android_kernel_xiaomi_sm8350/arch/ia64/sn/kernel/bte.c
Robin Holt cbf093e8c7 [IA64] bte_unaligned_copy() transfers one extra cache line.
When called to do a transfer that has a start offset within the cache
line which is uneven between source and destination and a length which
terminates the source of the copy exactly on a cache line, one extra
line gets copied into a temporary buffer.  This is normally not an issue
since the buffer is a kernel buffer and only the requested information
gets copied into the user buffer.

The problem arises when the source ends at the very last physical page
of memory.  That last cache line does not exist and results in the SHUB
chip raising an MCA.

Signed-off-by: Robin Holt <holt@sgi.com>
Signed-off-by: Dean Nelson <dcn@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2006-11-15 10:12:15 -08:00

470 lines
13 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 2000-2006 Silicon Graphics, Inc. All Rights Reserved.
*/
#include <linux/module.h>
#include <asm/sn/nodepda.h>
#include <asm/sn/addrs.h>
#include <asm/sn/arch.h>
#include <asm/sn/sn_cpuid.h>
#include <asm/sn/pda.h>
#include <asm/sn/shubio.h>
#include <asm/nodedata.h>
#include <asm/delay.h>
#include <linux/bootmem.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <asm/sn/bte.h>
#ifndef L1_CACHE_MASK
#define L1_CACHE_MASK (L1_CACHE_BYTES - 1)
#endif
/* two interfaces on two btes */
#define MAX_INTERFACES_TO_TRY 4
#define MAX_NODES_TO_TRY 2
static struct bteinfo_s *bte_if_on_node(nasid_t nasid, int interface)
{
nodepda_t *tmp_nodepda;
if (nasid_to_cnodeid(nasid) == -1)
return (struct bteinfo_s *)NULL;
tmp_nodepda = NODEPDA(nasid_to_cnodeid(nasid));
return &tmp_nodepda->bte_if[interface];
}
static inline void bte_start_transfer(struct bteinfo_s *bte, u64 len, u64 mode)
{
if (is_shub2()) {
BTE_CTRL_STORE(bte, (IBLS_BUSY | ((len) | (mode) << 24)));
} else {
BTE_LNSTAT_STORE(bte, len);
BTE_CTRL_STORE(bte, mode);
}
}
/************************************************************************
* Block Transfer Engine copy related functions.
*
***********************************************************************/
/*
* bte_copy(src, dest, len, mode, notification)
*
* Use the block transfer engine to move kernel memory from src to dest
* using the assigned mode.
*
* Paramaters:
* src - physical address of the transfer source.
* dest - physical address of the transfer destination.
* len - number of bytes to transfer from source to dest.
* mode - hardware defined. See reference information
* for IBCT0/1 in the SHUB Programmers Reference
* notification - kernel virtual address of the notification cache
* line. If NULL, the default is used and
* the bte_copy is synchronous.
*
* NOTE: This function requires src, dest, and len to
* be cacheline aligned.
