctp_sk(sk)->bind_hash->fastreuse = 0;
sk->sk_max_ack_backlog = backlog;
sctp_hash_endpoint(ep);
return 0;
}
/*
* Move a socket to LISTENING state.
*/
int sctp_inet_listen(struct socket *sock, int backlog)
{
struct sock *sk = sock->sk;
struct crypto_hash *tfm = NULL;
int err = -EINVAL;
if (unlikely(backlog < 0))
goto out;
sctp_lock_sock(sk);
if (sock->state != SS_UNCONNECTED)
goto out;
/* Allocate HMAC for generating cookie. */
if (sctp_hmac_alg) {
tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(tfm)) {
if (net_ratelimit()) {
printk(KERN_INFO
"SCTP: failed to load transform for %s: %ld\n",
sctp_hmac_alg, PTR_ERR(tfm));
}
err = -ENOSYS;
goto out;
}
}
switch (sock->type) {
case SOCK_SEQPACKET:
err = sctp_seqpacket_listen(sk, backlog);
break;
case SOCK_STREAM:
err = sctp_stream_listen(sk, backlog);
break;
default:
break;
}
if (err)
goto cleanup;
/* Store away the transform reference. */
sctp_sk(sk)->hmac = tfm;
out:
sctp_release_sock(sk);
return err;
cleanup:
crypto_free_hash(tfm);
goto out;
}
/*
* This function is done by modeling the current datagram_poll() and the
* tcp_poll(). Note that, based on these implementations, we don't
* lock the socket in this function, even though it seems that,
* ideally, locking or some other mechanisms can be used to ensure
* the integrity of the counters (sndbuf and wmem_alloc) used
* in this place. We assume that we don't need locks either until proven
* otherwise.
*
* Another thing to note is that we include the Async I/O support
* here, again, by modeling the current TCP/UDP code. We don't have
* a good way to test with it yet.
*/
unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
{
struct sock *sk = sock->sk;
struct sctp_sock *sp = sctp_sk(sk);
unsigned int mask;
poll_wait(file, sk->sk_sleep, wait);
/* A TCP-style listening socket becomes readable when the accept queue
* is not empty.
*/
if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
return (!list_empty(&sp->ep->asocs)) ?
(POLLIN | POLLRDNORM) : 0;
mask = 0;
/* Is there any exceptional events? */
if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
mask |= POLLERR;
if (sk->sk_shutdown & RCV_SHUTDOWN)
mask |= POLLRDHUP;
if (sk->sk_shutdown == SHUTDOWN_MASK)
mask |= POLLHUP;
/* Is it readable? Reconsider this code with TCP-style support. */
if (!skb_queue_empty(&sk->sk_receive_queue) ||
(sk->sk_shutdown & RCV_SHUTDOWN))
mask |= POLLIN | POLLRDNORM;
/* The association is either gone or not ready. */
if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
return mask;
/* Is it writable? */
if (sctp_writeable(sk)) {
mask |= POLLOUT | POLLWRNORM;
} else {
set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
/*
* Since the socket is not locked, the buffer
* might be made available after the writeable check and
* before the bit is set. This could cause a lost I/O
* signal. tcp_poll() has a race breaker for this race
* condition. Based on their implementation, we put
* in the following code to cover it as well.
*/
if (sctp_writeable(sk))
mask |= POLLOUT | POLLWRNORM;
}
return mask;
}
/********************************************************************
* 2nd Level Abstractions
********************************************************************/
static struct sctp_bind_bucket *sctp_bucket_create(
struct sctp_bind_hashbucket *head, unsigned short snum)
{
struct sctp_bind_bucket *pp;
pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
SCTP_DBG_OBJCNT_INC(bind_bucket);
if (pp) {
pp->port = snum;
pp->fastreuse = 0;
INIT_HLIST_HEAD(&pp->owner);
hlist_add_head(&pp->node, &head->chain);
}
return pp;
}
/* Caller must hold hashbucket lock for this tb with local BH disabled */
static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
{
if (pp && hlist_empty(&pp->owner)) {
__hlist_del(&pp->node);
kmem_cache_free(sctp_bucket_cachep, pp);
SCTP_DBG_OBJCNT_DEC(bind_bucket);
}
}
/* Release this socket's reference to a local port. */
static inline void __sctp_put_port(struct sock *sk)
{
struct sctp_bind_hashbucket *head =
&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
struct sctp_bind_bucket *pp;
sctp_spin_lock(&head->lock);
pp = sctp_sk(sk)->bind_hash;
__sk_del_bind_node(sk);
sctp_sk(sk)->bind_hash = NULL;
inet_sk(sk)->num = 0;
sctp_bucket_destroy(pp);
sctp_spin_unlock(&head->lock);
}
void sctp_put_port(struct sock *sk)
{
sctp_local_bh_disable();
__sctp_put_port(sk);
sctp_local_bh_enable();
}
/*
* The system picks an ephemeral port and choose an address set equivalent
* to binding with a wildcard address.
