android_kernel_xiaomi_sm8350/drivers/media/dvb/frontends/dib3000mc.c
Mario Rossi a821e990e4 V4L/DVB (4955): Fix autosearch index
After rewriting the driver the wrong autosearch index was used when
COFDM-parameter needed to be detected.
Thanks to Mario Rossi who found it.

Signed-off-by: Mario Rossi <mariofutire@googlemail.com>
Signed-off-by: Patrick Boettcher <pb@linuxtv.org>
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2006-12-27 10:23:24 -02:00

871 lines
24 KiB
C

/*
* Driver for DiBcom DiB3000MC/P-demodulator.
*
* Copyright (C) 2004-6 DiBcom (http://www.dibcom.fr/)
* Copyright (C) 2004-5 Patrick Boettcher (patrick.boettcher@desy.de)
*
* This code is partially based on the previous dib3000mc.c .
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, version 2.
*/
#include <linux/kernel.h>
#include <linux/i2c.h>
//#include <linux/init.h>
//#include <linux/delay.h>
//#include <linux/string.h>
//#include <linux/slab.h>
#include "dvb_frontend.h"
#include "dib3000mc.h"
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB3000MC/P:"); printk(args); } } while (0)
struct dib3000mc_state {
struct dvb_frontend demod;
struct dib3000mc_config *cfg;
u8 i2c_addr;
struct i2c_adapter *i2c_adap;
struct dibx000_i2c_master i2c_master;
u32 timf;
fe_bandwidth_t current_bandwidth;
u16 dev_id;
};
static u16 dib3000mc_read_word(struct dib3000mc_state *state, u16 reg)
{
u8 wb[2] = { (reg >> 8) | 0x80, reg & 0xff };
u8 rb[2];
struct i2c_msg msg[2] = {
{ .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 },
{ .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 },
};
if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
dprintk("i2c read error on %d\n",reg);
return (rb[0] << 8) | rb[1];
}
static int dib3000mc_write_word(struct dib3000mc_state *state, u16 reg, u16 val)
{
u8 b[4] = {
(reg >> 8) & 0xff, reg & 0xff,
(val >> 8) & 0xff, val & 0xff,
};
struct i2c_msg msg = {
.addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4
};
return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
}
static int dib3000mc_identify(struct dib3000mc_state *state)
{
u16 value;
if ((value = dib3000mc_read_word(state, 1025)) != 0x01b3) {
dprintk("-E- DiB3000MC/P: wrong Vendor ID (read=0x%x)\n",value);
return -EREMOTEIO;
}
value = dib3000mc_read_word(state, 1026);
if (value != 0x3001 && value != 0x3002) {
dprintk("-E- DiB3000MC/P: wrong Device ID (%x)\n",value);
return -EREMOTEIO;
}
state->dev_id = value;
dprintk("-I- found DiB3000MC/P: %x\n",state->dev_id);
return 0;
}
static int dib3000mc_set_timing(struct dib3000mc_state *state, s16 nfft, u8 bw, u8 update_offset)
{
u32 timf;
if (state->timf == 0) {
timf = 1384402; // default value for 8MHz
if (update_offset)
msleep(200); // first time we do an update
} else
timf = state->timf;
timf *= (BW_INDEX_TO_KHZ(bw) / 1000);
if (update_offset) {
s16 tim_offs = dib3000mc_read_word(state, 416);
if (tim_offs & 0x2000)
tim_offs -= 0x4000;
if (nfft == 0)
tim_offs *= 4;
timf += tim_offs;
state->timf = timf / (BW_INDEX_TO_KHZ(bw) / 1000);
}
dprintk("timf: %d\n", timf);
dib3000mc_write_word(state, 23, timf >> 16);
dib3000mc_write_word(state, 24, timf & 0xffff);
return 0;
}
static int dib3000mc_setup_pwm_state(struct dib3000mc_state *state)
{
u16 reg_51, reg_52 = state->cfg->agc->setup & 0xfefb;
if (state->cfg->pwm3_inversion) {