*/
bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
{
u64 transfer_size;
u64 transfer_stat;
u64 notif_phys_addr;
struct bteinfo_s *bte;
bte_result_t bte_status;
unsigned long irq_flags;
unsigned long itc_end = 0;
int nasid_to_try[MAX_NODES_TO_TRY];
int my_nasid = cpuid_to_nasid(raw_smp_processor_id());
int bte_if_index, nasid_index;
int bte_first, btes_per_node = BTES_PER_NODE;
BTE_PRINTK(("bte_copy(0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%p)\n",
src, dest, len, mode, notification));
if (len == 0) {
return BTE_SUCCESS;
}
BUG_ON((len & L1_CACHE_MASK) ||
(src & L1_CACHE_MASK) || (dest & L1_CACHE_MASK));
BUG_ON(!(len < ((BTE_LEN_MASK + 1) << L1_CACHE_SHIFT)));
/*
* Start with interface corresponding to cpu number
*/
bte_first = raw_smp_processor_id() % btes_per_node;
if (mode & BTE_USE_DEST) {
/* try remote then local */
nasid_to_try[0] = NASID_GET(dest);
if (mode & BTE_USE_ANY) {
nasid_to_try[1] = my_nasid;
} else {
nasid_to_try[1] = (int)NULL;
}
} else {
/* try local then remote */
nasid_to_try[0] = my_nasid;
if (mode & BTE_USE_ANY) {
nasid_to_try[1] = NASID_GET(dest);
} else {
nasid_to_try[1] = (int)NULL;
}
}
retry_bteop:
do {
local_irq_save(irq_flags);
bte_if_index = bte_first;
nasid_index = 0;
/* Attempt to lock one of the BTE interfaces. */
while (nasid_index < MAX_NODES_TO_TRY) {
bte = bte_if_on_node(nasid_to_try[nasid_index],bte_if_index);
if (bte == NULL) {
nasid_index++;
continue;
}
if (spin_trylock(&bte->spinlock)) {
if (!(*bte->most_rcnt_na & BTE_WORD_AVAILABLE) ||
(BTE_LNSTAT_LOAD(bte) & BTE_ACTIVE)) {
/* Got the lock but BTE still busy */
spin_unlock(&bte->spinlock);
} else {
/* we got the lock and it's not busy */
break;
}
}
bte_if_index = (bte_if_index + 1) % btes_per_node; /* Next interface */
if (bte_if_index == bte_first) {
/*
* We've tried all interfaces on this node
*/
nasid_index++;
}
bte = NULL;
}
if (bte != NULL) {
break;
}
local_irq_restore(irq_flags);
if (!(mode & BTE_WACQUIRE)) {
return BTEFAIL_NOTAVAIL;
}
} while (1);
if (notification == NULL) {
/* User does not want to be notified. */
bte->most_rcnt_na = &bte->notify;
} else {
bte->most_rcnt_na = notification;
}
/* Calculate the number of cache lines to transfer. */
transfer_size = ((len >> L1_CACHE_SHIFT) & BTE_LEN_MASK);
/* Initialize the notification to a known value. */
*bte->most_rcnt_na = BTE_WORD_BUSY;
notif_phys_addr = (u64)bte->most_rcnt_na;
/* Set the source and destination registers */
BTE_PRINTKV(("IBSA = 0x%lx)\n", src));
BTE_SRC_STORE(bte, src);
BTE_PRINTKV(("IBDA = 0x%lx)\n", dest));
BTE_DEST_STORE(bte, dest);
/* Set the notification register */
BTE_PRINTKV(("IBNA = 0x%lx)\n", notif_phys_addr));
BTE_NOTIF_STORE(bte, notif_phys_addr);
/* Initiate the transfer */
BTE_PRINTK(("IBCT = 0x%lx)\n", BTE_VALID_MODE(mode)));
bte_start_transfer(bte, transfer_size, BTE_VALID_MODE(mode));
itc_end = ia64_get_itc() + (40000000 * local_cpu_data->cyc_per_usec);
spin_unlock_irqrestore(&bte->spinlock, irq_flags);
if (notification != NULL) {
return BTE_SUCCESS;
}
while ((transfer_stat = *bte->most_rcnt_na) == BTE_WORD_BUSY) {
cpu_relax();
if (ia64_get_itc() > itc_end) {
BTE_PRINTK(("BTE timeout nasid 0x%x bte%d IBLS = 0x%lx na 0x%lx\n",
NASID_GET(bte->bte_base_addr), bte->bte_num,
BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na) );
bte->bte_error_count++;
bte->bh_error = IBLS_ERROR;
bte_error_handler((unsigned long)NODEPDA(bte->bte_cnode));
*bte->most_rcnt_na = BTE_WORD_AVAILABLE;
goto retry_bteop;
}
}
BTE_PRINTKV((" Delay Done. IBLS = 0x%lx, most_rcnt_na = 0x%lx\n",
BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
if (transfer_stat & IBLS_ERROR) {
bte_status = transfer_stat & ~IBLS_ERROR;
} else {
bte_status = BTE_SUCCESS;
}
*bte->most_rcnt_na = BTE_WORD_AVAILABLE;
BTE_PRINTK(("Returning status is 0x%lx and most_rcnt_na is 0x%lx\n",
BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
return bte_status;
}
EXPORT_SYMBOL(bte_copy);
/*
* bte_unaligned_copy(src, dest, len, mode)
*
* use the block transfer engine to move kernel
* memory from src to dest using the assigned mode.
*
* Paramaters:
* src - physical address of the transfer source.
* dest - physical address of the transfer destination.
* len - number of bytes to transfer from source to dest.
* mode - hardware defined. See reference information
* for IBCT0/1 in the SGI documentation.
*
* NOTE: If the source, dest, and len are all cache line aligned,
* then it would be _FAR_ preferrable to use bte_copy instead.
*/
bte_result_t bte_unaligned_copy(u64 src, u64 dest, u64 len, u64 mode)
{
int destFirstCacheOffset;
u64 headBteSource;
u64 headBteLen;
u64 headBcopySrcOffset;
u64 headBcopyDest;
u64 headBcopyLen;
u64 footBteSource;
u64 footBteLen;
u64 footBcopyDest;
u64 footBcopyLen;
bte_result_t rv;
char *bteBlock, *bteBlock_unaligned;
if (len == 0) {
return BTE_SUCCESS;
}
/* temporary buffer used during unaligned transfers */
bteBlock_unaligned = kmalloc(len + 3 * L1_CACHE_BYTES, GFP_KERNEL);
if (bteBlock_unaligned == NULL) {
return BTEFAIL_NOTAVAIL;
}
bteBlock = (char *)L1_CACHE_ALIGN((u64) bteBlock_unaligned);
headBcopySrcOffset = src & L1_CACHE_MASK;
destFirstCacheOffset = dest & L1_CACHE_MASK;
/*
* At this point, the transfer is broken into
* (up to) three sections. The first section is
* from the start address to the first physical
* cache line, the second is from the first physical
* cache line to the last complete cache line,
* and the third is from the last cache line to the
* end of the buffer. The first and third sections
* are handled by bte copying into a temporary buffer
* and then bcopy'ing the necessary section into the
* final location. The middle section is handled with
* a standard bte copy.
*
* One nasty exception to the above rule is when the
* source and destination are not symetrically
* mis-aligned. If the source offset from the first
* cache line is different from the destination offset,
* we make the first section be the entire transfer
* and the bcopy the entire block into place.
*/
if (headBcopySrcOffset == destFirstCacheOffset) {
/*
* Both the source and destination are the same
* distance from a cache line boundary so we can
* use the bte to transfer the bulk of the
* data.
*/
headBteSource = src & ~L1_CACHE_MASK;
headBcopyDest = dest;
if (headBcopySrcOffset) {
headBcopyLen =
(len >
(L1_CACHE_BYTES -
headBcopySrcOffset) ? L1_CACHE_BYTES
- headBcopySrcOffset : len);
headBteLen = L1_CACHE_BYTES;
} else {
headBcopyLen = 0;
headBteLen = 0;
}
if (len > headBcopyLen) {
footBcopyLen = (len - headBcopyLen) & L1_CACHE_MASK;
footBteLen = L1_CACHE_BYTES;
footBteSource = src + len - footBcopyLen;
footBcopyDest = dest + len - footBcopyLen;
if (footBcopyDest == (headBcopyDest + headBcopyLen)) {
/*
* We have two contigous bcopy
* blocks. Merge them.
*/
headBcopyLen += footBcopyLen;
headBteLen += footBteLen;
} else if (footBcopyLen > 0) {
rv = bte_copy(footBteSource,
ia64_tpa((unsigned long)bteBlock),
footBteLen, mode, NULL);
if (rv != BTE_SUCCESS) {
kfree(bteBlock_unaligned);
return rv;
}
memcpy(__va(footBcopyDest),
(char *)bteBlock, footBcopyLen);
}
} else {
footBcopyLen = 0;
footBteLen = 0;
}
if (len > (headBcopyLen + footBcopyLen)) {
/* now transfer the middle. */
rv = bte_copy((src + headBcopyLen),
(dest +
headBcopyLen),
(len - headBcopyLen -
footBcopyLen), mode, NULL);
if (rv != BTE_SUCCESS) {
kfree(bteBlock_unaligned);
return rv;
}
}
} else {
/*
* The transfer is not symetric, we will
* allocate a buffer large enough for all the
* data, bte_copy into that buffer and then
* bcopy to the destination.
*/
headBcopySrcOffset = src & L1_CACHE_MASK;
headBcopyDest = dest;
headBcopyLen = len;
headBteSource = src - headBcopySrcOffset;
/* Add the leading and trailing bytes from source */
headBteLen = L1_CACHE_ALIGN(len + headBcopySrcOffset);
}
if (headBcopyLen > 0) {
rv = bte_copy(headBteSource,
ia64_tpa((unsigned long)bteBlock), headBteLen,
mode, NULL);
if (rv != BTE_SUCCESS) {
kfree(bteBlock_unaligned);
return rv;
}
memcpy(__va(headBcopyDest), ((char *)bteBlock +
headBcopySrcOffset), headBcopyLen);
}
kfree(bteBlock_unaligned);
return BTE_SUCCESS;
}
EXPORT_SYMBOL(bte_unaligned_copy);
/************************************************************************
* Block Transfer Engine initialization functions.
*
***********************************************************************/
/*
* bte_init_node(nodepda, cnode)
*
* Initialize the nodepda structure with BTE base addresses and
* spinlocks.
*/
void bte_init_node(nodepda_t * mynodepda, cnodeid_t cnode)
{
int i;
/*
* Indicate that all the block transfer engines on this node
* are available.
*/
/*
* Allocate one bte_recover_t structure per node. It holds
* the recovery lock for node. All the bte interface structures
* will point at this one bte_recover structure to get the lock.
*/
spin_lock_init(&mynodepda->bte_recovery_lock);
init_timer(&mynodepda->bte_recovery_timer);
mynodepda->bte_recovery_timer.function = bte_error_handler;
mynodepda->bte_recovery_timer.data = (unsigned long)mynodepda;
for (i = 0; i < BTES_PER_NODE; i++) {
u64 *base_addr;
/* Which link status register should we use? */
base_addr = (u64 *)
REMOTE_HUB_ADDR(cnodeid_to_nasid(cnode), BTE_BASE_ADDR(i));
mynodepda->bte_if[i].bte_base_addr = base_addr;
mynodepda->bte_if[i].bte_source_addr = BTE_SOURCE_ADDR(base_addr);
mynodepda->bte_if[i].bte_destination_addr = BTE_DEST_ADDR(base_addr);
mynodepda->bte_if[i].bte_control_addr = BTE_CTRL_ADDR(base_addr);
mynodepda->bte_if[i].bte_notify_addr = BTE_NOTIF_ADDR(base_addr);
/*
* Initialize the notification and spinlock
* so the first transfer can occur.
*/
mynodepda->bte_if[i].most_rcnt_na =
&(mynodepda->bte_if[i].notify);
mynodepda->bte_if[i].notify = BTE_WORD_AVAILABLE;
spin_lock_init(&mynodepda->bte_if[i].spinlock);
mynodepda->bte_if[i].bte_cnode = cnode;
mynodepda->bte_if[i].bte_error_count = 0;
mynodepda->bte_if[i].bte_num = i;
mynodepda->bte_if[i].cleanup_active = 0;
mynodepda->bte_if[i].bh_error = 0;
}
}