* One of those addresses will be the primary address for the association.
* This automatically enables the multihoming capability of SCTP.
*/
static int sctp_autobind(struct sock *sk)
{
union sctp_addr autoaddr;
struct sctp_af *af;
__be16 port;
/* Initialize a local sockaddr structure to INADDR_ANY. */
af = sctp_sk(sk)->pf->af;
port = htons(inet_sk(sk)->num);
af->inaddr_any(&autoaddr, port);
return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
}
/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
*
* From RFC 2292
* 4.2 The cmsghdr Structure *
*
* When ancillary data is sent or received, any number of ancillary data
* objects can be specified by the msg_control and msg_controllen members of
* the msghdr structure, because each object is preceded by
* a cmsghdr structure defining the object's length (the cmsg_len member).
* Historically Berkeley-derived implementations have passed only one object
* at a time, but this API allows multiple objects to be
* passed in a single call to sendmsg() or recvmsg(). The following example
* shows two ancillary data objects in a control buffer.
*
* |<--------------------------- msg_controllen -------------------------->|
* | |
*
* |<----- ancillary data object ----->|<----- ancillary data object ----->|
*
* |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
* | | |
*
* |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
*
* |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
* | | | | |
*
* +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
* |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
*
* |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
*
* +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
* ^
* |
*
* msg_control
* points here
*/
SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
sctp_cmsgs_t *cmsgs)
{
struct cmsghdr *cmsg;
for (cmsg = CMSG_FIRSTHDR(msg);
cmsg != NULL;
cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
if (!CMSG_OK(msg, cmsg))
return -EINVAL;
/* Should we parse this header or ignore? */
if (cmsg->cmsg_level != IPPROTO_SCTP)
continue;
/* Strictly check lengths following example in SCM code. */
switch (cmsg->cmsg_type) {
case SCTP_INIT:
/* SCTP Socket API Extension
* 5.2.1 SCTP Initiation Structure (SCTP_INIT)
*
* This cmsghdr structure provides information for
* initializing new SCTP associations with sendmsg().
* The SCTP_INITMSG socket option uses this same data
* structure. This structure is not used for
* recvmsg().
*
* cmsg_level cmsg_type cmsg_data[]
* ------------ ------------ ----------------------
* IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
*/
if (cmsg->cmsg_len !=
CMSG_LEN(sizeof(struct sctp_initmsg)))
return -EINVAL;
cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
break;
case SCTP_SNDRCV:
/* SCTP Socket API Extension
* 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
*
* This cmsghdr structure specifies SCTP options for
* sendmsg() and describes SCTP header information
* about a received message through recvmsg().
*
* cmsg_level cmsg_type cmsg_data[]
* ------------ ------------ ----------------------
* IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
*/
if (cmsg->cmsg_len !=
CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
return -EINVAL;
cmsgs->info =
(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
/* Minimally, validate the sinfo_flags. */
if (cmsgs->info->sinfo_flags &
~(SCTP_UNORDERED | SCTP_ADDR_OVER |
SCTP_ABORT | SCTP_EOF))
return -EINVAL;
break;
default:
return -EINVAL;
}
}
return 0;
}
/*
* Wait for a packet..
* Note: This function is the same function as in core/datagram.c
* with a few modifications to make lksctp work.
