c8f2518e39
smp_call_function_single handles the call to local CPU case correctly now, no need to handle this in the caller. [ tglx: arch/x86 adaptation ] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
763 lines
20 KiB
C
763 lines
20 KiB
C
/* Generic MTRR (Memory Type Range Register) driver.
|
|
|
|
Copyright (C) 1997-2000 Richard Gooch
|
|
Copyright (c) 2002 Patrick Mochel
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with this library; if not, write to the Free
|
|
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
Richard Gooch may be reached by email at rgooch@atnf.csiro.au
|
|
The postal address is:
|
|
Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
|
|
|
|
Source: "Pentium Pro Family Developer's Manual, Volume 3:
|
|
Operating System Writer's Guide" (Intel document number 242692),
|
|
section 11.11.7
|
|
|
|
This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
|
|
on 6-7 March 2002.
|
|
Source: Intel Architecture Software Developers Manual, Volume 3:
|
|
System Programming Guide; Section 9.11. (1997 edition - PPro).
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/mutex.h>
|
|
|
|
#include <asm/mtrr.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/msr.h>
|
|
#include "mtrr.h"
|
|
|
|
u32 num_var_ranges = 0;
|
|
|
|
unsigned int *usage_table;
|
|
static DEFINE_MUTEX(mtrr_mutex);
|
|
|
|
u64 size_or_mask, size_and_mask;
|
|
|
|
static struct mtrr_ops * mtrr_ops[X86_VENDOR_NUM] = {};
|
|
|
|
struct mtrr_ops * mtrr_if = NULL;
|
|
|
|
static void set_mtrr(unsigned int reg, unsigned long base,
|
|
unsigned long size, mtrr_type type);
|
|
|
|
#ifndef CONFIG_X86_64
|
|
extern int arr3_protected;
|
|
#else
|
|
#define arr3_protected 0
|
|
#endif
|
|
|
|
void set_mtrr_ops(struct mtrr_ops * ops)
|
|
{
|
|
if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
|
|
mtrr_ops[ops->vendor] = ops;
|
|
}
|
|
|
|
/* Returns non-zero if we have the write-combining memory type */
|
|
static int have_wrcomb(void)
|
|
{
|
|
struct pci_dev *dev;
|
|
u8 rev;
|
|
|
|
if ((dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL)) != NULL) {
|
|
/* ServerWorks LE chipsets < rev 6 have problems with write-combining
|
|
Don't allow it and leave room for other chipsets to be tagged */
|
|
if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
|
|
dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) {
|
|
pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev);
|
|
if (rev <= 5) {
|
|
printk(KERN_INFO "mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
|
|
pci_dev_put(dev);
|
|
return 0;
|
|
}
|
|
}
|
|
/* Intel 450NX errata # 23. Non ascending cacheline evictions to
|
|
write combining memory may resulting in data corruption */
|
|
if (dev->vendor == PCI_VENDOR_ID_INTEL &&
|
|
dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
|
|
printk(KERN_INFO "mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
|
|
pci_dev_put(dev);
|
|
return 0;
|
|
}
|
|
pci_dev_put(dev);
|
|
}
|
|
return (mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0);
|
|
}
|
|
|
|
/* This function returns the number of variable MTRRs */
|
|
static void __init set_num_var_ranges(void)
|
|
{
|
|
unsigned long config = 0, dummy;
|
|
|
|
if (use_intel()) {
|
|
rdmsr(MTRRcap_MSR, config, dummy);
|
|
} else if (is_cpu(AMD))
|
|
config = 2;
|
|
else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
|
|
config = 8;
|
|
num_var_ranges = config & 0xff;
|
|
}
|
|
|
|
static void __init init_table(void)
|
|
{
|
|
int i, max;
|
|
|
|
max = num_var_ranges;
|
|
if ((usage_table = kmalloc(max * sizeof *usage_table, GFP_KERNEL))
|
|
== NULL) {
|
|
printk(KERN_ERR "mtrr: could not allocate\n");
|
|
return;
|
|
}
|
|
for (i = 0; i < max; i++)
|
|
usage_table[i] = 1;
|
|
}
|
|
|
|
struct set_mtrr_data {
|
|
atomic_t count;
|
|
atomic_t gate;
|
|
unsigned long smp_base;
|
|
unsigned long smp_size;
|
|
unsigned int smp_reg;
|
|
mtrr_type smp_type;
|
|
};
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static void ipi_handler(void *info)
|
|
/* [SUMMARY] Synchronisation handler. Executed by "other" CPUs.
|
|
[RETURNS] Nothing.
|
|
*/
|
|
{
|
|
struct set_mtrr_data *data = info;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
|
|
atomic_dec(&data->count);
|
|
while(!atomic_read(&data->gate))
|
|
cpu_relax();
|
|
|
|
/* The master has cleared me to execute */
|
|
if (data->smp_reg != ~0U)
|
|
mtrr_if->set(data->smp_reg, data->smp_base,
|
|
data->smp_size, data->smp_type);
|
|
else
|
|
mtrr_if->set_all();
|
|
|
|
atomic_dec(&data->count);
|
|
while(atomic_read(&data->gate))
|
|
cpu_relax();
|
|
|
|
atomic_dec(&data->count);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
#endif
|
|
|
|
static inline int types_compatible(mtrr_type type1, mtrr_type type2) {
|
|
return type1 == MTRR_TYPE_UNCACHABLE ||
|
|
type2 == MTRR_TYPE_UNCACHABLE ||
|
|
(type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
|
|
(type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
|
|
}
|
|
|
|
/**
|
|
* set_mtrr - update mtrrs on all processors
|
|
* @reg: mtrr in question
|
|
* @base: mtrr base
|
|
* @size: mtrr size
|
|
* @type: mtrr type
|
|
*
|
|
* This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
|
|
*
|
|
* 1. Send IPI to do the following:
|
|
* 2. Disable Interrupts
|
|
* 3. Wait for all procs to do so
|
|
* 4. Enter no-fill cache mode
|
|
* 5. Flush caches
|
|
* 6. Clear PGE bit
|
|
* 7. Flush all TLBs
|
|
* 8. Disable all range registers
|
|
* 9. Update the MTRRs
|
|
* 10. Enable all range registers
|
|
* 11. Flush all TLBs and caches again
|
|
* 12. Enter normal cache mode and reenable caching
|
|
* 13. Set PGE
|
|
* 14. Wait for buddies to catch up
|
|
* 15. Enable interrupts.
|
|
*
|
|
* What does that mean for us? Well, first we set data.count to the number
|
|
* of CPUs. As each CPU disables interrupts, it'll decrement it once. We wait
|
|
* until it hits 0 and proceed. We set the data.gate flag and reset data.count.
|
|
* Meanwhile, they are waiting for that flag to be set. Once it's set, each
|
|
* CPU goes through the transition of updating MTRRs. The CPU vendors may each do it
|
|
* differently, so we call mtrr_if->set() callback and let them take care of it.
|
|
* When they're done, they again decrement data->count and wait for data.gate to
|
|
* be reset.
|
|
* When we finish, we wait for data.count to hit 0 and toggle the data.gate flag.
|
|
* Everyone then enables interrupts and we all continue on.
|
|
*
|
|
* Note that the mechanism is the same for UP systems, too; all the SMP stuff
|
|
* becomes nops.
|
|
*/
|
|
static void set_mtrr(unsigned int reg, unsigned long base,
|
|
unsigned long size, mtrr_type type)
|
|
{
|
|
struct set_mtrr_data data;
|
|
unsigned long flags;
|
|
|
|
data.smp_reg = reg;
|
|
data.smp_base = base;
|
|
data.smp_size = size;
|
|
data.smp_type = type;
|
|
atomic_set(&data.count, num_booting_cpus() - 1);
|
|
/* make sure data.count is visible before unleashing other CPUs */
|
|
smp_wmb();
|
|
atomic_set(&data.gate,0);
|
|
|
|
/* Start the ball rolling on other CPUs */
|
|
if (smp_call_function(ipi_handler, &data, 1, 0) != 0)
|
|
panic("mtrr: timed out waiting for other CPUs\n");
|
|
|
|
local_irq_save(flags);
|
|
|
|
while(atomic_read(&data.count))
|
|
cpu_relax();
|
|
|
|
/* ok, reset count and toggle gate */
|
|
atomic_set(&data.count, num_booting_cpus() - 1);
|
|
smp_wmb();
|
|
atomic_set(&data.gate,1);
|
|
|
|
/* do our MTRR business */
|
|
|
|
/* HACK!
|
|
* We use this same function to initialize the mtrrs on boot.
|
|
* The state of the boot cpu's mtrrs has been saved, and we want
|
|
* to replicate across all the APs.
|
|
* If we're doing that @reg is set to something special...
|
|
*/
|
|
if (reg != ~0U)
|
|
mtrr_if->set(reg,base,size,type);
|
|
|
|
/* wait for the others */
|
|
while(atomic_read(&data.count))
|
|
cpu_relax();
|
|
|
|
atomic_set(&data.count, num_booting_cpus() - 1);
|
|
smp_wmb();
|
|
atomic_set(&data.gate,0);
|
|
|
|
/*
|
|
* Wait here for everyone to have seen the gate change
|
|
* So we're the last ones to touch 'data'
|
|
*/
|
|
while(atomic_read(&data.count))
|
|
cpu_relax();
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/**
|
|
* mtrr_add_page - Add a memory type region
|
|
* @base: Physical base address of region in pages (in units of 4 kB!)
|
|
* @size: Physical size of region in pages (4 kB)
|
|
* @type: Type of MTRR desired
|
|
* @increment: If this is true do usage counting on the region
|
|
*
|
|
* Memory type region registers control the caching on newer Intel and
|
|
* non Intel processors. This function allows drivers to request an
|
|
* MTRR is added. The details and hardware specifics of each processor's
|
|
* implementation are hidden from the caller, but nevertheless the
|
|
* caller should expect to need to provide a power of two size on an
|
|
* equivalent power of two boundary.
|
|
*
|
|
* If the region cannot be added either because all regions are in use
|
|
* or the CPU cannot support it a negative value is returned. On success
|
|
* the register number for this entry is returned, but should be treated
|
|
* as a cookie only.
|
|
*
|
|
* On a multiprocessor machine the changes are made to all processors.
|
|
* This is required on x86 by the Intel processors.
|
|
*
|
|
* The available types are
|
|
*
|
|
* %MTRR_TYPE_UNCACHABLE - No caching
|
|
*
|
|
* %MTRR_TYPE_WRBACK - Write data back in bursts whenever
|
|
*
|
|
* %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
|
|
*
|
|
* %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
|
|
*
|
|
* BUGS: Needs a quiet flag for the cases where drivers do not mind
|
|
* failures and do not wish system log messages to be sent.
|
|
*/
|
|
|
|
int mtrr_add_page(unsigned long base, unsigned long size,
|
|
unsigned int type, char increment)
|
|
{
|
|
int i, replace, error;
|
|
mtrr_type ltype;
|
|
unsigned long lbase, lsize;
|
|
|
|
if (!mtrr_if)
|
|
return -ENXIO;
|
|
|
|
if ((error = mtrr_if->validate_add_page(base,size,type)))
|
|
return error;
|
|
|
|
if (type >= MTRR_NUM_TYPES) {
|
|
printk(KERN_WARNING "mtrr: type: %u invalid\n", type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* If the type is WC, check that this processor supports it */
|
|
if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
|
|
printk(KERN_WARNING
|
|
"mtrr: your processor doesn't support write-combining\n");
|
|
return -ENOSYS;
|
|
}
|
|
|
|
if (!size) {
|
|
printk(KERN_WARNING "mtrr: zero sized request\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (base & size_or_mask || size & size_or_mask) {
|
|
printk(KERN_WARNING "mtrr: base or size exceeds the MTRR width\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
error = -EINVAL;
|
|
replace = -1;
|
|
|
|
/* No CPU hotplug when we change MTRR entries */
|
|
lock_cpu_hotplug();
|
|
/* Search for existing MTRR */
|
|
mutex_lock(&mtrr_mutex);
|
|
for (i = 0; i < num_var_ranges; ++i) {
|
|
mtrr_if->get(i, &lbase, &lsize, <ype);
|
|
if (!lsize || base > lbase + lsize - 1 || base + size - 1 < lbase)
|
|
continue;
|
|
/* At this point we know there is some kind of overlap/enclosure */
|
|
if (base < lbase || base + size - 1 > lbase + lsize - 1) {
|
|
if (base <= lbase && base + size - 1 >= lbase + lsize - 1) {
|
|
/* New region encloses an existing region */
|
|
if (type == ltype) {
|
|
replace = replace == -1 ? i : -2;
|
|
continue;
|
|
}
|
|
else if (types_compatible(type, ltype))
|
|
continue;
|
|
}
|
|
printk(KERN_WARNING
|
|
"mtrr: 0x%lx000,0x%lx000 overlaps existing"
|
|
" 0x%lx000,0x%lx000\n", base, size, lbase,
|
|
lsize);
|
|
goto out;
|
|
}
|
|
/* New region is enclosed by an existing region */
|
|
if (ltype != type) {
|
|
if (types_compatible(type, ltype))
|
|
continue;
|
|
printk (KERN_WARNING "mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
|
|
base, size, mtrr_attrib_to_str(ltype),
|
|
mtrr_attrib_to_str(type));
|
|
goto out;
|
|
}
|
|
if (increment)
|
|
++usage_table[i];
|
|
error = i;
|
|
goto out;
|
|
}
|
|
/* Search for an empty MTRR */
|
|
i = mtrr_if->get_free_region(base, size, replace);
|
|
if (i >= 0) {
|
|
set_mtrr(i, base, size, type);
|
|
if (likely(replace < 0))
|
|
usage_table[i] = 1;
|
|
else {
|
|
usage_table[i] = usage_table[replace] + !!increment;
|
|
if (unlikely(replace != i)) {
|
|
set_mtrr(replace, 0, 0, 0);
|
|
usage_table[replace] = 0;
|
|
}
|
|
}
|
|
} else
|
|
printk(KERN_INFO "mtrr: no more MTRRs available\n");
|
|
error = i;
|
|
out:
|
|
mutex_unlock(&mtrr_mutex);
|
|
unlock_cpu_hotplug();
|
|
return error;
|
|
}
|
|
|
|
static int mtrr_check(unsigned long base, unsigned long size)
|
|
{
|
|
if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
|
|
printk(KERN_WARNING
|
|
"mtrr: size and base must be multiples of 4 kiB\n");
|
|
printk(KERN_DEBUG
|
|
"mtrr: size: 0x%lx base: 0x%lx\n", size, base);
|
|
dump_stack();
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mtrr_add - Add a memory type region
|
|
* @base: Physical base address of region
|
|
* @size: Physical size of region
|
|
* @type: Type of MTRR desired
|
|
* @increment: If this is true do usage counting on the region
|
|
*
|
|
* Memory type region registers control the caching on newer Intel and
|
|
* non Intel processors. This function allows drivers to request an
|
|
* MTRR is added. The details and hardware specifics of each processor's
|
|
* implementation are hidden from the caller, but nevertheless the
|
|
* caller should expect to need to provide a power of two size on an
|
|
* equivalent power of two boundary.
|
|
*
|
|
* If the region cannot be added either because all regions are in use
|
|
* or the CPU cannot support it a negative value is returned. On success
|
|
* the register number for this entry is returned, but should be treated
|
|
* as a cookie only.
|
|
*
|
|
* On a multiprocessor machine the changes are made to all processors.
|
|
* This is required on x86 by the Intel processors.
|
|
*
|
|
* The available types are
|
|
*
|
|
* %MTRR_TYPE_UNCACHABLE - No caching
|
|
*
|
|
* %MTRR_TYPE_WRBACK - Write data back in bursts whenever
|
|
*
|
|
* %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
|
|
*
|
|
* %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
|
|
*
|
|
* BUGS: Needs a quiet flag for the cases where drivers do not mind
|
|
* failures and do not wish system log messages to be sent.
|
|
*/
|
|
|
|
int
|
|
mtrr_add(unsigned long base, unsigned long size, unsigned int type,
|
|
char increment)
|
|
{
|
|
if (mtrr_check(base, size))
|
|
return -EINVAL;
|
|
return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
|
|
increment);
|
|
}
|
|
|
|
/**
|
|
* mtrr_del_page - delete a memory type region
|
|
* @reg: Register returned by mtrr_add
|
|
* @base: Physical base address
|
|
* @size: Size of region
|
|
*
|
|
* If register is supplied then base and size are ignored. This is
|
|
* how drivers should call it.
|
|
*
|
|
* Releases an MTRR region. If the usage count drops to zero the
|
|
* register is freed and the region returns to default state.
|
|
* On success the register is returned, on failure a negative error
|
|
* code.
|
|
*/
|
|
|
|
int mtrr_del_page(int reg, unsigned long base, unsigned long size)
|
|
{
|
|
int i, max;
|
|
mtrr_type ltype;
|
|
unsigned long lbase, lsize;
|
|
int error = -EINVAL;
|
|
|
|
if (!mtrr_if)
|
|
return -ENXIO;
|
|
|
|
max = num_var_ranges;
|
|
/* No CPU hotplug when we change MTRR entries */
|
|
lock_cpu_hotplug();
|
|
mutex_lock(&mtrr_mutex);
|
|
if (reg < 0) {
|
|
/* Search for existing MTRR */
|
|
for (i = 0; i < max; ++i) {
|
|
mtrr_if->get(i, &lbase, &lsize, <ype);
|
|
if (lbase == base && lsize == size) {
|
|
reg = i;
|
|
break;
|
|
}
|
|
}
|
|
if (reg < 0) {
|
|
printk(KERN_DEBUG "mtrr: no MTRR for %lx000,%lx000 found\n", base,
|
|
size);
|
|
goto out;
|
|
}
|
|
}
|
|
if (reg >= max) {
|
|
printk(KERN_WARNING "mtrr: register: %d too big\n", reg);
|
|
goto out;
|
|
}
|
|
if (is_cpu(CYRIX) && !use_intel()) {
|
|
if ((reg == 3) && arr3_protected) {
|
|
printk(KERN_WARNING "mtrr: ARR3 cannot be changed\n");
|
|
goto out;
|
|
}
|
|
}
|
|
mtrr_if->get(reg, &lbase, &lsize, <ype);
|
|
if (lsize < 1) {
|
|
printk(KERN_WARNING "mtrr: MTRR %d not used\n", reg);
|
|
goto out;
|
|
}
|
|
if (usage_table[reg] < 1) {
|
|
printk(KERN_WARNING "mtrr: reg: %d has count=0\n", reg);
|
|
goto out;
|
|
}
|
|
if (--usage_table[reg] < 1)
|
|
set_mtrr(reg, 0, 0, 0);
|
|
error = reg;
|
|
out:
|
|
mutex_unlock(&mtrr_mutex);
|
|
unlock_cpu_hotplug();
|
|
return error;
|
|
}
|
|
/**
|
|
* mtrr_del - delete a memory type region
|
|
* @reg: Register returned by mtrr_add
|
|
* @base: Physical base address
|
|
* @size: Size of region
|
|
*
|
|
* If register is supplied then base and size are ignored. This is
|
|
* how drivers should call it.
|
|
*
|
|
* Releases an MTRR region. If the usage count drops to zero the
|
|
* register is freed and the region returns to default state.
|
|
* On success the register is returned, on failure a negative error
|
|
* code.
|
|
*/
|
|
|
|
int
|
|
mtrr_del(int reg, unsigned long base, unsigned long size)
|
|
{
|
|
if (mtrr_check(base, size))
|
|
return -EINVAL;
|
|
return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
|
|
}
|
|
|
|
EXPORT_SYMBOL(mtrr_add);
|
|
EXPORT_SYMBOL(mtrr_del);
|
|
|
|
/* HACK ALERT!
|
|
* These should be called implicitly, but we can't yet until all the initcall
|
|
* stuff is done...
|
|
*/
|
|
extern void amd_init_mtrr(void);
|
|
extern void cyrix_init_mtrr(void);
|
|
extern void centaur_init_mtrr(void);
|
|
|
|
static void __init init_ifs(void)
|
|
{
|
|
#ifndef CONFIG_X86_64
|
|
amd_init_mtrr();
|
|
cyrix_init_mtrr();
|
|
centaur_init_mtrr();
|
|
#endif
|
|
}
|
|
|
|
/* The suspend/resume methods are only for CPU without MTRR. CPU using generic
|
|
* MTRR driver doesn't require this
|
|
*/
|
|
struct mtrr_value {
|
|
mtrr_type ltype;
|
|
unsigned long lbase;
|
|
unsigned long lsize;
|
|
};
|
|
|
|
static struct mtrr_value * mtrr_state;
|
|
|
|
static int mtrr_save(struct sys_device * sysdev, pm_message_t state)
|
|
{
|
|
int i;
|
|
int size = num_var_ranges * sizeof(struct mtrr_value);
|
|
|
|
mtrr_state = kzalloc(size,GFP_ATOMIC);
|
|
if (!mtrr_state)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < num_var_ranges; i++) {
|
|
mtrr_if->get(i,
|
|
&mtrr_state[i].lbase,
|
|
&mtrr_state[i].lsize,
|
|
&mtrr_state[i].ltype);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int mtrr_restore(struct sys_device * sysdev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num_var_ranges; i++) {
|
|
if (mtrr_state[i].lsize)
|
|
set_mtrr(i,
|
|
mtrr_state[i].lbase,
|
|
mtrr_state[i].lsize,
|
|
mtrr_state[i].ltype);
|
|
}
|
|
kfree(mtrr_state);
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
static struct sysdev_driver mtrr_sysdev_driver = {
|
|
.suspend = mtrr_save,
|
|
.resume = mtrr_restore,
|
|
};
|
|
|
|
|
|
/**
|
|
* mtrr_bp_init - initialize mtrrs on the boot CPU
|
|
*
|
|
* This needs to be called early; before any of the other CPUs are
|
|
* initialized (i.e. before smp_init()).
|
|
*
|
|
*/
|
|
void __init mtrr_bp_init(void)
|
|
{
|
|
init_ifs();
|
|
|
|
if (cpu_has_mtrr) {
|
|
mtrr_if = &generic_mtrr_ops;
|
|
size_or_mask = 0xff000000; /* 36 bits */
|
|
size_and_mask = 0x00f00000;
|
|
|
|
/* This is an AMD specific MSR, but we assume(hope?) that
|
|
Intel will implement it to when they extend the address
|
|
bus of the Xeon. */
|
|
if (cpuid_eax(0x80000000) >= 0x80000008) {
|
|
u32 phys_addr;
|
|
phys_addr = cpuid_eax(0x80000008) & 0xff;
|
|
/* CPUID workaround for Intel 0F33/0F34 CPU */
|
|
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
|
|
boot_cpu_data.x86 == 0xF &&
|
|
boot_cpu_data.x86_model == 0x3 &&
|
|
(boot_cpu_data.x86_mask == 0x3 ||
|
|
boot_cpu_data.x86_mask == 0x4))
|
|
phys_addr = 36;
|
|
|
|
size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1);
|
|
size_and_mask = ~size_or_mask & 0xfffff00000ULL;
|
|
} else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
|
|
boot_cpu_data.x86 == 6) {
|
|
/* VIA C* family have Intel style MTRRs, but
|
|
don't support PAE */
|
|
size_or_mask = 0xfff00000; /* 32 bits */
|
|
size_and_mask = 0;
|
|
}
|
|
} else {
|
|
switch (boot_cpu_data.x86_vendor) {
|
|
case X86_VENDOR_AMD:
|
|
if (cpu_has_k6_mtrr) {
|
|
/* Pre-Athlon (K6) AMD CPU MTRRs */
|
|
mtrr_if = mtrr_ops[X86_VENDOR_AMD];
|
|
size_or_mask = 0xfff00000; /* 32 bits */
|
|
size_and_mask = 0;
|
|
}
|
|
break;
|
|
case X86_VENDOR_CENTAUR:
|
|
if (cpu_has_centaur_mcr) {
|
|
mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
|
|
size_or_mask = 0xfff00000; /* 32 bits */
|
|
size_and_mask = 0;
|
|
}
|
|
break;
|
|
case X86_VENDOR_CYRIX:
|
|
if (cpu_has_cyrix_arr) {
|
|
mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
|
|
size_or_mask = 0xfff00000; /* 32 bits */
|
|
size_and_mask = 0;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (mtrr_if) {
|
|
set_num_var_ranges();
|
|
init_table();
|
|
if (use_intel())
|
|
get_mtrr_state();
|
|
}
|
|
}
|
|
|
|
void mtrr_ap_init(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!mtrr_if || !use_intel())
|
|
return;
|
|
/*
|
|
* Ideally we should hold mtrr_mutex here to avoid mtrr entries changed,
|
|
* but this routine will be called in cpu boot time, holding the lock
|
|
* breaks it. This routine is called in two cases: 1.very earily time
|
|
* of software resume, when there absolutely isn't mtrr entry changes;
|
|
* 2.cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug lock to
|
|
* prevent mtrr entry changes
|
|
*/
|
|
local_irq_save(flags);
|
|
|
|
mtrr_if->set_all();
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/**
|
|
* Save current fixed-range MTRR state of the BSP
|
|
*/
|
|
void mtrr_save_state(void)
|
|
{
|
|
smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1, 1);
|
|
}
|
|
|
|
static int __init mtrr_init_finialize(void)
|
|
{
|
|
if (!mtrr_if)
|
|
return 0;
|
|
if (use_intel())
|
|
mtrr_state_warn();
|
|
else {
|
|
/* The CPUs haven't MTRR and seemes not support SMP. They have
|
|
* specific drivers, we use a tricky method to support
|
|
* suspend/resume for them.
|
|
* TBD: is there any system with such CPU which supports
|
|
* suspend/resume? if no, we should remove the code.
|
|
*/
|
|
sysdev_driver_register(&cpu_sysdev_class,
|
|
&mtrr_sysdev_driver);
|
|
}
|
|
return 0;
|
|
}
|
|
subsys_initcall(mtrr_init_finialize);
|