android_kernel_xiaomi_sm8350/drivers/dma/iop-adma.c
H Hartley Sweeten 2e032b62c4 iop-adma.c: use resource_size()
The size of the requested and ioremaped memory is off by 1.
Use resource_size() to get the correct value.

Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-12-11 21:24:33 -07:00

1773 lines
49 KiB
C

/*
* offload engine driver for the Intel Xscale series of i/o processors
* Copyright © 2006, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
/*
* This driver supports the asynchrounous DMA copy and RAID engines available
* on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/memory.h>
#include <linux/ioport.h>
#include <linux/raid/pq.h>
#include <mach/adma.h>
#define to_iop_adma_chan(chan) container_of(chan, struct iop_adma_chan, common)
#define to_iop_adma_device(dev) \
container_of(dev, struct iop_adma_device, common)
#define tx_to_iop_adma_slot(tx) \
container_of(tx, struct iop_adma_desc_slot, async_tx)
/**
* iop_adma_free_slots - flags descriptor slots for reuse
* @slot: Slot to free
* Caller must hold &iop_chan->lock while calling this function
*/
static void iop_adma_free_slots(struct iop_adma_desc_slot *slot)
{
int stride = slot->slots_per_op;
while (stride--) {
slot->slots_per_op = 0;
slot = list_entry(slot->slot_node.next,
struct iop_adma_desc_slot,
slot_node);
}
}
static void
iop_desc_unmap(struct iop_adma_chan *iop_chan, struct iop_adma_desc_slot *desc)
{
struct dma_async_tx_descriptor *tx = &desc->async_tx;
struct iop_adma_desc_slot *unmap = desc->group_head;
struct device *dev = &iop_chan->device->pdev->dev;
u32 len = unmap->unmap_len;
enum dma_ctrl_flags flags = tx->flags;
u32 src_cnt;
dma_addr_t addr;
dma_addr_t dest;
src_cnt = unmap->unmap_src_cnt;
dest = iop_desc_get_dest_addr(unmap, iop_chan);
if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
enum dma_data_direction dir;
if (src_cnt > 1) /* is xor? */
dir = DMA_BIDIRECTIONAL;
else
dir = DMA_FROM_DEVICE;
dma_unmap_page(dev, dest, len, dir);
}
if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
while (src_cnt--) {
addr = iop_desc_get_src_addr(unmap, iop_chan, src_cnt);
if (addr == dest)
continue;
dma_unmap_page(dev, addr, len, DMA_TO_DEVICE);
}
}
desc->group_head = NULL;
}
static void
iop_desc_unmap_pq(struct iop_adma_chan *iop_chan, struct iop_adma_desc_slot *desc)
{
struct dma_async_tx_descriptor *tx = &desc->async_tx;
struct iop_adma_desc_slot *unmap = desc->group_head;
struct device *dev = &iop_chan->device->pdev->dev;
u32 len = unmap->unmap_len;
enum dma_ctrl_flags flags = tx->flags;
u32 src_cnt = unmap->unmap_src_cnt;
dma_addr_t pdest = iop_desc_get_dest_addr(unmap, iop_chan);
dma_addr_t qdest = iop_desc_get_qdest_addr(unmap, iop_chan);
int i;
if (tx->flags & DMA_PREP_CONTINUE)
src_cnt -= 3;
if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP) && !desc->pq_check_result) {
dma_unmap_page(dev, pdest, len, DMA_BIDIRECTIONAL);
dma_unmap_page(dev, qdest, len, DMA_BIDIRECTIONAL);
}
if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
dma_addr_t addr;
for (i = 0; i < src_cnt; i++) {
addr = iop_desc_get_src_addr(unmap, iop_chan, i);
dma_unmap_page(dev, addr, len, DMA_TO_DEVICE);
}
if (desc->pq_check_result) {
dma_unmap_page(dev, pdest, len, DMA_TO_DEVICE);
dma_unmap_page(dev, qdest, len, DMA_TO_DEVICE);
}
}
desc->group_head = NULL;
}
static dma_cookie_t
iop_adma_run_tx_complete_actions(struct iop_adma_desc_slot *desc,
struct iop_adma_chan *iop_chan, dma_cookie_t cookie)
{
struct dma_async_tx_descriptor *tx = &desc->async_tx;
BUG_ON(tx->cookie < 0);
if (tx->cookie > 0) {
cookie = tx->cookie;
tx->cookie = 0;
/* call the callback (must not sleep or submit new
* operations to this channel)
*/
if (tx->callback)
tx->callback(tx->callback_param);
/* unmap dma addresses
* (unmap_single vs unmap_page?)
*/
if (desc->group_head && desc->unmap_len) {
if (iop_desc_is_pq(desc))
iop_desc_unmap_pq(iop_chan, desc);
else
iop_desc_unmap(iop_chan, desc);
}
}
/* run dependent operations */
dma_run_dependencies(tx);
return cookie;
}
static int
iop_adma_clean_slot(struct iop_adma_desc_slot *desc,
struct iop_adma_chan *iop_chan)
{
/* the client is allowed to attach dependent operations
* until 'ack' is set
*/
if (!async_tx_test_ack(&desc->async_tx))
return 0;
/* leave the last descriptor in the chain
* so we can append to it
*/
if (desc->chain_node.next == &iop_chan->chain)
return 1;
dev_dbg(iop_chan->device->common.dev,
"\tfree slot: %d slots_per_op: %d\n",
desc->idx, desc->slots_per_op);
list_del(&desc->chain_node);
iop_adma_free_slots(desc);
return 0;
}
static void __iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
{
struct iop_adma_desc_slot *iter, *_iter, *grp_start = NULL;
dma_cookie_t cookie = 0;
u32 current_desc = iop_chan_get_current_descriptor(iop_chan);
int busy = iop_chan_is_busy(iop_chan);
int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
/* free completed slots from the chain starting with
* the oldest descriptor
*/
list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
chain_node) {
pr_debug("\tcookie: %d slot: %d busy: %d "
"this_desc: %#x next_desc: %#x ack: %d\n",
iter->async_tx.cookie, iter->idx, busy,
iter->async_tx.phys, iop_desc_get_next_desc(iter),
async_tx_test_ack(&iter->async_tx));
prefetch(_iter);
prefetch(&_iter->async_tx);
/* do not advance past the current descriptor loaded into the
* hardware channel, subsequent descriptors are either in
* process or have not been submitted
*/
if (seen_current)
break;
/* stop the search if we reach the current descriptor and the
* channel is busy, or if it appears that the current descriptor
* needs to be re-read (i.e. has been appended to)
*/
if (iter->async_tx.phys == current_desc) {
BUG_ON(seen_current++);
if (busy || iop_desc_get_next_desc(iter))
break;
}
/* detect the start of a group transaction */
if (!slot_cnt && !slots_per_op) {
slot_cnt = iter->slot_cnt;
slots_per_op = iter->slots_per_op;
if (slot_cnt <= slots_per_op) {
slot_cnt = 0;
slots_per_op = 0;
}
}
if (slot_cnt) {
pr_debug("\tgroup++\n");
if (!grp_start)
grp_start = iter;
slot_cnt -= slots_per_op;
}
/* all the members of a group are complete */