*/
static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
{
int error;
DEFINE_WAIT(wait);
prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
/* Socket errors? */
error = sock_error(sk);
if (error)
goto out;
if (!skb_queue_empty(&sk->sk_receive_queue))
goto ready;
/* Socket shut down? */
if (sk->sk_shutdown & RCV_SHUTDOWN)
goto out;
/* Sequenced packets can come disconnected. If so we report the
* problem.
*/
error = -ENOTCONN;
/* Is there a good reason to think that we may receive some data? */
if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
goto out;
/* Handle signals. */
if (signal_pending(current))
goto interrupted;
/* Let another process have a go. Since we are going to sleep
* anyway. Note: This may cause odd behaviors if the message
* does not fit in the user's buffer, but this seems to be the
* only way to honor MSG_DONTWAIT realistically.
*/
sctp_release_sock(sk);
*timeo_p = schedule_timeout(*timeo_p);
sctp_lock_sock(sk);
ready:
finish_wait(sk->sk_sleep, &wait);
return 0;
interrupted:
error = sock_intr_errno(*timeo_p);
out:
finish_wait(sk->sk_sleep, &wait);
*err = error;
return error;
}
/* Receive a datagram.
* Note: This is pretty much the same routine as in core/datagram.c
* with a few changes to make lksctp work.
*/
static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
int noblock, int *err)
{
int error;
struct sk_buff *skb;
long timeo;
timeo = sock_rcvtimeo(sk, noblock);
SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
timeo, MAX_SCHEDULE_TIMEOUT);
do {
/* Again only user level code calls this function,
* so nothing interrupt level
* will suddenly eat the receive_queue.
*
* Look at current nfs client by the way...
* However, this function was corrent in any case. 8)
*/
if (flags & MSG_PEEK) {
spin_lock_bh(&sk->sk_receive_queue.lock);
skb = skb_peek(&sk->sk_receive_queue);
if (skb)
atomic_inc(&skb->users);
spin_unlock_bh(&sk->sk_receive_queue.lock);
} else {
skb = skb_dequeue(&sk->sk_receive_queue);
}
if (skb)
return skb;
/* Caller is allowed not to check sk->sk_err before calling. */
error = sock_error(sk);
if (error)
goto no_packet;
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
/* User doesn't want to wait. */
error = -EAGAIN;
if (!timeo)
goto no_packet;
} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
return NULL;
no_packet:
*err = error;
return NULL;
}
/* If sndbuf has changed, wake up per association sndbuf waiters. */
static void __sctp_write_space(struct sctp_association *asoc)
{
struct sock *sk = asoc->base.sk;
struct socket *sock = sk->sk_socket;
if ((sctp_wspace(asoc) > 0) && sock) {
if (waitqueue_active(&asoc->wait))
wake_up_interruptible(&asoc->wait);
if (sctp_writeable(sk)) {
if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
wake_up_interruptible(sk->sk_sleep);
/* Note that we try to include the Async I/O support
* here by modeling from the current TCP/UDP code.
* We have not tested with it yet.
*/
if (sock->fasync_list &&
!(sk->sk_shutdown & SEND_SHUTDOWN))
sock_wake_async(sock,
SOCK_WAKE_SPACE, POLL_OUT);
}
}
}
/* Do accounting for the sndbuf space.
* Decrement the used sndbuf space of the corresponding association by the
* data size which was just transmitted(freed).
*/
static void sctp_wfree(struct sk_buff *skb)
{
struct sctp_association *asoc;
struct sctp_chunk *chunk;
struct sock *sk;
/* Get the saved chunk pointer. */
chunk = *((struct sctp_chunk **)(skb->cb));
asoc = chunk->asoc;
sk = asoc->base.sk;
asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
sizeof(struct sk_buff) +
sizeof(struct sctp_chunk);
atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
/*
* This undoes what is done via sctp_set_owner_w and sk_mem_charge
*/
sk->sk_wmem_queued -= skb->truesize;
sk_mem_uncharge(sk, skb->truesize);
sock_wfree(skb);
__sctp_write_space(asoc);
sctp_association_put(asoc);
}
/* Do accounting for the receive space on the socket.
* Accounting for the association is done in ulpevent.c
* We set this as a destructor for the cloned data skbs so that
* accounting is done at the correct time.