reg_51 = (2 << 14) | (0 << 10) | (7 << 6) | (2 << 2) | (2 << 0);
reg_52 |= (1 << 2);
} else {
reg_51 = (2 << 14) | (4 << 10) | (7 << 6) | (2 << 2) | (2 << 0);
reg_52 |= (1 << 8);
}
dib3000mc_write_word(state, 51, reg_51);
dib3000mc_write_word(state, 52, reg_52);
if (state->cfg->use_pwm3)
dib3000mc_write_word(state, 245, (1 << 3) | (1 << 0));
else
dib3000mc_write_word(state, 245, 0);
dib3000mc_write_word(state, 1040, 0x3);
return 0;
}
static int dib3000mc_set_output_mode(struct dib3000mc_state *state, int mode)
{
int ret = 0;
u16 fifo_threshold = 1792;
u16 outreg = 0;
u16 outmode = 0;
u16 elecout = 1;
u16 smo_reg = dib3000mc_read_word(state, 206) & 0x0010; /* keep the pid_parse bit */
dprintk("-I- Setting output mode for demod %p to %d\n",
&state->demod, mode);
switch (mode) {
case OUTMODE_HIGH_Z: // disable
elecout = 0;
break;
case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
outmode = 0;
break;
case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
outmode = 1;
break;
case OUTMODE_MPEG2_SERIAL: // STBs with serial input
outmode = 2;
break;
case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
elecout = 3;
/*ADDR @ 206 :
P_smo_error_discard [1;6:6] = 0
P_smo_rs_discard [1;5:5] = 0
P_smo_pid_parse [1;4:4] = 0
P_smo_fifo_flush [1;3:3] = 0
P_smo_mode [2;2:1] = 11
P_smo_ovf_prot [1;0:0] = 0
*/
smo_reg |= 3 << 1;
fifo_threshold = 512;
outmode = 5;
break;
case OUTMODE_DIVERSITY:
outmode = 4;
elecout = 1;
break;
default:
dprintk("Unhandled output_mode passed to be set for demod %p\n",&state->demod);
outmode = 0;
break;
}
if ((state->cfg->output_mpeg2_in_188_bytes))
smo_reg |= (1 << 5); // P_smo_rs_discard [1;5:5] = 1
outreg = dib3000mc_read_word(state, 244) & 0x07FF;
outreg |= (outmode << 11);
ret |= dib3000mc_write_word(state, 244, outreg);
ret |= dib3000mc_write_word(state, 206, smo_reg); /*smo_ mode*/
ret |= dib3000mc_write_word(state, 207, fifo_threshold); /* synchronous fread */
ret |= dib3000mc_write_word(state, 1040, elecout); /* P_out_cfg */
return ret;
}
static int dib3000mc_set_bandwidth(struct dvb_frontend *demod, u8 bw)
{
struct dib3000mc_state *state = demod->demodulator_priv;
u16 bw_cfg[6] = { 0 };
u16 imp_bw_cfg[3] = { 0 };
u16 reg;
/* settings here are for 27.7MHz */
switch (bw) {
case BANDWIDTH_8_MHZ:
bw_cfg[0] = 0x0019; bw_cfg[1] = 0x5c30; bw_cfg[2] = 0x0054; bw_cfg[3] = 0x88a0; bw_cfg[4] = 0x01a6; bw_cfg[5] = 0xab20;
imp_bw_cfg[0] = 0x04db; imp_bw_cfg[1] = 0x00db; imp_bw_cfg[2] = 0x00b7;
break;
case BANDWIDTH_7_MHZ:
bw_cfg[0] = 0x001c; bw_cfg[1] = 0xfba5; bw_cfg[2] = 0x0060; bw_cfg[3] = 0x9c25; bw_cfg[4] = 0x01e3; bw_cfg[5] = 0x0cb7;
imp_bw_cfg[0] = 0x04c0; imp_bw_cfg[1] = 0x00c0; imp_bw_cfg[2] = 0x00a0;
break;
case BANDWIDTH_6_MHZ:
bw_cfg[0] = 0x0021; bw_cfg[1] = 0xd040; bw_cfg[2] = 0x0070; bw_cfg[3] = 0xb62b; bw_cfg[4] = 0x0233; bw_cfg[5] = 0x8ed5;
imp_bw_cfg[0] = 0x04a5; imp_bw_cfg[1] = 0x00a5; imp_bw_cfg[2] = 0x0089;
break;
case 255 /* BANDWIDTH_5_MHZ */:
bw_cfg[0] = 0x0028; bw_cfg[1] = 0x9380; bw_cfg[2] = 0x0087; bw_cfg[3] = 0x4100; bw_cfg[4] = 0x02a4; bw_cfg[5] = 0x4500;
imp_bw_cfg[0] = 0x0489; imp_bw_cfg[1] = 0x0089; imp_bw_cfg[2] = 0x0072;
break;
default: return -EINVAL;
}
for (reg = 6; reg < 12; reg++)
dib3000mc_write_word(state, reg, bw_cfg[reg - 6]);
dib3000mc_write_word(state, 12, 0x0000);
dib3000mc_write_word(state, 13, 0x03e8);
dib3000mc_write_word(state, 14, 0x0000);