if (slots_per_op != 0 && slot_cnt == 0) {
struct iop_adma_desc_slot *grp_iter, *_grp_iter;
int end_of_chain = 0;
pr_debug("\tgroup end\n");
/* collect the total results */
if (grp_start->xor_check_result) {
u32 zero_sum_result = 0;
slot_cnt = grp_start->slot_cnt;
grp_iter = grp_start;
list_for_each_entry_from(grp_iter,
&iop_chan->chain, chain_node) {
zero_sum_result |=
iop_desc_get_zero_result(grp_iter);
pr_debug("\titer%d result: %d\n",
grp_iter->idx, zero_sum_result);
slot_cnt -= slots_per_op;
if (slot_cnt == 0)
break;
}
pr_debug("\tgrp_start->xor_check_result: %p\n",
grp_start->xor_check_result);
*grp_start->xor_check_result = zero_sum_result;
}
/* clean up the group */
slot_cnt = grp_start->slot_cnt;
grp_iter = grp_start;
list_for_each_entry_safe_from(grp_iter, _grp_iter,
&iop_chan->chain, chain_node) {
cookie = iop_adma_run_tx_complete_actions(
grp_iter, iop_chan, cookie);
slot_cnt -= slots_per_op;
end_of_chain = iop_adma_clean_slot(grp_iter,
iop_chan);
if (slot_cnt == 0 || end_of_chain)
break;
}
/* the group should be complete at this point */
BUG_ON(slot_cnt);
slots_per_op = 0;
grp_start = NULL;
if (end_of_chain)
break;
else
continue;
} else if (slots_per_op) /* wait for group completion */
continue;
/* write back zero sum results (single descriptor case) */
if (iter->xor_check_result && iter->async_tx.cookie)
*iter->xor_check_result =
iop_desc_get_zero_result(iter);
cookie = iop_adma_run_tx_complete_actions(
iter, iop_chan, cookie);
if (iop_adma_clean_slot(iter, iop_chan))
break;
}
if (cookie > 0) {
iop_chan->completed_cookie = cookie;
pr_debug("\tcompleted cookie %d\n", cookie);
}
}
static void
iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
{
spin_lock_bh(&iop_chan->lock);
__iop_adma_slot_cleanup(iop_chan);
spin_unlock_bh(&iop_chan->lock);
}
static void iop_adma_tasklet(unsigned long data)
{
struct iop_adma_chan *iop_chan = (struct iop_adma_chan *) data;
/* lockdep will flag depedency submissions as potentially
* recursive locking, this is not the case as a dependency
* submission will never recurse a channels submit routine.
* There are checks in async_tx.c to prevent this.
*/
spin_lock_nested(&iop_chan->lock, SINGLE_DEPTH_NESTING);
__iop_adma_slot_cleanup(iop_chan);
spin_unlock(&iop_chan->lock);
}
static struct iop_adma_desc_slot *
iop_adma_alloc_slots(struct iop_adma_chan *iop_chan, int num_slots,
int slots_per_op)
{
struct iop_adma_desc_slot *iter, *_iter, *alloc_start = NULL;
LIST_HEAD(chain);
int slots_found, retry = 0;
/* start search from the last allocated descrtiptor
* if a contiguous allocation can not be found start searching
* from the beginning of the list
*/
retry:
slots_found = 0;
if (retry == 0)
iter = iop_chan->last_used;
else
iter = list_entry(&iop_chan->all_slots,
struct iop_adma_desc_slot,
slot_node);
list_for_each_entry_safe_continue(
iter, _iter, &iop_chan->all_slots, slot_node) {
prefetch(_iter);
prefetch(&_iter->async_tx);
if (iter->slots_per_op) {
/* give up after finding the first busy slot
* on the second pass through the list
*/
if (retry)
break;
slots_found = 0;
continue;
}
/* start the allocation if the slot is correctly aligned */
if (!slots_found++) {
if (iop_desc_is_aligned(iter, slots_per_op))
alloc_start = iter;
else {
slots_found = 0;
continue;
}
}
if (slots_found == num_slots) {
struct iop_adma_desc_slot *alloc_tail = NULL;
struct iop_adma_desc_slot *last_used = NULL;
iter = alloc_start;
while (num_slots) {
int i;
dev_dbg(iop_chan->device->common.dev,
"allocated slot: %d "
"(desc %p phys: %#x) slots_per_op %d\n",
iter->idx, iter->hw_desc,
iter->async_tx.phys, slots_per_op);
/* pre-ack all but the last descriptor */
if (num_slots != slots_per_op)
async_tx_ack(&iter->async_tx);
list_add_tail(&iter->chain_node, &chain);
alloc_tail = iter;
iter->async_tx.cookie = 0;
iter->slot_cnt = num_slots;
iter->xor_check_result = NULL;
for (i = 0; i < slots_per_op; i++) {
iter->slots_per_op = slots_per_op - i;
last_used = iter;
iter = list_entry(iter->slot_node.next,
struct iop_adma_desc_slot,
slot_node);
}
num_slots -= slots_per_op;
}
alloc_tail->group_head = alloc_start;
alloc_tail->async_tx.cookie = -EBUSY;
list_splice(&chain, &alloc_tail->tx_list);
iop_chan->last_used = last_used;
iop_desc_clear_next_desc(alloc_start);
iop_desc_clear_next_desc(alloc_tail);
return alloc_tail;
}
}
if (!retry++)
goto retry;
/* perform direct reclaim if the allocation fails */
__iop_adma_slot_cleanup(iop_chan);
return NULL;
}
static dma_cookie_t
iop_desc_assign_cookie(struct iop_adma_chan *iop_chan,
struct iop_adma_desc_slot *desc)
{
dma_cookie_t cookie = iop_chan->common.cookie;
cookie++;
if (cookie < 0)
cookie = 1;
iop_chan->common.cookie = desc->async_tx.cookie = cookie;
return cookie;
}
static void iop_adma_check_threshold(struct iop_adma_chan *iop_chan)
{
dev_dbg(iop_chan->device->common.dev, "pending: %d\n",
iop_chan->pending);
if (iop_chan->pending >= IOP_ADMA_THRESHOLD) {
iop_chan->pending = 0;
iop_chan_append(iop_chan);
}
}
static dma_cookie_t
iop_adma_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct iop_adma_desc_slot *sw_desc = tx_to_iop_adma_slot(tx);
struct iop_adma_chan *iop_chan = to_iop_adma_chan(tx->chan);
struct iop_adma_desc_slot *grp_start, *old_chain_tail;
int slot_cnt;
int slots_per_op;
dma_cookie_t cookie;
dma_addr_t next_dma;
grp_start = sw_desc->group_head;
slot_cnt = grp_start->slot_cnt;
slots_per_op = grp_start->slots_per_op;
spin_lock_bh(&iop_chan->lock);
cookie = iop_desc_assign_cookie(iop_chan, sw_desc);
old_chain_tail = list_entry(iop_chan->chain.prev,
struct iop_adma_desc_slot, chain_node);
list_splice_init(&sw_desc->tx_list,
&old_chain_tail->chain_node);
/* fix up the hardware chain */
next_dma = grp_start->async_tx.phys;
iop_desc_set_next_desc(old_chain_tail, next_dma);
BUG_ON(iop_desc_get_next_desc(old_chain_tail) != next_dma); /* flush */
/* check for pre-chained descriptors */
iop_paranoia(iop_desc_get_next_desc(sw_desc));
/* increment the pending count by the number of slots
* memcpy operations have a 1:1 (slot:operation) relation
* other operations are heavier and will pop the threshold
* more often.