*/
void sctp_sock_rfree(struct sk_buff *skb)
{
struct sock *sk = skb->sk;
struct sctp_ulpevent *event = sctp_skb2event(skb);
atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
/*
* Mimic the behavior of sock_rfree
*/
sk_mem_uncharge(sk, event->rmem_len);
}
/* Helper function to wait for space in the sndbuf. */
static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
size_t msg_len)
{
struct sock *sk = asoc->base.sk;
int err = 0;
long current_timeo = *timeo_p;
DEFINE_WAIT(wait);
SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
asoc, (long)(*timeo_p), msg_len);
/* Increment the association's refcnt. */
sctp_association_hold(asoc);
/* Wait on the association specific sndbuf space. */
for (;;) {
prepare_to_wait_exclusive(&asoc->wait, &wait,
TASK_INTERRUPTIBLE);
if (!*timeo_p)
goto do_nonblock;
if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
asoc->base.dead)
goto do_error;
if (signal_pending(current))
goto do_interrupted;
if (msg_len <= sctp_wspace(asoc))
break;
/* Let another process have a go. Since we are going
* to sleep anyway.
*/
sctp_release_sock(sk);
current_timeo = schedule_timeout(current_timeo);
BUG_ON(sk != asoc->base.sk);
sctp_lock_sock(sk);
*timeo_p = current_timeo;
}
out:
finish_wait(&asoc->wait, &wait);
/* Release the association's refcnt. */
sctp_association_put(asoc);
return err;
do_error:
err = -EPIPE;
goto out;
do_interrupted:
err = sock_intr_errno(*timeo_p);
goto out;
do_nonblock:
err = -EAGAIN;
goto out;
}
/* If socket sndbuf has changed, wake up all per association waiters. */
void sctp_write_space(struct sock *sk)
{
struct sctp_association *asoc;
struct list_head *pos;
/* Wake up the tasks in each wait queue. */
list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
asoc = list_entry(pos, struct sctp_association, asocs);
__sctp_write_space(asoc);
}
}
/* Is there any sndbuf space available on the socket?
*
* Note that sk_wmem_alloc is the sum of the send buffers on all of the
* associations on the same socket. For a UDP-style socket with
* multiple associations, it is possible for it to be "unwriteable"
* prematurely. I assume that this is acceptable because
* a premature "unwriteable" is better than an accidental "writeable" which
* would cause an unwanted block under certain circumstances. For the 1-1
* UDP-style sockets or TCP-style sockets, this code should work.
* - Daisy
*/
static int sctp_writeable(struct sock *sk)
{
int amt = 0;
amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
if (amt < 0)
amt = 0;
return amt;
}
/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
* returns immediately with EINPROGRESS.
*/
static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
{
struct sock *sk = asoc->base.sk;
int err = 0;
long current_timeo = *timeo_p;
DEFINE_WAIT(wait);
SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
(long)(*timeo_p));
/* Increment the association's refcnt. */
sctp_association_hold(asoc);
for (;;) {
prepare_to_wait_exclusive(&asoc->wait, &wait,
TASK_INTERRUPTIBLE);
if (!*timeo_p)
goto do_nonblock;
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
asoc->base.dead)
goto do_error;
if (signal_pending(current))
goto do_interrupted;
if (sctp_state(asoc, ESTABLISHED))
break;
/* Let another process have a go. Since we are going
* to sleep anyway.