dib3000mc_write_word(state, 15, 0x03f2);
dib3000mc_write_word(state, 16, 0x0001);
dib3000mc_write_word(state, 17, 0xb0d0);
// P_sec_len
dib3000mc_write_word(state, 18, 0x0393);
dib3000mc_write_word(state, 19, 0x8700);
for (reg = 55; reg < 58; reg++)
dib3000mc_write_word(state, reg, imp_bw_cfg[reg - 55]);
// Timing configuration
dib3000mc_set_timing(state, 0, bw, 0);
return 0;
}
static u16 impulse_noise_val[29] =
{
0x38, 0x6d9, 0x3f28, 0x7a7, 0x3a74, 0x196, 0x32a, 0x48c, 0x3ffe, 0x7f3,
0x2d94, 0x76, 0x53d, 0x3ff8, 0x7e3, 0x3320, 0x76, 0x5b3, 0x3feb, 0x7d2,
0x365e, 0x76, 0x48c, 0x3ffe, 0x5b3, 0x3feb, 0x76, 0x0000, 0xd
};
static void dib3000mc_set_impulse_noise(struct dib3000mc_state *state, u8 mode, s16 nfft)
{
u16 i;
for (i = 58; i < 87; i++)
dib3000mc_write_word(state, i, impulse_noise_val[i-58]);
if (nfft == 1) {
dib3000mc_write_word(state, 58, 0x3b);
dib3000mc_write_word(state, 84, 0x00);
dib3000mc_write_word(state, 85, 0x8200);
}
dib3000mc_write_word(state, 34, 0x1294);
dib3000mc_write_word(state, 35, 0x1ff8);
if (mode == 1)
dib3000mc_write_word(state, 55, dib3000mc_read_word(state, 55) | (1 << 10));
}
static int dib3000mc_init(struct dvb_frontend *demod)
{
struct dib3000mc_state *state = demod->demodulator_priv;
struct dibx000_agc_config *agc = state->cfg->agc;
// Restart Configuration
dib3000mc_write_word(state, 1027, 0x8000);
dib3000mc_write_word(state, 1027, 0x0000);
// power up the demod + mobility configuration
dib3000mc_write_word(state, 140, 0x0000);
dib3000mc_write_word(state, 1031, 0);
if (state->cfg->mobile_mode) {
dib3000mc_write_word(state, 139, 0x0000);
dib3000mc_write_word(state, 141, 0x0000);
dib3000mc_write_word(state, 175, 0x0002);
dib3000mc_write_word(state, 1032, 0x0000);
} else {
dib3000mc_write_word(state, 139, 0x0001);
dib3000mc_write_word(state, 141, 0x0000);
dib3000mc_write_word(state, 175, 0x0000);
dib3000mc_write_word(state, 1032, 0x012C);
}
dib3000mc_write_word(state, 1033, 0x0000);
// P_clk_cfg
dib3000mc_write_word(state, 1037, 0x3130);
// other configurations
// P_ctrl_sfreq
dib3000mc_write_word(state, 33, (5 << 0));
dib3000mc_write_word(state, 88, (1 << 10) | (0x10 << 0));
// Phase noise control
// P_fft_phacor_inh, P_fft_phacor_cpe, P_fft_powrange
dib3000mc_write_word(state, 99, (1 << 9) | (0x20 << 0));
if (state->cfg->phase_noise_mode == 0)
dib3000mc_write_word(state, 111, 0x00);
else
dib3000mc_write_word(state, 111, 0x02);
// P_agc_global
dib3000mc_write_word(state, 50, 0x8000);
// agc setup misc
dib3000mc_setup_pwm_state(state);
// P_agc_counter_lock
dib3000mc_write_word(state, 53, 0x87);
// P_agc_counter_unlock
dib3000mc_write_word(state, 54, 0x87);
/* agc */
dib3000mc_write_word(state, 36, state->cfg->max_time);
dib3000mc_write_word(state, 37, (state->cfg->agc_command1 << 13) | (state->cfg->agc_command2 << 12) | (0x1d << 0));
dib3000mc_write_word(state, 38, state->cfg->pwm3_value);
dib3000mc_write_word(state, 39, state->cfg->ln_adc_level);
// set_agc_loop_Bw
dib3000mc_write_word(state, 40, 0x0179);
dib3000mc_write_word(state, 41, 0x03f0);
dib3000mc_write_word(state, 42, agc->agc1_max);
dib3000mc_write_word(state, 43, agc->agc1_min);
dib3000mc_write_word(state, 44, agc->agc2_max);
dib3000mc_write_word(state, 45, agc->agc2_min);
dib3000mc_write_word(state, 46, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