*/
iop_chan->pending += slot_cnt;
iop_adma_check_threshold(iop_chan);
spin_unlock_bh(&iop_chan->lock);
dev_dbg(iop_chan->device->common.dev, "%s cookie: %d slot: %d\n",
__func__, sw_desc->async_tx.cookie, sw_desc->idx);
return cookie;
}
static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan);
static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan);
/**
* iop_adma_alloc_chan_resources - returns the number of allocated descriptors
* @chan - allocate descriptor resources for this channel
* @client - current client requesting the channel be ready for requests
*
* Note: We keep the slots for 1 operation on iop_chan->chain at all times. To
* avoid deadlock, via async_xor, num_descs_in_pool must at a minimum be
* greater than 2x the number slots needed to satisfy a device->max_xor
* request.
* */
static int iop_adma_alloc_chan_resources(struct dma_chan *chan)
{
char *hw_desc;
int idx;
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
struct iop_adma_desc_slot *slot = NULL;
int init = iop_chan->slots_allocated ? 0 : 1;
struct iop_adma_platform_data *plat_data =
iop_chan->device->pdev->dev.platform_data;
int num_descs_in_pool = plat_data->pool_size/IOP_ADMA_SLOT_SIZE;
/* Allocate descriptor slots */
do {
idx = iop_chan->slots_allocated;
if (idx == num_descs_in_pool)
break;
slot = kzalloc(sizeof(*slot), GFP_KERNEL);
if (!slot) {
printk(KERN_INFO "IOP ADMA Channel only initialized"
" %d descriptor slots", idx);
break;
}
hw_desc = (char *) iop_chan->device->dma_desc_pool_virt;
slot->hw_desc = (void *) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
dma_async_tx_descriptor_init(&slot->async_tx, chan);
slot->async_tx.tx_submit = iop_adma_tx_submit;
INIT_LIST_HEAD(&slot->tx_list);
INIT_LIST_HEAD(&slot->chain_node);
INIT_LIST_HEAD(&slot->slot_node);
hw_desc = (char *) iop_chan->device->dma_desc_pool;
slot->async_tx.phys =
(dma_addr_t) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
slot->idx = idx;
spin_lock_bh(&iop_chan->lock);
iop_chan->slots_allocated++;
list_add_tail(&slot->slot_node, &iop_chan->all_slots);
spin_unlock_bh(&iop_chan->lock);
} while (iop_chan->slots_allocated < num_descs_in_pool);
if (idx && !iop_chan->last_used)
iop_chan->last_used = list_entry(iop_chan->all_slots.next,
struct iop_adma_desc_slot,
slot_node);
dev_dbg(iop_chan->device->common.dev,
"allocated %d descriptor slots last_used: %p\n",
iop_chan->slots_allocated, iop_chan->last_used);
/* initialize the channel and the chain with a null operation */
if (init) {
if (dma_has_cap(DMA_MEMCPY,
iop_chan->device->common.cap_mask))
iop_chan_start_null_memcpy(iop_chan);
else if (dma_has_cap(DMA_XOR,
iop_chan->device->common.cap_mask))
iop_chan_start_null_xor(iop_chan);
else
BUG();
}
return (idx > 0) ? idx : -ENOMEM;
}
static struct dma_async_tx_descriptor *
iop_adma_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
{
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
struct iop_adma_desc_slot *sw_desc, *grp_start;
int slot_cnt, slots_per_op;
dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
spin_lock_bh(&iop_chan->lock);
slot_cnt = iop_chan_interrupt_slot_count(&slots_per_op, iop_chan);
sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
if (sw_desc) {
grp_start = sw_desc->group_head;
iop_desc_init_interrupt(grp_start, iop_chan);
grp_start->unmap_len = 0;
sw_desc->async_tx.flags = flags;
}
spin_unlock_bh(&iop_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
static struct dma_async_tx_descriptor *
iop_adma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
dma_addr_t dma_src, size_t len, unsigned long flags)
{
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
struct iop_adma_desc_slot *sw_desc, *grp_start;
int slot_cnt, slots_per_op;
if (unlikely(!len))
return NULL;
BUG_ON(unlikely(len > IOP_ADMA_MAX_BYTE_COUNT));
dev_dbg(iop_chan->device->common.dev, "%s len: %u\n",
__func__, len);
spin_lock_bh(&iop_chan->lock);
slot_cnt = iop_chan_memcpy_slot_count(len, &slots_per_op);
sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
if (sw_desc) {
grp_start = sw_desc->group_head;
iop_desc_init_memcpy(grp_start, flags);
iop_desc_set_byte_count(grp_start, iop_chan, len);
iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
iop_desc_set_memcpy_src_addr(grp_start, dma_src);
sw_desc->unmap_src_cnt = 1;
sw_desc->unmap_len = len;
sw_desc->async_tx.flags = flags;
}
spin_unlock_bh(&iop_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
static struct dma_async_tx_descriptor *
iop_adma_prep_dma_memset(struct dma_chan *chan, dma_addr_t dma_dest,
int value, size_t len, unsigned long flags)
{
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
struct iop_adma_desc_slot *sw_desc, *grp_start;
int slot_cnt, slots_per_op;
if (unlikely(!len))
return NULL;
BUG_ON(unlikely(len > IOP_ADMA_MAX_BYTE_COUNT));
dev_dbg(iop_chan->device->common.dev, "%s len: %u\n",
__func__, len);
spin_lock_bh(&iop_chan->lock);
slot_cnt = iop_chan_memset_slot_count(len, &slots_per_op);
sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
if (sw_desc) {
grp_start = sw_desc->group_head;
iop_desc_init_memset(grp_start, flags);
iop_desc_set_byte_count(grp_start, iop_chan, len);
iop_desc_set_block_fill_val(grp_start, value);
iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
sw_desc->unmap_src_cnt = 1;
sw_desc->unmap_len = len;
sw_desc->async_tx.flags = flags;
}
spin_unlock_bh(&iop_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
static struct dma_async_tx_descriptor *
iop_adma_prep_dma_xor(struct dma_chan *chan, dma_addr_t dma_dest,
dma_addr_t *dma_src, unsigned int src_cnt, size_t len,
unsigned long flags)
{
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
struct iop_adma_desc_slot *sw_desc, *grp_start;