*/
sctp_release_sock(sk);
current_timeo = schedule_timeout(current_timeo);
sctp_lock_sock(sk);
*timeo_p = current_timeo;
}
out:
finish_wait(&asoc->wait, &wait);
/* Release the association's refcnt. */
sctp_association_put(asoc);
return err;
do_error:
if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
err = -ETIMEDOUT;
else
err = -ECONNREFUSED;
goto out;
do_interrupted:
err = sock_intr_errno(*timeo_p);
goto out;
do_nonblock:
err = -EINPROGRESS;
goto out;
}
static int sctp_wait_for_accept(struct sock *sk, long timeo)
{
struct sctp_endpoint *ep;
int err = 0;
DEFINE_WAIT(wait);
ep = sctp_sk(sk)->ep;
for (;;) {
prepare_to_wait_exclusive(sk->sk_sleep, &wait,
TASK_INTERRUPTIBLE);
if (list_empty(&ep->asocs)) {
sctp_release_sock(sk);
timeo = schedule_timeout(timeo);
sctp_lock_sock(sk);
}
err = -EINVAL;
if (!sctp_sstate(sk, LISTENING))
break;
err = 0;
if (!list_empty(&ep->asocs))
break;
err = sock_intr_errno(timeo);
if (signal_pending(current))
break;
err = -EAGAIN;
if (!timeo)
break;
}
finish_wait(sk->sk_sleep, &wait);
return err;
}
static void sctp_wait_for_close(struct sock *sk, long timeout)
{
DEFINE_WAIT(wait);
do {
prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
if (list_empty(&sctp_sk(sk)->ep->asocs))
break;
sctp_release_sock(sk);
timeout = schedule_timeout(timeout);
sctp_lock_sock(sk);
} while (!signal_pending(current) && timeout);
finish_wait(sk->sk_sleep, &wait);
}
static void sctp_sock_rfree_frag(struct sk_buff *skb)
{
struct sk_buff *frag;
if (!skb->data_len)
goto done;
/* Don't forget the fragments. */
for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
sctp_sock_rfree_frag(frag);
done:
sctp_sock_rfree(skb);
}
static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
{
struct sk_buff *frag;
if (!skb->data_len)
goto done;
/* Don't forget the fragments. */
for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
sctp_skb_set_owner_r_frag(frag, sk);
done:
sctp_skb_set_owner_r(skb, sk);
}
/* Populate the fields of the newsk from the oldsk and migrate the assoc
* and its messages to the newsk.
*/
static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
struct sctp_association *assoc,
sctp_socket_type_t type)
{
struct sctp_sock *oldsp = sctp_sk(oldsk);
struct sctp_sock *newsp = sctp_sk(newsk);
struct sctp_bind_bucket *pp; /* hash list port iterator */
struct sctp_endpoint *newep = newsp->ep;
struct sk_buff *skb, *tmp;
struct sctp_ulpevent *event;
struct sctp_bind_hashbucket *head;
/* Migrate socket buffer sizes and all the socket level options to the
* new socket.
*/
newsk->sk_sndbuf = oldsk->sk_sndbuf;
newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
/* Brute force copy old sctp opt. */
inet_sk_copy_descendant(newsk, oldsk);
/* Restore the ep value that was overwritten with the above structure
* copy.
*/
newsp->ep = newep;
newsp->hmac = NULL;
/* Hook this new socket in to the bind_hash list. */
head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)];
sctp_local_bh_disable();
sctp_spin_lock(&head->lock);
pp = sctp_sk(oldsk)->bind_hash;
sk_add_bind_node(newsk, &pp->owner);
sctp_sk(newsk)->bind_hash = pp;
inet_sk(newsk)->num = inet_sk(oldsk)->num;
sctp_spin_unlock(&head->lock);
sctp_local_bh_enable();
/* Copy the bind_addr list from the original endpoint to the new
* endpoint so that we can handle restarts properly
*/
sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
&oldsp->ep->base.bind_addr, GFP_KERNEL);
/* Move any messages in the old socket's receive queue that are for the
* peeled off association to the new socket's receive queue.
*/
sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
event = sctp_skb2event(skb);
if (event->asoc == assoc) {
sctp_sock_rfree_frag(skb);
__skb_unlink(skb, &oldsk->sk_receive_queue);
__skb_queue_tail(&newsk->sk_receive_queue, skb);
sctp_skb_set_owner_r_frag(skb, newsk);
}
}
/* Clean up any messages pending delivery due to partial
* delivery. Three cases:
* 1) No partial deliver; no work.
* 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
* 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
*/
skb_queue_head_init(&newsp->pd_lobby);
atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
struct sk_buff_head *queue;
/* Decide which queue to move pd_lobby skbs to. */
if (assoc->ulpq.pd_mode) {
queue = &newsp->pd_lobby;
} else
queue = &newsk->sk_receive_queue;
/* Walk through the pd_lobby, looking for skbs that
* need moved to the new socket.