dib3000mc_write_word(state, 47, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
dib3000mc_write_word(state, 48, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
dib3000mc_write_word(state, 49, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
// Begin: TimeOut registers
// P_pha3_thres
dib3000mc_write_word(state, 110, 3277);
// P_timf_alpha = 6, P_corm_alpha = 6, P_corm_thres = 0x80
dib3000mc_write_word(state, 26, 0x6680);
// lock_mask0
dib3000mc_write_word(state, 1, 4);
// lock_mask1
dib3000mc_write_word(state, 2, 4);
// lock_mask2
dib3000mc_write_word(state, 3, 0x1000);
// P_search_maxtrial=1
dib3000mc_write_word(state, 5, 1);
dib3000mc_set_bandwidth(&state->demod, BANDWIDTH_8_MHZ);
// div_lock_mask
dib3000mc_write_word(state, 4, 0x814);
dib3000mc_write_word(state, 21, (1 << 9) | 0x164);
dib3000mc_write_word(state, 22, 0x463d);
// Spurious rm cfg
// P_cspu_regul, P_cspu_win_cut
dib3000mc_write_word(state, 120, 0x200f);
// P_adp_selec_monit
dib3000mc_write_word(state, 134, 0);
// Fec cfg
dib3000mc_write_word(state, 195, 0x10);
// diversity register: P_dvsy_sync_wait..
dib3000mc_write_word(state, 180, 0x2FF0);
// Impulse noise configuration
dib3000mc_set_impulse_noise(state, 0, 1);
// output mode set-up
dib3000mc_set_output_mode(state, OUTMODE_HIGH_Z);
/* close the i2c-gate */
dib3000mc_write_word(state, 769, (1 << 7) );
return 0;
}
static int dib3000mc_sleep(struct dvb_frontend *demod)
{
struct dib3000mc_state *state = demod->demodulator_priv;
dib3000mc_write_word(state, 1031, 0xFFFF);
dib3000mc_write_word(state, 1032, 0xFFFF);
dib3000mc_write_word(state, 1033, 0xFFF0);
return 0;
}
static void dib3000mc_set_adp_cfg(struct dib3000mc_state *state, s16 qam)
{
u16 cfg[4] = { 0 },reg;
switch (qam) {
case 0:
cfg[0] = 0x099a; cfg[1] = 0x7fae; cfg[2] = 0x0333; cfg[3] = 0x7ff0;
break;
case 1:
cfg[0] = 0x023d; cfg[1] = 0x7fdf; cfg[2] = 0x00a4; cfg[3] = 0x7ff0;
break;
case 2:
cfg[0] = 0x0148; cfg[1] = 0x7ff0; cfg[2] = 0x00a4; cfg[3] = 0x7ff8;
break;
}
for (reg = 129; reg < 133; reg++)
dib3000mc_write_word(state, reg, cfg[reg - 129]);
}
static void dib3000mc_set_channel_cfg(struct dib3000mc_state *state, struct dibx000_ofdm_channel *chan, u16 seq)
{
u16 tmp;
dib3000mc_set_timing(state, chan->nfft, chan->Bw, 0);
// if (boost)
// dib3000mc_write_word(state, 100, (11 << 6) + 6);
// else
dib3000mc_write_word(state, 100, (16 << 6) + 9);
dib3000mc_write_word(state, 1027, 0x0800);
dib3000mc_write_word(state, 1027, 0x0000);
//Default cfg isi offset adp
dib3000mc_write_word(state, 26, 0x6680);
dib3000mc_write_word(state, 29, 0x1273);
dib3000mc_write_word(state, 33, 5);
dib3000mc_set_adp_cfg(state, 1);
dib3000mc_write_word(state, 133, 15564);
dib3000mc_write_word(state, 12 , 0x0);
dib3000mc_write_word(state, 13 , 0x3e8);
dib3000mc_write_word(state, 14 , 0x0);
dib3000mc_write_word(state, 15 , 0x3f2);
dib3000mc_write_word(state, 93,0);
dib3000mc_write_word(state, 94,0);
dib3000mc_write_word(state, 95,0);
dib3000mc_write_word(state, 96,0);
dib3000mc_write_word(state, 97,0);
dib3000mc_write_word(state, 98,0);
dib3000mc_set_impulse_noise(state, 0, chan->nfft);
tmp = ((chan->nfft & 0x1) << 7) | (chan->guard << 5) | (chan->nqam << 3) | chan->vit_alpha;
dib3000mc_write_word(state, 0, tmp);
dib3000mc_write_word(state, 5, seq);
tmp = (chan->vit_hrch << 4) | (chan->vit_select_hp);