int slot_cnt, slots_per_op;
if (unlikely(!len))
return NULL;
BUG_ON(unlikely(len > IOP_ADMA_XOR_MAX_BYTE_COUNT));
dev_dbg(iop_chan->device->common.dev,
"%s src_cnt: %d len: %u flags: %lx\n",
__func__, src_cnt, len, flags);
spin_lock_bh(&iop_chan->lock);
slot_cnt = iop_chan_xor_slot_count(len, src_cnt, &slots_per_op);
sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
if (sw_desc) {
grp_start = sw_desc->group_head;
iop_desc_init_xor(grp_start, src_cnt, flags);
iop_desc_set_byte_count(grp_start, iop_chan, len);
iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
sw_desc->unmap_src_cnt = src_cnt;
sw_desc->unmap_len = len;
sw_desc->async_tx.flags = flags;
while (src_cnt--)
iop_desc_set_xor_src_addr(grp_start, src_cnt,
dma_src[src_cnt]);
}
spin_unlock_bh(&iop_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
static struct dma_async_tx_descriptor *
iop_adma_prep_dma_xor_val(struct dma_chan *chan, dma_addr_t *dma_src,
unsigned int src_cnt, size_t len, u32 *result,
unsigned long flags)
{
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
struct iop_adma_desc_slot *sw_desc, *grp_start;
int slot_cnt, slots_per_op;
if (unlikely(!len))
return NULL;
dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u\n",
__func__, src_cnt, len);
spin_lock_bh(&iop_chan->lock);
slot_cnt = iop_chan_zero_sum_slot_count(len, src_cnt, &slots_per_op);
sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
if (sw_desc) {
grp_start = sw_desc->group_head;
iop_desc_init_zero_sum(grp_start, src_cnt, flags);
iop_desc_set_zero_sum_byte_count(grp_start, len);
grp_start->xor_check_result = result;
pr_debug("\t%s: grp_start->xor_check_result: %p\n",
__func__, grp_start->xor_check_result);
sw_desc->unmap_src_cnt = src_cnt;
sw_desc->unmap_len = len;
sw_desc->async_tx.flags = flags;
while (src_cnt--)
iop_desc_set_zero_sum_src_addr(grp_start, src_cnt,
dma_src[src_cnt]);
}
spin_unlock_bh(&iop_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
static struct dma_async_tx_descriptor *
iop_adma_prep_dma_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf, size_t len,
unsigned long flags)
{
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
struct iop_adma_desc_slot *sw_desc, *g;
int slot_cnt, slots_per_op;
int continue_srcs;
if (unlikely(!len))
return NULL;
BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
dev_dbg(iop_chan->device->common.dev,
"%s src_cnt: %d len: %u flags: %lx\n",
__func__, src_cnt, len, flags);
if (dmaf_p_disabled_continue(flags))
continue_srcs = 1+src_cnt;
else if (dmaf_continue(flags))
continue_srcs = 3+src_cnt;
else
continue_srcs = 0+src_cnt;
spin_lock_bh(&iop_chan->lock);
slot_cnt = iop_chan_pq_slot_count(len, continue_srcs, &slots_per_op);
sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
if (sw_desc) {
int i;
g = sw_desc->group_head;
iop_desc_set_byte_count(g, iop_chan, len);
/* even if P is disabled its destination address (bits
* [3:0]) must match Q. It is ok if P points to an
* invalid address, it won't be written.
*/
if (flags & DMA_PREP_PQ_DISABLE_P)
dst[0] = dst[1] & 0x7;
iop_desc_set_pq_addr(g, dst);
sw_desc->unmap_src_cnt = src_cnt;
sw_desc->unmap_len = len;
sw_desc->async_tx.flags = flags;
for (i = 0; i < src_cnt; i++)
iop_desc_set_pq_src_addr(g, i, src[i], scf[i]);
/* if we are continuing a previous operation factor in
* the old p and q values, see the comment for dma_maxpq
* in include/linux/dmaengine.h
*/
if (dmaf_p_disabled_continue(flags))
iop_desc_set_pq_src_addr(g, i++, dst[1], 1);
else if (dmaf_continue(flags)) {
iop_desc_set_pq_src_addr(g, i++, dst[0], 0);
iop_desc_set_pq_src_addr(g, i++, dst[1], 1);
iop_desc_set_pq_src_addr(g, i++, dst[1], 0);
}
iop_desc_init_pq(g, i, flags);
}
spin_unlock_bh(&iop_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
static struct dma_async_tx_descriptor *
iop_adma_prep_dma_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf,
size_t len, enum sum_check_flags *pqres,
unsigned long flags)
{
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
struct iop_adma_desc_slot *sw_desc, *g;
int slot_cnt, slots_per_op;
if (unlikely(!len))
return NULL;
BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u\n",
__func__, src_cnt, len);
spin_lock_bh(&iop_chan->lock);
slot_cnt = iop_chan_pq_zero_sum_slot_count(len, src_cnt + 2, &slots_per_op);
sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
if (sw_desc) {
/* for validate operations p and q are tagged onto the
* end of the source list
*/
int pq_idx = src_cnt;
g = sw_desc->group_head;
iop_desc_init_pq_zero_sum(g, src_cnt+2, flags);
iop_desc_set_pq_zero_sum_byte_count(g, len);
g->pq_check_result = pqres;
pr_debug("\t%s: g->pq_check_result: %p\n",
__func__, g->pq_check_result);
sw_desc->unmap_src_cnt = src_cnt+2;
sw_desc->unmap_len = len;
sw_desc->async_tx.flags = flags;
while (src_cnt--)
iop_desc_set_pq_zero_sum_src_addr(g, src_cnt,
src[src_cnt],
scf[src_cnt]);
iop_desc_set_pq_zero_sum_addr(g, pq_idx, src);
}
spin_unlock_bh(&iop_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
static void iop_adma_free_chan_resources(struct dma_chan *chan)
{
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
struct iop_adma_desc_slot *iter, *_iter;
int in_use_descs = 0;
iop_adma_slot_cleanup(iop_chan);
spin_lock_bh(&iop_chan->lock);
list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
chain_node) {
in_use_descs++;
list_del(&iter->chain_node);
}
list_for_each_entry_safe_reverse(
iter, _iter, &iop_chan->all_slots, slot_node) {
list_del(&iter->slot_node);
kfree(iter);
iop_chan->slots_allocated--;
}
iop_chan->last_used = NULL;
dev_dbg(iop_chan->device->common.dev, "%s slots_allocated %d\n",
__func__, iop_chan->slots_allocated);
spin_unlock_bh(&iop_chan->lock);
