android_kernel_xiaomi_sm8350/include/asm-ppc64/smu.h
Benjamin Herrenschmidt 0365ba7fb1 [PATCH] ppc64: SMU driver update & i2c support
The SMU is the "system controller" chip used by Apple recent G5 machines
including the iMac G5.  It drives things like fans, i2c busses, real time
clock, etc...

The current kernel contains a very crude driver that doesn't do much more
than reading the real time clock synchronously.  This is a completely
rewritten driver that provides interrupt based command queuing, a userland
interface, and an i2c/smbus driver for accessing the devices hanging off
the SMU i2c busses like temperature sensors.  This driver is a basic block
for upcoming work on thermal control for those machines, among others.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Jean Delvare <khali@linux-fr.org>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-22 22:17:35 -07:00

380 lines
11 KiB
C

#ifndef _SMU_H
#define _SMU_H
/*
* Definitions for talking to the SMU chip in newer G5 PowerMacs
*/
#include <linux/config.h>
#include <linux/list.h>
/*
* Known SMU commands
*
* Most of what is below comes from looking at the Open Firmware driver,
* though this is still incomplete and could use better documentation here
* or there...
*/
/*
* Partition info commands
*
* I do not know what those are for at this point
*/
#define SMU_CMD_PARTITION_COMMAND 0x3e
/*
* Fan control
*
* This is a "mux" for fan control commands, first byte is the
* "sub" command.
*/
#define SMU_CMD_FAN_COMMAND 0x4a
/*
* Battery access
*
* Same command number as the PMU, could it be same syntax ?
*/
#define SMU_CMD_BATTERY_COMMAND 0x6f
#define SMU_CMD_GET_BATTERY_INFO 0x00
/*
* Real time clock control
*
* This is a "mux", first data byte contains the "sub" command.
* The "RTC" part of the SMU controls the date, time, powerup
* timer, but also a PRAM
*
* Dates are in BCD format on 7 bytes:
* [sec] [min] [hour] [weekday] [month day] [month] [year]
* with month being 1 based and year minus 100
*/
#define SMU_CMD_RTC_COMMAND 0x8e
#define SMU_CMD_RTC_SET_PWRUP_TIMER 0x00 /* i: 7 bytes date */
#define SMU_CMD_RTC_GET_PWRUP_TIMER 0x01 /* o: 7 bytes date */
#define SMU_CMD_RTC_STOP_PWRUP_TIMER 0x02
#define SMU_CMD_RTC_SET_PRAM_BYTE_ACC 0x20 /* i: 1 byte (address?) */
#define SMU_CMD_RTC_SET_PRAM_AUTOINC 0x21 /* i: 1 byte (data?) */
#define SMU_CMD_RTC_SET_PRAM_LO_BYTES 0x22 /* i: 10 bytes */
#define SMU_CMD_RTC_SET_PRAM_HI_BYTES 0x23 /* i: 10 bytes */
#define SMU_CMD_RTC_GET_PRAM_BYTE 0x28 /* i: 1 bytes (address?) */
#define SMU_CMD_RTC_GET_PRAM_LO_BYTES 0x29 /* o: 10 bytes */
#define SMU_CMD_RTC_GET_PRAM_HI_BYTES 0x2a /* o: 10 bytes */
#define SMU_CMD_RTC_SET_DATETIME 0x80 /* i: 7 bytes date */
#define SMU_CMD_RTC_GET_DATETIME 0x81 /* o: 7 bytes date */
/*
* i2c commands
*
* To issue an i2c command, first is to send a parameter block to the
* the SMU. This is a command of type 0x9a with 9 bytes of header
* eventually followed by data for a write:
*
* 0: bus number (from device-tree usually, SMU has lots of busses !)
* 1: transfer type/format (see below)
* 2: device address. For combined and combined4 type transfers, this
* is the "write" version of the address (bit 0x01 cleared)
* 3: subaddress length (0..3)
* 4: subaddress byte 0 (or only byte for subaddress length 1)
* 5: subaddress byte 1
* 6: subaddress byte 2
* 7: combined address (device address for combined mode data phase)
* 8: data length
*
* The transfer types are the same good old Apple ones it seems,
* that is:
* - 0x00: Simple transfer
* - 0x01: Subaddress transfer (addr write + data tx, no restart)
* - 0x02: Combined transfer (addr write + restart + data tx)
*
* This is then followed by actual data for a write.
*
* At this point, the OF driver seems to have a limitation on transfer
* sizes of 0xd bytes on reads and 0x5 bytes on writes. I do not know
* wether this is just an OF limit due to some temporary buffer size
* or if this is an SMU imposed limit. This driver has the same limitation
* for now as I use a 0x10 bytes temporary buffer as well
*
* Once that is completed, a response is expected from the SMU. This is
* obtained via a command of type 0x9a with a length of 1 byte containing
* 0 as the data byte. OF also fills the rest of the data buffer with 0xff's
* though I can't tell yet if this is actually necessary. Once this command
* is complete, at this point, all I can tell is what OF does. OF tests
* byte 0 of the reply:
* - on read, 0xfe or 0xfc : bus is busy, wait (see below) or nak ?
* - on read, 0x00 or 0x01 : reply is in buffer (after the byte 0)
* - on write, < 0 -> failure (immediate exit)
* - else, OF just exists (without error, weird)
*
* So on read, there is this wait-for-busy thing when getting a 0xfc or
* 0xfe result. OF does a loop of up to 64 retries, waiting 20ms and
* doing the above again until either the retries expire or the result
* is no longer 0xfe or 0xfc
*
* The Darwin I2C driver is less subtle though. On any non-success status
* from the response command, it waits 5ms and tries again up to 20 times,
* it doesn't differenciate between fatal errors or "busy" status.
*
* This driver provides an asynchronous paramblock based i2c command
* interface to be used either directly by low level code or by a higher
* level driver interfacing to the linux i2c layer. The current
* implementation of this relies on working timers & timer interrupts
* though, so be careful of calling context for now. This may be "fixed"
* in the future by adding a polling facility.
*/
#define SMU_CMD_I2C_COMMAND 0x9a
/* transfer types */
#define SMU_I2C_TRANSFER_SIMPLE 0x00
#define SMU_I2C_TRANSFER_STDSUB 0x01
#define SMU_I2C_TRANSFER_COMBINED 0x02
/*
* Power supply control
*
* The "sub" command is an ASCII string in the data, the
* data lenght is that of the string.
*
* The VSLEW command can be used to get or set the voltage slewing.
* - lenght 5 (only "VSLEW") : it returns "DONE" and 3 bytes of
* reply at data offset 6, 7 and 8.
* - lenght 8 ("VSLEWxyz") has 3 additional bytes appended, and is
* used to set the voltage slewing point. The SMU replies with "DONE"
* I yet have to figure out their exact meaning of those 3 bytes in
* both cases.
*
*/
#define SMU_CMD_POWER_COMMAND 0xaa
#define SMU_CMD_POWER_RESTART "RESTART"
#define SMU_CMD_POWER_SHUTDOWN "SHUTDOWN"
#define SMU_CMD_POWER_VOLTAGE_SLEW "VSLEW"
/* Misc commands
*
* This command seem to be a grab bag of various things
*/
#define SMU_CMD_MISC_df_COMMAND 0xdf
#define SMU_CMD_MISC_df_SET_DISPLAY_LIT 0x02 /* i: 1 byte */
#define SMU_CMD_MISC_df_NMI_OPTION 0x04
/*
* Version info commands
*
* I haven't quite tried to figure out how these work
*/
#define SMU_CMD_VERSION_COMMAND 0xea
/*
* Misc commands
*
* This command seem to be a grab bag of various things
*/
#define SMU_CMD_MISC_ee_COMMAND 0xee
#define SMU_CMD_MISC_ee_GET_DATABLOCK_REC 0x02
#define SMU_CMD_MISC_ee_LEDS_CTRL 0x04 /* i: 00 (00,01) [00] */
#define SMU_CMD_MISC_ee_GET_DATA 0x05 /* i: 00 , o: ?? */
/*
* - Kernel side interface -
*/
#ifdef __KERNEL__
/*
* Asynchronous SMU commands
*
* Fill up this structure and submit it via smu_queue_command(),
* and get notified by the optional done() callback, or because
* status becomes != 1
*/
struct smu_cmd;
struct smu_cmd
{
/* public */
u8 cmd; /* command */
int data_len; /* data len */
int reply_len; /* reply len */
void *data_buf; /* data buffer */
void *reply_buf; /* reply buffer */
int status; /* command status */
void (*done)(struct smu_cmd *cmd, void *misc);
void *misc;
/* private */
struct list_head link;
};
/*
* Queues an SMU command, all fields have to be initialized
*/
extern int smu_queue_cmd(struct smu_cmd *cmd);
/*
* Simple command wrapper. This structure embeds a small buffer
* to ease sending simple SMU commands from the stack
*/
struct smu_simple_cmd
{
struct smu_cmd cmd;
u8 buffer[16];
};
/*
* Queues a simple command. All fields will be initialized by that
* function
*/
extern int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
unsigned int data_len,
void (*done)(struct smu_cmd *cmd, void *misc),
void *misc,
...);
/*
* Completion helper. Pass it to smu_queue_simple or as 'done'
* member to smu_queue_cmd, it will call complete() on the struct
* completion passed in the "misc" argument
*/
extern void smu_done_complete(struct smu_cmd *cmd, void *misc);
/*
* Synchronous helpers. Will spin-wait for completion of a command
*/
extern void smu_spinwait_cmd(struct smu_cmd *cmd);
static inline void smu_spinwait_simple(struct smu_simple_cmd *scmd)
{
smu_spinwait_cmd(&scmd->cmd);
}
/*
* Poll routine to call if blocked with irqs off
*/
extern void smu_poll(void);
/*
* Init routine, presence check....
*/
extern int smu_init(void);
extern int smu_present(void);
struct of_device;
extern struct of_device *smu_get_ofdev(void);
/*
* Common command wrappers
*/
extern void smu_shutdown(void);
extern void smu_restart(void);
struct rtc_time;
extern int smu_get_rtc_time(struct rtc_time *time, int spinwait);
extern int smu_set_rtc_time(struct rtc_time *time, int spinwait);
/*
* SMU command buffer absolute address, exported by pmac_setup,
* this is allocated very early during boot.
*/
extern unsigned long smu_cmdbuf_abs;
/*
* Kenrel asynchronous i2c interface
*/
/* SMU i2c header, exactly matches i2c header on wire */
struct smu_i2c_param
{
u8 bus; /* SMU bus ID (from device tree) */
u8 type; /* i2c transfer type */
u8 devaddr; /* device address (includes direction) */
u8 sublen; /* subaddress length */
u8 subaddr[3]; /* subaddress */
u8 caddr; /* combined address, filled by SMU driver */
u8 datalen; /* length of transfer */
u8 data[7]; /* data */
};
#define SMU_I2C_READ_MAX 0x0d
#define SMU_I2C_WRITE_MAX 0x05
struct smu_i2c_cmd
{
/* public */
struct smu_i2c_param info;
void (*done)(struct smu_i2c_cmd *cmd, void *misc);
void *misc;
int status; /* 1 = pending, 0 = ok, <0 = fail */
/* private */
struct smu_cmd scmd;
int read;
int stage;
int retries;
u8 pdata[0x10];
struct list_head link;
};
/*
* Call this to queue an i2c command to the SMU. You must fill info,
* including info.data for a write, done and misc.
* For now, no polling interface is provided so you have to use completion
* callback.
*/
extern int smu_queue_i2c(struct smu_i2c_cmd *cmd);
#endif /* __KERNEL__ */
/*
* - Userland interface -
*/
/*
* A given instance of the device can be configured for 2 different
* things at the moment:
*
* - sending SMU commands (default at open() time)
* - receiving SMU events (not yet implemented)
*
* Commands are written with write() of a command block. They can be
* "driver" commands (for example to switch to event reception mode)
* or real SMU commands. They are made of a header followed by command
* data if any.
*
* For SMU commands (not for driver commands), you can then read() back
* a reply. The reader will be blocked or not depending on how the device
* file is opened. poll() isn't implemented yet. The reply will consist
* of a header as well, followed by the reply data if any. You should
* always provide a buffer large enough for the maximum reply data, I
* recommand one page.
*
* It is illegal to send SMU commands through a file descriptor configured
* for events reception
*
*/
struct smu_user_cmd_hdr
{
__u32 cmdtype;
#define SMU_CMDTYPE_SMU 0 /* SMU command */
#define SMU_CMDTYPE_WANTS_EVENTS 1 /* switch fd to events mode */
__u8 cmd; /* SMU command byte */
__u32 data_len; /* Lenght of data following */
};
struct smu_user_reply_hdr
{
__u32 status; /* Command status */
__u32 reply_len; /* Lenght of data follwing */
};
#endif /* _SMU_H */