*/
sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
event = sctp_skb2event(skb);
if (event->asoc == assoc) {
sctp_sock_rfree_frag(skb);
__skb_unlink(skb, &oldsp->pd_lobby);
__skb_queue_tail(queue, skb);
sctp_skb_set_owner_r_frag(skb, newsk);
}
}
/* Clear up any skbs waiting for the partial
* delivery to finish.
*/
if (assoc->ulpq.pd_mode)
sctp_clear_pd(oldsk, NULL);
}
sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) {
sctp_sock_rfree_frag(skb);
sctp_skb_set_owner_r_frag(skb, newsk);
}
sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) {
sctp_sock_rfree_frag(skb);
sctp_skb_set_owner_r_frag(skb, newsk);
}
/* Set the type of socket to indicate that it is peeled off from the
* original UDP-style socket or created with the accept() call on a
* TCP-style socket..
*/
newsp->type = type;
/* Mark the new socket "in-use" by the user so that any packets
* that may arrive on the association after we've moved it are
* queued to the backlog. This prevents a potential race between
* backlog processing on the old socket and new-packet processing
* on the new socket.
*
* The caller has just allocated newsk so we can guarantee that other
* paths won't try to lock it and then oldsk.
*/
lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
sctp_assoc_migrate(assoc, newsk);
/* If the association on the newsk is already closed before accept()
* is called, set RCV_SHUTDOWN flag.
*/
if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
newsk->sk_shutdown |= RCV_SHUTDOWN;
newsk->sk_state = SCTP_SS_ESTABLISHED;
sctp_release_sock(newsk);
}
DEFINE_PROTO_INUSE(sctp)
/* This proto struct describes the ULP interface for SCTP. */
struct proto sctp_prot = {
.name = "SCTP",
.owner = THIS_MODULE,
.close = sctp_close,
.connect = sctp_connect,
.disconnect = sctp_disconnect,
.accept = sctp_accept,
.ioctl = sctp_ioctl,
.init = sctp_init_sock,
.destroy = sctp_destroy_sock,
.shutdown = sctp_shutdown,
.setsockopt = sctp_setsockopt,
.getsockopt = sctp_getsockopt,
.sendmsg = sctp_sendmsg,
.recvmsg = sctp_recvmsg,
.bind = sctp_bind,
.backlog_rcv = sctp_backlog_rcv,
.hash = sctp_hash,
.unhash = sctp_unhash,
.get_port = sctp_get_port,
.obj_size = sizeof(struct sctp_sock),
.sysctl_mem = sysctl_sctp_mem,
.sysctl_rmem = sysctl_sctp_rmem,
.sysctl_wmem = sysctl_sctp_wmem,
.memory_pressure = &sctp_memory_pressure,
.enter_memory_pressure = sctp_enter_memory_pressure,
.memory_allocated = &sctp_memory_allocated,
REF_PROTO_INUSE(sctp)
};
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
DEFINE_PROTO_INUSE(sctpv6)
struct proto sctpv6_prot = {
.name = "SCTPv6",
.owner = THIS_MODULE,
.close = sctp_close,
.connect = sctp_connect,
.disconnect = sctp_disconnect,
.accept = sctp_accept,
.ioctl = sctp_ioctl,
.init = sctp_init_sock,
.destroy = sctp_destroy_sock,
.shutdown = sctp_shutdown,
.setsockopt = sctp_setsockopt,
.getsockopt = sctp_getsockopt,
.sendmsg = sctp_sendmsg,
.recvmsg = sctp_recvmsg,
.bind = sctp_bind,
.backlog_rcv = sctp_backlog_rcv,
.hash = sctp_hash,
.unhash = sctp_unhash,
.get_port = sctp_get_port,
.obj_size = sizeof(struct sctp6_sock),
.sysctl_mem = sysctl_sctp_mem,
.sysctl_rmem = sysctl_sctp_rmem,
.sysctl_wmem = sysctl_sctp_wmem,
.memory_pressure = &sctp_memory_pressure,
.enter_memory_pressure = sctp_enter_memory_pressure,
.memory_allocated = &sctp_memory_allocated,
REF_PROTO_INUSE(sctpv6)
};
#endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */