android_kernel_xiaomi_sm8350/include/asm-m68knommu/bitops.h
Jiri Slaby 0624517d80 forbid asm/bitops.h direct inclusion
forbid asm/bitops.h direct inclusion

Because of compile errors that may occur after bit changes if asm/bitops.h is
included directly without e.g.  linux/kernel.h which includes linux/bitops.h,
forbid direct inclusion of asm/bitops.h.  Thanks to Adrian Bunk.

Signed-off-by: Jiri Slaby <jirislaby@gmail.com>
Cc: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 11:53:41 -07:00

305 lines
7.2 KiB
C

#ifndef _M68KNOMMU_BITOPS_H
#define _M68KNOMMU_BITOPS_H
/*
* Copyright 1992, Linus Torvalds.
*/
#include <linux/compiler.h>
#include <asm/byteorder.h> /* swab32 */
#ifdef __KERNEL__
#ifndef _LINUX_BITOPS_H
#error only <linux/bitops.h> can be included directly
#endif
#include <asm-generic/bitops/ffs.h>
#include <asm-generic/bitops/__ffs.h>
#include <asm-generic/bitops/sched.h>
#include <asm-generic/bitops/ffz.h>
static __inline__ void set_bit(int nr, volatile unsigned long * addr)
{
#ifdef CONFIG_COLDFIRE
__asm__ __volatile__ ("lea %0,%%a0; bset %1,(%%a0)"
: "+m" (((volatile char *)addr)[(nr^31) >> 3])
: "d" (nr)
: "%a0", "cc");
#else
__asm__ __volatile__ ("bset %1,%0"
: "+m" (((volatile char *)addr)[(nr^31) >> 3])
: "di" (nr)
: "cc");
#endif
}
#define __set_bit(nr, addr) set_bit(nr, addr)
/*
* clear_bit() doesn't provide any barrier for the compiler.
*/
#define smp_mb__before_clear_bit() barrier()
#define smp_mb__after_clear_bit() barrier()
static __inline__ void clear_bit(int nr, volatile unsigned long * addr)
{
#ifdef CONFIG_COLDFIRE
__asm__ __volatile__ ("lea %0,%%a0; bclr %1,(%%a0)"
: "+m" (((volatile char *)addr)[(nr^31) >> 3])
: "d" (nr)
: "%a0", "cc");
#else
__asm__ __volatile__ ("bclr %1,%0"
: "+m" (((volatile char *)addr)[(nr^31) >> 3])
: "di" (nr)
: "cc");
#endif
}
#define __clear_bit(nr, addr) clear_bit(nr, addr)
static __inline__ void change_bit(int nr, volatile unsigned long * addr)
{
#ifdef CONFIG_COLDFIRE
__asm__ __volatile__ ("lea %0,%%a0; bchg %1,(%%a0)"
: "+m" (((volatile char *)addr)[(nr^31) >> 3])
: "d" (nr)
: "%a0", "cc");
#else
__asm__ __volatile__ ("bchg %1,%0"
: "+m" (((volatile char *)addr)[(nr^31) >> 3])
: "di" (nr)
: "cc");
#endif
}
#define __change_bit(nr, addr) change_bit(nr, addr)
static __inline__ int test_and_set_bit(int nr, volatile unsigned long * addr)
{
char retval;
#ifdef CONFIG_COLDFIRE
__asm__ __volatile__ ("lea %1,%%a0; bset %2,(%%a0); sne %0"
: "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3])
: "d" (nr)
: "%a0");
#else
__asm__ __volatile__ ("bset %2,%1; sne %0"
: "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3])
: "di" (nr)
/* No clobber */);
#endif
return retval;
}
#define __test_and_set_bit(nr, addr) test_and_set_bit(nr, addr)
static __inline__ int test_and_clear_bit(int nr, volatile unsigned long * addr)
{
char retval;
#ifdef CONFIG_COLDFIRE
__asm__ __volatile__ ("lea %1,%%a0; bclr %2,(%%a0); sne %0"
: "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3])
: "d" (nr)
: "%a0");
#else
__asm__ __volatile__ ("bclr %2,%1; sne %0"
: "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3])
: "di" (nr)
/* No clobber */);
#endif
return retval;
}
#define __test_and_clear_bit(nr, addr) test_and_clear_bit(nr, addr)
static __inline__ int test_and_change_bit(int nr, volatile unsigned long * addr)
{
char retval;
#ifdef CONFIG_COLDFIRE
__asm__ __volatile__ ("lea %1,%%a0\n\tbchg %2,(%%a0)\n\tsne %0"
: "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3])
: "d" (nr)
: "%a0");
#else
__asm__ __volatile__ ("bchg %2,%1; sne %0"
: "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3])
: "di" (nr)
/* No clobber */);
#endif
return retval;
}
#define __test_and_change_bit(nr, addr) test_and_change_bit(nr, addr)
/*
* This routine doesn't need to be atomic.
*/
static __inline__ int __constant_test_bit(int nr, const volatile unsigned long * addr)
{
return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
}
static __inline__ int __test_bit(int nr, const volatile unsigned long * addr)
{
int * a = (int *) addr;
int mask;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
return ((mask & *a) != 0);
}
#define test_bit(nr,addr) \
(__builtin_constant_p(nr) ? \
__constant_test_bit((nr),(addr)) : \
__test_bit((nr),(addr)))
#include <asm-generic/bitops/find.h>
#include <asm-generic/bitops/hweight.h>
#include <asm-generic/bitops/lock.h>
static __inline__ int ext2_set_bit(int nr, volatile void * addr)
{
char retval;
#ifdef CONFIG_COLDFIRE
__asm__ __volatile__ ("lea %1,%%a0; bset %2,(%%a0); sne %0"
: "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3])
: "d" (nr)
: "%a0");
#else
__asm__ __volatile__ ("bset %2,%1; sne %0"
: "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3])
: "di" (nr)
/* No clobber */);
#endif
return retval;
}
static __inline__ int ext2_clear_bit(int nr, volatile void * addr)
{
char retval;
#ifdef CONFIG_COLDFIRE
__asm__ __volatile__ ("lea %1,%%a0; bclr %2,(%%a0); sne %0"
: "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3])
: "d" (nr)
: "%a0");
#else
__asm__ __volatile__ ("bclr %2,%1; sne %0"
: "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3])
: "di" (nr)
/* No clobber */);
#endif
return retval;
}
#define ext2_set_bit_atomic(lock, nr, addr) \
({ \
int ret; \
spin_lock(lock); \
ret = ext2_set_bit((nr), (addr)); \
spin_unlock(lock); \
ret; \
})
#define ext2_clear_bit_atomic(lock, nr, addr) \
({ \
int ret; \
spin_lock(lock); \
ret = ext2_clear_bit((nr), (addr)); \
spin_unlock(lock); \
ret; \
})
static __inline__ int ext2_test_bit(int nr, const volatile void * addr)
{
char retval;
#ifdef CONFIG_COLDFIRE
__asm__ __volatile__ ("lea %1,%%a0; btst %2,(%%a0); sne %0"
: "=d" (retval)
: "m" (((const volatile char *)addr)[nr >> 3]), "d" (nr)
: "%a0");
#else
__asm__ __volatile__ ("btst %2,%1; sne %0"
: "=d" (retval)
: "m" (((const volatile char *)addr)[nr >> 3]), "di" (nr)
/* No clobber */);
#endif
return retval;
}
#define ext2_find_first_zero_bit(addr, size) \
ext2_find_next_zero_bit((addr), (size), 0)
static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
unsigned long result = offset & ~31UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if(offset) {
/* We hold the little endian value in tmp, but then the
* shift is illegal. So we could keep a big endian value
* in tmp, like this:
*
* tmp = __swab32(*(p++));
* tmp |= ~0UL >> (32-offset);
*
* but this would decrease preformance, so we change the
* shift:
*/
tmp = *(p++);
tmp |= __swab32(~0UL >> (32-offset));
if(size < 32)
goto found_first;
if(~tmp)
goto found_middle;
size -= 32;
result += 32;
}
while(size & ~31UL) {
if(~(tmp = *(p++)))
goto found_middle;
result += 32;
size -= 32;
}
if(!size)
return result;
tmp = *p;
found_first:
/* tmp is little endian, so we would have to swab the shift,
* see above. But then we have to swab tmp below for ffz, so
* we might as well do this here.
*/
return result + ffz(__swab32(tmp) | (~0UL << size));
found_middle:
return result + ffz(__swab32(tmp));
}
#include <asm-generic/bitops/minix.h>
#endif /* __KERNEL__ */
#include <asm-generic/bitops/fls.h>
#include <asm-generic/bitops/fls64.h>
#endif /* _M68KNOMMU_BITOPS_H */