if (!chan->vit_hrch || (chan->vit_hrch && chan->vit_select_hp))
tmp |= chan->vit_code_rate_hp << 1;
else
tmp |= chan->vit_code_rate_lp << 1;
dib3000mc_write_word(state, 181, tmp);
// diversity synchro delay
tmp = dib3000mc_read_word(state, 180) & 0x000f;
tmp |= ((chan->nfft == 0) ? 64 : 256) * ((1 << (chan->guard)) * 3 / 2) << 4; // add 50% SFN margin
dib3000mc_write_word(state, 180, tmp);
// restart demod
tmp = dib3000mc_read_word(state, 0);
dib3000mc_write_word(state, 0, tmp | (1 << 9));
dib3000mc_write_word(state, 0, tmp);
msleep(30);
dib3000mc_set_impulse_noise(state, state->cfg->impulse_noise_mode, chan->nfft);
}
static int dib3000mc_autosearch_start(struct dvb_frontend *demod, struct dibx000_ofdm_channel *chan)
{
struct dib3000mc_state *state = demod->demodulator_priv;
u16 reg;
// u32 val;
struct dibx000_ofdm_channel fchan;
INIT_OFDM_CHANNEL(&fchan);
fchan = *chan;
/* a channel for autosearch */
fchan.nfft = 1; fchan.guard = 0; fchan.nqam = 2;
fchan.vit_alpha = 1; fchan.vit_code_rate_hp = 2; fchan.vit_code_rate_lp = 2;
fchan.vit_hrch = 0; fchan.vit_select_hp = 1;
dib3000mc_set_channel_cfg(state, &fchan, 11);
reg = dib3000mc_read_word(state, 0);
dib3000mc_write_word(state, 0, reg | (1 << 8));
dib3000mc_read_word(state, 511);
dib3000mc_write_word(state, 0, reg);
return 0;
}
static int dib3000mc_autosearch_is_irq(struct dvb_frontend *demod)
{
struct dib3000mc_state *state = demod->demodulator_priv;
u16 irq_pending = dib3000mc_read_word(state, 511);
if (irq_pending & 0x1) // failed
return 1;
if (irq_pending & 0x2) // succeeded
return 2;
return 0; // still pending
}
static int dib3000mc_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channel *ch)
{
struct dib3000mc_state *state = demod->demodulator_priv;
// ** configure demod **
dib3000mc_set_channel_cfg(state, ch, 0);
// activates isi
dib3000mc_write_word(state, 29, 0x1073);
dib3000mc_set_adp_cfg(state, (u8)ch->nqam);
if (ch->nfft == 1) {
dib3000mc_write_word(state, 26, 38528);
dib3000mc_write_word(state, 33, 8);
} else {
dib3000mc_write_word(state, 26, 30336);
dib3000mc_write_word(state, 33, 6);
}
if (dib3000mc_read_word(state, 509) & 0x80)
dib3000mc_set_timing(state, ch->nfft, ch->Bw, 1);
return 0;
}
struct i2c_adapter * dib3000mc_get_tuner_i2c_master(struct dvb_frontend *demod, int gating)
{
struct dib3000mc_state *st = demod->demodulator_priv;
return dibx000_get_i2c_adapter(&st->i2c_master, DIBX000_I2C_INTERFACE_TUNER, gating);
}
EXPORT_SYMBOL(dib3000mc_get_tuner_i2c_master);
static int dib3000mc_get_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *fep)
{
struct dib3000mc_state *state = fe->demodulator_priv;
u16 tps = dib3000mc_read_word(state,458);
fep->inversion = INVERSION_AUTO;
fep->u.ofdm.bandwidth = state->current_bandwidth;
switch ((tps >> 8) & 0x1) {
case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break;
case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break;
}
switch (tps & 0x3) {
case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break;
case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break;
case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break;
case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break;
}
switch ((tps >> 13) & 0x3) {
case 0: fep->u.ofdm.constellation = QPSK; break;
case 1: fep->u.ofdm.constellation = QAM_16; break;
case 2:
default: fep->u.ofdm.constellation = QAM_64; break;
}
/* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
/* (tps >> 12) & 0x1 == hrch is used, (tps >> 9) & 0x7 == alpha */
fep->u.ofdm.hierarchy_information = HIERARCHY_NONE;
switch ((tps >> 5) & 0x7) {
case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break;
case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break;
case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break;
case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break;
case 7:
default: fep->u.ofdm.code_rate_HP = FEC_7_8; break;
}
switch ((tps >> 2) & 0x7) {
case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break;
case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break;
case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break;
case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break;
case 7:
default: fep->u.ofdm.code_rate_LP = FEC_7_8; break;
}
return 0;
}
static int dib3000mc_set_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *fep)
{
struct dib3000mc_state *state = fe->demodulator_priv;
struct dibx000_ofdm_channel ch;
INIT_OFDM_CHANNEL(&ch);
FEP2DIB(fep,&ch);
state->current_bandwidth = fep->u.ofdm.bandwidth;
dib3000mc_set_bandwidth(fe, fep->u.ofdm.bandwidth);
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe, fep);
msleep(100);
}
if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ||
fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO ||
fep->u.ofdm.constellation == QAM_AUTO ||
fep->u.ofdm.code_rate_HP == FEC_AUTO) {
int i = 100, found;
dib3000mc_autosearch_start(fe, &ch);
do {
msleep(1);
found = dib3000mc_autosearch_is_irq(fe);
} while (found == 0 && i--);
dprintk("autosearch returns: %d\n",found);
if (found == 0 || found == 1)
return 0; // no channel found
dib3000mc_get_frontend(fe, fep);
FEP2DIB(fep,&ch);
}
/* make this a config parameter */
dib3000mc_set_output_mode(state, OUTMODE_MPEG2_FIFO);
return dib3000mc_tune(fe, &ch);
}
static int dib3000mc_read_status(struct dvb_frontend *fe, fe_status_t *stat)
{
struct dib3000mc_state *state = fe->demodulator_priv;
u16 lock = dib3000mc_read_word(state, 509);
*stat = 0;
if (lock & 0x8000)
*stat |= FE_HAS_SIGNAL;
if (lock & 0x3000)
*stat |= FE_HAS_CARRIER;
if (lock & 0x0100)
*stat |= FE_HAS_VITERBI;
if (lock & 0x0010)
*stat |= FE_HAS_SYNC;
if (lock & 0x0008)
*stat |= FE_HAS_LOCK;
return 0;
}
static int dib3000mc_read_ber(struct dvb_frontend *fe, u32 *ber)
{
struct dib3000mc_state *state = fe->demodulator_priv;
*ber = (dib3000mc_read_word(state, 500) << 16) | dib3000mc_read_word(state, 501);
return 0;
}
static int dib3000mc_read_unc_blocks(struct dvb_frontend *fe, u32 *unc)
{
struct dib3000mc_state *state = fe->demodulator_priv;
*unc = dib3000mc_read_word(state, 508);
return 0;
}
static int dib3000mc_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
struct dib3000mc_state *state = fe->demodulator_priv;
u16 val = dib3000mc_read_word(state, 392);
*strength = 65535 - val;
return 0;
}
static int dib3000mc_read_snr(struct dvb_frontend* fe, u16 *snr)
{
*snr = 0x0000;
return 0;
}
static int dib3000mc_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
{
tune->min_delay_ms = 1000;
return 0;
}
static void dib3000mc_release(struct dvb_frontend *fe)
{
struct dib3000mc_state *state = fe->demodulator_priv;
dibx000_exit_i2c_master(&state->i2c_master);
kfree(state);