/* one is ok since we left it on there on purpose */
if (in_use_descs > 1)
printk(KERN_ERR "IOP: Freeing %d in use descriptors!\n",
in_use_descs - 1);
}
/**
* iop_adma_is_complete - poll the status of an ADMA transaction
* @chan: ADMA channel handle
* @cookie: ADMA transaction identifier
*/
static enum dma_status iop_adma_is_complete(struct dma_chan *chan,
dma_cookie_t cookie,
dma_cookie_t *done,
dma_cookie_t *used)
{
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
dma_cookie_t last_used;
dma_cookie_t last_complete;
enum dma_status ret;
last_used = chan->cookie;
last_complete = iop_chan->completed_cookie;
if (done)
*done = last_complete;
if (used)
*used = last_used;
ret = dma_async_is_complete(cookie, last_complete, last_used);
if (ret == DMA_SUCCESS)
return ret;
iop_adma_slot_cleanup(iop_chan);
last_used = chan->cookie;
last_complete = iop_chan->completed_cookie;
if (done)
*done = last_complete;
if (used)
*used = last_used;
return dma_async_is_complete(cookie, last_complete, last_used);
}
static irqreturn_t iop_adma_eot_handler(int irq, void *data)
{
struct iop_adma_chan *chan = data;
dev_dbg(chan->device->common.dev, "%s\n", __func__);
tasklet_schedule(&chan->irq_tasklet);
iop_adma_device_clear_eot_status(chan);
return IRQ_HANDLED;
}
static irqreturn_t iop_adma_eoc_handler(int irq, void *data)
{
struct iop_adma_chan *chan = data;
dev_dbg(chan->device->common.dev, "%s\n", __func__);
tasklet_schedule(&chan->irq_tasklet);
iop_adma_device_clear_eoc_status(chan);
return IRQ_HANDLED;
}
static irqreturn_t iop_adma_err_handler(int irq, void *data)
{
struct iop_adma_chan *chan = data;
unsigned long status = iop_chan_get_status(chan);
dev_printk(KERN_ERR, chan->device->common.dev,
"error ( %s%s%s%s%s%s%s)\n",
iop_is_err_int_parity(status, chan) ? "int_parity " : "",
iop_is_err_mcu_abort(status, chan) ? "mcu_abort " : "",
iop_is_err_int_tabort(status, chan) ? "int_tabort " : "",
iop_is_err_int_mabort(status, chan) ? "int_mabort " : "",
iop_is_err_pci_tabort(status, chan) ? "pci_tabort " : "",
iop_is_err_pci_mabort(status, chan) ? "pci_mabort " : "",
iop_is_err_split_tx(status, chan) ? "split_tx " : "");
iop_adma_device_clear_err_status(chan);
BUG();
return IRQ_HANDLED;
}
static void iop_adma_issue_pending(struct dma_chan *chan)
{
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
if (iop_chan->pending) {
iop_chan->pending = 0;
iop_chan_append(iop_chan);
}
}
/*
* Perform a transaction to verify the HW works.
*/
#define IOP_ADMA_TEST_SIZE 2000
static int __devinit iop_adma_memcpy_self_test(struct iop_adma_device *device)
{
int i;
void *src, *dest;
dma_addr_t src_dma, dest_dma;
struct dma_chan *dma_chan;
dma_cookie_t cookie;
struct dma_async_tx_descriptor *tx;
int err = 0;
struct iop_adma_chan *iop_chan;
dev_dbg(device->common.dev, "%s\n", __func__);
src = kmalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
if (!src)
return -ENOMEM;
dest = kzalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
if (!dest) {
kfree(src);
return -ENOMEM;
}
/* Fill in src buffer */
for (i = 0; i < IOP_ADMA_TEST_SIZE; i++)
((u8 *) src)[i] = (u8)i;
/* Start copy, using first DMA channel */
dma_chan = container_of(device->common.channels.next,
struct dma_chan,
device_node);
if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
err = -ENODEV;
goto out;
}
dest_dma = dma_map_single(dma_chan->device->dev, dest,
IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
src_dma = dma_map_single(dma_chan->device->dev, src,
IOP_ADMA_TEST_SIZE, DMA_TO_DEVICE);
tx = iop_adma_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
IOP_ADMA_TEST_SIZE,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
cookie = iop_adma_tx_submit(tx);
iop_adma_issue_pending(dma_chan);
msleep(1);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test copy timed out, disabling\n");
err = -ENODEV;
goto free_resources;
}
iop_chan = to_iop_adma_chan(dma_chan);
dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
if (memcmp(src, dest, IOP_ADMA_TEST_SIZE)) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test copy failed compare, disabling\n");
err = -ENODEV;
goto free_resources;
}
free_resources:
iop_adma_free_chan_resources(dma_chan);
out:
kfree(src);
kfree(dest);
return err;
}
#define IOP_ADMA_NUM_SRC_TEST 4 /* must be <= 15 */
static int __devinit
iop_adma_xor_val_self_test(struct iop_adma_device *device)
{
int i, src_idx;
struct page *dest;
struct page *xor_srcs[IOP_ADMA_NUM_SRC_TEST];
struct page *zero_sum_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
dma_addr_t dma_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
dma_addr_t dma_addr, dest_dma;
struct dma_async_tx_descriptor *tx;
struct dma_chan *dma_chan;
dma_cookie_t cookie;
u8 cmp_byte = 0;
u32 cmp_word;
u32 zero_sum_result;
int err = 0;
struct iop_adma_chan *iop_chan;
dev_dbg(device->common.dev, "%s\n", __func__);
for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
if (!xor_srcs[src_idx]) {
while (src_idx--)
__free_page(xor_srcs[src_idx]);
return -ENOMEM;
}
}
dest = alloc_page(GFP_KERNEL);
if (!dest) {
while (src_idx--)
__free_page(xor_srcs[src_idx]);
return -ENOMEM;
}
/* Fill in src buffers */
for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
u8 *ptr = page_address(xor_srcs[src_idx]);
for (i = 0; i < PAGE_SIZE; i++)
ptr[i] = (1 << src_idx);
}
for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++)
cmp_byte ^= (u8) (1 << src_idx);
cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
(cmp_byte << 8) | cmp_byte;
memset(page_address(dest), 0, PAGE_SIZE);
dma_chan = container_of(device->common.channels.next,
struct dma_chan,
device_node);
if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
err = -ENODEV;
goto out;
}
/* test xor */
dest_dma = dma_map_page(dma_chan->device->dev, dest, 0,
PAGE_SIZE, DMA_FROM_DEVICE);
for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
0, PAGE_SIZE, DMA_TO_DEVICE);
tx = iop_adma_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
IOP_ADMA_NUM_SRC_TEST, PAGE_SIZE,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
cookie = iop_adma_tx_submit(tx);
iop_adma_issue_pending(dma_chan);
msleep(8);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test xor timed out, disabling\n");
err = -ENODEV;
goto free_resources;
}
iop_chan = to_iop_adma_chan(dma_chan);
dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
PAGE_SIZE, DMA_FROM_DEVICE);
for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
u32 *ptr = page_address(dest);
if (ptr[i] != cmp_word) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test xor failed compare, disabling\n");
err = -ENODEV;
goto free_resources;
}
}
dma_sync_single_for_device(&iop_chan->device->pdev->dev, dest_dma,
PAGE_SIZE, DMA_TO_DEVICE);
/* skip zero sum if the capability is not present */
if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask))
goto free_resources;
/* zero sum the sources with the destintation page */
for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
zero_sum_srcs[i] = xor_srcs[i];
zero_sum_srcs[i] = dest;
zero_sum_result = 1;
for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
dma_srcs[i] = dma_map_page(dma_chan->device->dev,
zero_sum_srcs[i], 0, PAGE_SIZE,
DMA_TO_DEVICE);
tx = iop_adma_prep_dma_xor_val(dma_chan, dma_srcs,
IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
&zero_sum_result,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
cookie = iop_adma_tx_submit(tx);
iop_adma_issue_pending(dma_chan);
msleep(8);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test zero sum timed out, disabling\n");
err = -ENODEV;
goto free_resources;
}
if (zero_sum_result != 0) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test zero sum failed compare, disabling\n");
err = -ENODEV;
goto free_resources;
}
/* test memset */
dma_addr = dma_map_page(dma_chan->device->dev, dest, 0,
PAGE_SIZE, DMA_FROM_DEVICE);
tx = iop_adma_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
cookie = iop_adma_tx_submit(tx);
iop_adma_issue_pending(dma_chan);
msleep(8);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test memset timed out, disabling\n");
err = -ENODEV;
goto free_resources;
}
for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) {
u32 *ptr = page_address(dest);
if (ptr[i]) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test memset failed compare, disabling\n");
err = -ENODEV;
goto free_resources;
}
}
/* test for non-zero parity sum */
zero_sum_result = 0;
for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
dma_srcs[i] = dma_map_page(dma_chan->device->dev,
zero_sum_srcs[i], 0, PAGE_SIZE,
DMA_TO_DEVICE);
tx = iop_adma_prep_dma_xor_val(dma_chan, dma_srcs,
IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
&zero_sum_result,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
cookie = iop_adma_tx_submit(tx);
iop_adma_issue_pending(dma_chan);
msleep(8);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test non-zero sum timed out, disabling\n");
err = -ENODEV;
goto free_resources;
}
if (zero_sum_result != 1) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test non-zero sum failed compare, disabling\n");
err = -ENODEV;
goto free_resources;
}
free_resources:
iop_adma_free_chan_resources(dma_chan);
out:
src_idx = IOP_ADMA_NUM_SRC_TEST;
while (src_idx--)
__free_page(xor_srcs[src_idx]);
__free_page(dest);
return err;
}
#ifdef CONFIG_MD_RAID6_PQ
static int __devinit
iop_adma_pq_zero_sum_self_test(struct iop_adma_device *device)
{
/* combined sources, software pq results, and extra hw pq results */
struct page *pq[IOP_ADMA_NUM_SRC_TEST+2+2];
/* ptr to the extra hw pq buffers defined above */
struct page **pq_hw = &pq[IOP_ADMA_NUM_SRC_TEST+2];
/* address conversion buffers (dma_map / page_address) */
void *pq_sw[IOP_ADMA_NUM_SRC_TEST+2];
dma_addr_t pq_src[IOP_ADMA_NUM_SRC_TEST];
dma_addr_t pq_dest[2];
int i;
struct dma_async_tx_descriptor *tx;
struct dma_chan *dma_chan;
dma_cookie_t cookie;
u32 zero_sum_result;
int err = 0;
struct device *dev;
dev_dbg(device->common.dev, "%s\n", __func__);
for (i = 0; i < ARRAY_SIZE(pq); i++) {
pq[i] = alloc_page(GFP_KERNEL);
if (!pq[i]) {
while (i--)
__free_page(pq[i]);
return -ENOMEM;
}
}
/* Fill in src buffers */
for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++) {
pq_sw[i] = page_address(pq[i]);
memset(pq_sw[i], 0x11111111 * (1<<i), PAGE_SIZE);
}
pq_sw[i] = page_address(pq[i]);
pq_sw[i+1] = page_address(pq[i+1]);
dma_chan = container_of(device->common.channels.next,
struct dma_chan,
device_node);
if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
err = -ENODEV;
goto out;
}
dev = dma_chan->device->dev;
/* initialize the dests */
memset(page_address(pq_hw[0]), 0 , PAGE_SIZE);
memset(page_address(pq_hw[1]), 0 , PAGE_SIZE);
/* test pq */
pq_dest[0] = dma_map_page(dev, pq_hw[0], 0, PAGE_SIZE, DMA_FROM_DEVICE);
pq_dest[1] = dma_map_page(dev, pq_hw[1], 0, PAGE_SIZE, DMA_FROM_DEVICE);
for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
DMA_TO_DEVICE);
tx = iop_adma_prep_dma_pq(dma_chan, pq_dest, pq_src,
IOP_ADMA_NUM_SRC_TEST, (u8 *)raid6_gfexp,
PAGE_SIZE,
DMA_PREP_INTERRUPT |
DMA_CTRL_ACK);
cookie = iop_adma_tx_submit(tx);
iop_adma_issue_pending(dma_chan);
msleep(8);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
DMA_SUCCESS) {
dev_err(dev, "Self-test pq timed out, disabling\n");
err = -ENODEV;
goto free_resources;
}
raid6_call.gen_syndrome(IOP_ADMA_NUM_SRC_TEST+2, PAGE_SIZE, pq_sw);
if (memcmp(pq_sw[IOP_ADMA_NUM_SRC_TEST],
page_address(pq_hw[0]), PAGE_SIZE) != 0) {
dev_err(dev, "Self-test p failed compare, disabling\n");
err = -ENODEV;
goto free_resources;
}
if (memcmp(pq_sw[IOP_ADMA_NUM_SRC_TEST+1],
page_address(pq_hw[1]), PAGE_SIZE) != 0) {
dev_err(dev, "Self-test q failed compare, disabling\n");
err = -ENODEV;
goto free_resources;
}
/* test correct zero sum using the software generated pq values */
for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 2; i++)
pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
DMA_TO_DEVICE);
zero_sum_result = ~0;
tx = iop_adma_prep_dma_pq_val(dma_chan, &pq_src[IOP_ADMA_NUM_SRC_TEST],
pq_src, IOP_ADMA_NUM_SRC_TEST,
raid6_gfexp, PAGE_SIZE, &zero_sum_result,
DMA_PREP_INTERRUPT|DMA_CTRL_ACK);
cookie = iop_adma_tx_submit(tx);
iop_adma_issue_pending(dma_chan);
msleep(8);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
DMA_SUCCESS) {
dev_err(dev, "Self-test pq-zero-sum timed out, disabling\n");
err = -ENODEV;
goto free_resources;
}
if (zero_sum_result != 0) {
dev_err(dev, "Self-test pq-zero-sum failed to validate: %x\n",
zero_sum_result);
err = -ENODEV;
goto free_resources;
}
/* test incorrect zero sum */
i = IOP_ADMA_NUM_SRC_TEST;
memset(pq_sw[i] + 100, 0, 100);
memset(pq_sw[i+1] + 200, 0, 200);
for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 2; i++)
pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
DMA_TO_DEVICE);
zero_sum_result = 0;
tx = iop_adma_prep_dma_pq_val(dma_chan, &pq_src[IOP_ADMA_NUM_SRC_TEST],
pq_src, IOP_ADMA_NUM_SRC_TEST,
raid6_gfexp, PAGE_SIZE, &zero_sum_result,
DMA_PREP_INTERRUPT|DMA_CTRL_ACK);
cookie = iop_adma_tx_submit(tx);
iop_adma_issue_pending(dma_chan);
msleep(8);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
DMA_SUCCESS) {
dev_err(dev, "Self-test !pq-zero-sum timed out, disabling\n");
err = -ENODEV;
goto free_resources;
}
if (zero_sum_result != (SUM_CHECK_P_RESULT | SUM_CHECK_Q_RESULT)) {
dev_err(dev, "Self-test !pq-zero-sum failed to validate: %x\n",
zero_sum_result);
err = -ENODEV;
goto free_resources;
}
free_resources:
iop_adma_free_chan_resources(dma_chan);
out:
i = ARRAY_SIZE(pq);
while (i--)
__free_page(pq[i]);
return err;
}
#endif
static int __devexit iop_adma_remove(struct platform_device *dev)
{
struct iop_adma_device *device = platform_get_drvdata(dev);
struct dma_chan *chan, *_chan;
struct iop_adma_chan *iop_chan;
struct iop_adma_platform_data *plat_data = dev->dev.platform_data;
dma_async_device_unregister(&device->common);
dma_free_coherent(&dev->dev, plat_data->pool_size,
device->dma_desc_pool_virt, device->dma_desc_pool);
list_for_each_entry_safe(chan, _chan, &device->common.channels,
device_node) {
iop_chan = to_iop_adma_chan(chan);
list_del(&chan->device_node);
kfree(iop_chan);
}
kfree(device);
return 0;
}
static int __devinit iop_adma_probe(struct platform_device *pdev)
{
struct resource *res;
int ret = 0, i;
struct iop_adma_device *adev;
struct iop_adma_chan *iop_chan;
struct dma_device *dma_dev;
struct iop_adma_platform_data *plat_data = pdev->dev.platform_data;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENODEV;
if (!devm_request_mem_region(&pdev->dev, res->start,
resource_size(res), pdev->name))
return -EBUSY;
adev = kzalloc(sizeof(*adev), GFP_KERNEL);
if (!adev)
return -ENOMEM;
dma_dev = &adev->common;
/* allocate coherent memory for hardware descriptors
* note: writecombine gives slightly better performance, but
* requires that we explicitly flush the writes
*/
if ((adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
plat_data->pool_size,
&adev->dma_desc_pool,
GFP_KERNEL)) == NULL) {
ret = -ENOMEM;
goto err_free_adev;
}
dev_dbg(&pdev->dev, "%s: allocted descriptor pool virt %p phys %p\n",
__func__, adev->dma_desc_pool_virt,
(void *) adev->dma_desc_pool);
adev->id = plat_data->hw_id;
/* discover transaction capabilites from the platform data */
dma_dev->cap_mask = plat_data->cap_mask;
adev->pdev = pdev;
platform_set_drvdata(pdev, adev);
INIT_LIST_HEAD(&dma_dev->channels);
/* set base routines */
dma_dev->device_alloc_chan_resources = iop_adma_alloc_chan_resources;
dma_dev->device_free_chan_resources = iop_adma_free_chan_resources;
dma_dev->device_is_tx_complete = iop_adma_is_complete;
dma_dev->device_issue_pending = iop_adma_issue_pending;
dma_dev->dev = &pdev->dev;
/* set prep routines based on capability */
if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
dma_dev->device_prep_dma_memcpy = iop_adma_prep_dma_memcpy;
if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
dma_dev->device_prep_dma_memset = iop_adma_prep_dma_memset;
if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
dma_dev->max_xor = iop_adma_get_max_xor();
dma_dev->device_prep_dma_xor = iop_adma_prep_dma_xor;
}
if (dma_has_cap(DMA_XOR_VAL, dma_dev->cap_mask))
dma_dev->device_prep_dma_xor_val =
iop_adma_prep_dma_xor_val;
if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
dma_set_maxpq(dma_dev, iop_adma_get_max_pq(), 0);
dma_dev->device_prep_dma_pq = iop_adma_prep_dma_pq;
}
if (dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask))
dma_dev->device_prep_dma_pq_val =
iop_adma_prep_dma_pq_val;
if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
dma_dev->device_prep_dma_interrupt =
iop_adma_prep_dma_interrupt;
iop_chan = kzalloc(sizeof(*iop_chan), GFP_KERNEL);
if (!iop_chan) {
ret = -ENOMEM;
goto err_free_dma;
}
iop_chan->device = adev;
iop_chan->mmr_base = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!iop_chan->mmr_base) {
ret = -ENOMEM;
goto err_free_iop_chan;
}
tasklet_init(&iop_chan->irq_tasklet, iop_adma_tasklet, (unsigned long)
iop_chan);
/* clear errors before enabling interrupts */
iop_adma_device_clear_err_status(iop_chan);
for (i = 0; i < 3; i++) {
irq_handler_t handler[] = { iop_adma_eot_handler,
iop_adma_eoc_handler,
iop_adma_err_handler };
int irq = platform_get_irq(pdev, i);
if (irq < 0) {
ret = -ENXIO;
goto err_free_iop_chan;
} else {
ret = devm_request_irq(&pdev->dev, irq,
handler[i], 0, pdev->name, iop_chan);
if (ret)
goto err_free_iop_chan;
}
}
spin_lock_init(&iop_chan->lock);
INIT_LIST_HEAD(&iop_chan->chain);
INIT_LIST_HEAD(&iop_chan->all_slots);
iop_chan->common.device = dma_dev;
list_add_tail(&iop_chan->common.device_node, &dma_dev->channels);
if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
ret = iop_adma_memcpy_self_test(adev);
dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
if (ret)
goto err_free_iop_chan;
}
if (dma_has_cap(DMA_XOR, dma_dev->cap_mask) ||
dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)) {
ret = iop_adma_xor_val_self_test(adev);
dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
if (ret)
goto err_free_iop_chan;
}
if (dma_has_cap(DMA_PQ, dma_dev->cap_mask) &&
dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask)) {
#ifdef CONFIG_MD_RAID6_PQ
ret = iop_adma_pq_zero_sum_self_test(adev);
dev_dbg(&pdev->dev, "pq self test returned %d\n", ret);
#else
/* can not test raid6, so do not publish capability */
dma_cap_clear(DMA_PQ, dma_dev->cap_mask);
dma_cap_clear(DMA_PQ_VAL, dma_dev->cap_mask);
ret = 0;
#endif
if (ret)
goto err_free_iop_chan;
}
dev_printk(KERN_INFO, &pdev->dev, "Intel(R) IOP: "
"( %s%s%s%s%s%s%s)\n",
dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "pq " : "",
dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask) ? "pq_val " : "",
dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
dma_has_cap(DMA_XOR_VAL, dma_dev->cap_mask) ? "xor_val " : "",
dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "",
dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
dma_async_device_register(dma_dev);
goto out;
err_free_iop_chan:
kfree(iop_chan);
err_free_dma:
dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
adev->dma_desc_pool_virt, adev->dma_desc_pool);
err_free_adev:
kfree(adev);
out:
return ret;
}
static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan)
{
struct iop_adma_desc_slot *sw_desc, *grp_start;
dma_cookie_t cookie;
int slot_cnt, slots_per_op;
dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
spin_lock_bh(&iop_chan->lock);
slot_cnt = iop_chan_memcpy_slot_count(0, &slots_per_op);
sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
if (sw_desc) {
grp_start = sw_desc->group_head;
list_splice_init(&sw_desc->tx_list, &iop_chan->chain);
async_tx_ack(&sw_desc->async_tx);
iop_desc_init_memcpy(grp_start, 0);
iop_desc_set_byte_count(grp_start, iop_chan, 0);
iop_desc_set_dest_addr(grp_start, iop_chan, 0);
iop_desc_set_memcpy_src_addr(grp_start, 0);
cookie = iop_chan->common.cookie;
cookie++;
if (cookie <= 1)
cookie = 2;
/* initialize the completed cookie to be less than
* the most recently used cookie
*/
iop_chan->completed_cookie = cookie - 1;
iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie;
/* channel should not be busy */
BUG_ON(iop_chan_is_busy(iop_chan));
/* clear any prior error-status bits */
iop_adma_device_clear_err_status(iop_chan);
/* disable operation */
iop_chan_disable(iop_chan);
/* set the descriptor address */
iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
/* 1/ don't add pre-chained descriptors
* 2/ dummy read to flush next_desc write
*/
BUG_ON(iop_desc_get_next_desc(sw_desc));
/* run the descriptor */
iop_chan_enable(iop_chan);
} else
dev_printk(KERN_ERR, iop_chan->device->common.dev,
"failed to allocate null descriptor\n");
spin_unlock_bh(&iop_chan->lock);
}
static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan)
{
struct iop_adma_desc_slot *sw_desc, *grp_start;
dma_cookie_t cookie;
int slot_cnt, slots_per_op;
dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
spin_lock_bh(&iop_chan->lock);
slot_cnt = iop_chan_xor_slot_count(0, 2, &slots_per_op);
sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
if (sw_desc) {
grp_start = sw_desc->group_head;
list_splice_init(&sw_desc->tx_list, &iop_chan->chain);
async_tx_ack(&sw_desc->async_tx);
iop_desc_init_null_xor(grp_start, 2, 0);
iop_desc_set_byte_count(grp_start, iop_chan, 0);
iop_desc_set_dest_addr(grp_start, iop_chan, 0);
iop_desc_set_xor_src_addr(grp_start, 0, 0);
iop_desc_set_xor_src_addr(grp_start, 1, 0);
cookie = iop_chan->common.cookie;
cookie++;
if (cookie <= 1)
cookie = 2;
/* initialize the completed cookie to be less than
* the most recently used cookie
*/
iop_chan->completed_cookie = cookie - 1;
iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie;
/* channel should not be busy */
BUG_ON(iop_chan_is_busy(iop_chan));
/* clear any prior error-status bits */
iop_adma_device_clear_err_status(iop_chan);
/* disable operation */
iop_chan_disable(iop_chan);
/* set the descriptor address */
iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
/* 1/ don't add pre-chained descriptors
* 2/ dummy read to flush next_desc write
*/
BUG_ON(iop_desc_get_next_desc(sw_desc));
/* run the descriptor */
iop_chan_enable(iop_chan);
} else
dev_printk(KERN_ERR, iop_chan->device->common.dev,
"failed to allocate null descriptor\n");
spin_unlock_bh(&iop_chan->lock);
}
MODULE_ALIAS("platform:iop-adma");
static struct platform_driver iop_adma_driver = {
.probe = iop_adma_probe,
.remove = __devexit_p(iop_adma_remove),
.driver = {
.owner = THIS_MODULE,
.name = "iop-adma",
},
};
static int __init iop_adma_init (void)
{
return platform_driver_register(&iop_adma_driver);
}
static void __exit iop_adma_exit (void)
{
platform_driver_unregister(&iop_adma_driver);
return;
}
module_exit(iop_adma_exit);
module_init(iop_adma_init);
MODULE_AUTHOR("Intel Corporation");
MODULE_DESCRIPTION("IOP ADMA Engine Driver");
MODULE_LICENSE("GPL");