}
int dib3000mc_pid_control(struct dvb_frontend *fe, int index, int pid,int onoff)
{
struct dib3000mc_state *state = fe->demodulator_priv;
dib3000mc_write_word(state, 212 + index, onoff ? (1 << 13) | pid : 0);
return 0;
}
EXPORT_SYMBOL(dib3000mc_pid_control);
int dib3000mc_pid_parse(struct dvb_frontend *fe, int onoff)
{
struct dib3000mc_state *state = fe->demodulator_priv;
u16 tmp = dib3000mc_read_word(state, 206) & ~(1 << 4);
tmp |= (onoff << 4);
return dib3000mc_write_word(state, 206, tmp);
}
EXPORT_SYMBOL(dib3000mc_pid_parse);
void dib3000mc_set_config(struct dvb_frontend *fe, struct dib3000mc_config *cfg)
{
struct dib3000mc_state *state = fe->demodulator_priv;
state->cfg = cfg;
}
EXPORT_SYMBOL(dib3000mc_set_config);
int dib3000mc_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib3000mc_config cfg[])
{
struct dib3000mc_state st = { .i2c_adap = i2c };
int k;
u8 new_addr;
static u8 DIB3000MC_I2C_ADDRESS[] = {20,22,24,26};
for (k = no_of_demods-1; k >= 0; k--) {
st.cfg = &cfg[k];
/* designated i2c address */
new_addr = DIB3000MC_I2C_ADDRESS[k];
st.i2c_addr = new_addr;
if (dib3000mc_identify(&st) != 0) {
st.i2c_addr = default_addr;
if (dib3000mc_identify(&st) != 0) {
dprintk("-E- DiB3000P/MC #%d: not identified\n", k);
return -ENODEV;
}
}
dib3000mc_set_output_mode(&st, OUTMODE_MPEG2_PAR_CONT_CLK);
// set new i2c address and force divstr (Bit 1) to value 0 (Bit 0)
dib3000mc_write_word(&st, 1024, (new_addr << 3) | 0x1);
st.i2c_addr = new_addr;
}
for (k = 0; k < no_of_demods; k++) {
st.cfg = &cfg[k];
st.i2c_addr = DIB3000MC_I2C_ADDRESS[k];
dib3000mc_write_word(&st, 1024, st.i2c_addr << 3);
/* turn off data output */
dib3000mc_set_output_mode(&st, OUTMODE_HIGH_Z);
}
return 0;
}
EXPORT_SYMBOL(dib3000mc_i2c_enumeration);
static struct dvb_frontend_ops dib3000mc_ops;
struct dvb_frontend * dib3000mc_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib3000mc_config *cfg)
{
struct dvb_frontend *demod;
struct dib3000mc_state *st;
st = kzalloc(sizeof(struct dib3000mc_state), GFP_KERNEL);
if (st == NULL)
return NULL;
st->cfg = cfg;
st->i2c_adap = i2c_adap;
st->i2c_addr = i2c_addr;
demod = &st->demod;
demod->demodulator_priv = st;
memcpy(&st->demod.ops, &dib3000mc_ops, sizeof(struct dvb_frontend_ops));
if (dib3000mc_identify(st) != 0)
goto error;
dibx000_init_i2c_master(&st->i2c_master, DIB3000MC, st->i2c_adap, st->i2c_addr);
dib3000mc_write_word(st, 1037, 0x3130);
return demod;
error:
kfree(st);
return NULL;
}
EXPORT_SYMBOL(dib3000mc_attach);
static struct dvb_frontend_ops dib3000mc_ops = {
.info = {
.name = "DiBcom 3000MC/P",
.type = FE_OFDM,
.frequency_min = 44250000,
.frequency_max = 867250000,
.frequency_stepsize = 62500,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_RECOVER |
FE_CAN_HIERARCHY_AUTO,
},
.release = dib3000mc_release,
.init = dib3000mc_init,
.sleep = dib3000mc_sleep,
.set_frontend = dib3000mc_set_frontend,
.get_tune_settings = dib3000mc_fe_get_tune_settings,
.get_frontend = dib3000mc_get_frontend,
.read_status = dib3000mc_read_status,
.read_ber = dib3000mc_read_ber,
.read_signal_strength = dib3000mc_read_signal_strength,
.read_snr = dib3000mc_read_snr,
.read_ucblocks = dib3000mc_read_unc_blocks,
};
MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
MODULE_DESCRIPTION("Driver for the DiBcom 3000MC/P COFDM demodulator");
MODULE_LICENSE("GPL");