9ad98c5b44
By allocating early memory for the firmware page tables, we can write over the beginning of the initrd image. So what we do now is: 1) Read in firmware translations table while still on the firmware's trap table. 2) Switch to Linux trap table. 3) Init bootmem. 4) Build firmware page tables using __alloc_bootmem(). And this keeps the initrd from being clobbered. Signed-off-by: David S. Miller <davem@davemloft.net>
1718 lines
46 KiB
C
1718 lines
46 KiB
C
/* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
|
|
* arch/sparc64/mm/init.c
|
|
*
|
|
* Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
|
|
* Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/sort.h>
|
|
|
|
#include <asm/head.h>
|
|
#include <asm/system.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/oplib.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/io.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/starfire.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/spitfire.h>
|
|
#include <asm/sections.h>
|
|
|
|
extern void device_scan(void);
|
|
|
|
#define MAX_BANKS 32
|
|
|
|
static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
|
|
static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
|
|
static int pavail_ents __initdata;
|
|
static int pavail_rescan_ents __initdata;
|
|
|
|
static int cmp_p64(const void *a, const void *b)
|
|
{
|
|
const struct linux_prom64_registers *x = a, *y = b;
|
|
|
|
if (x->phys_addr > y->phys_addr)
|
|
return 1;
|
|
if (x->phys_addr < y->phys_addr)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static void __init read_obp_memory(const char *property,
|
|
struct linux_prom64_registers *regs,
|
|
int *num_ents)
|
|
{
|
|
int node = prom_finddevice("/memory");
|
|
int prop_size = prom_getproplen(node, property);
|
|
int ents, ret, i;
|
|
|
|
ents = prop_size / sizeof(struct linux_prom64_registers);
|
|
if (ents > MAX_BANKS) {
|
|
prom_printf("The machine has more %s property entries than "
|
|
"this kernel can support (%d).\n",
|
|
property, MAX_BANKS);
|
|
prom_halt();
|
|
}
|
|
|
|
ret = prom_getproperty(node, property, (char *) regs, prop_size);
|
|
if (ret == -1) {
|
|
prom_printf("Couldn't get %s property from /memory.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
*num_ents = ents;
|
|
|
|
/* Sanitize what we got from the firmware, by page aligning
|
|
* everything.
|
|
*/
|
|
for (i = 0; i < ents; i++) {
|
|
unsigned long base, size;
|
|
|
|
base = regs[i].phys_addr;
|
|
size = regs[i].reg_size;
|
|
|
|
size &= PAGE_MASK;
|
|
if (base & ~PAGE_MASK) {
|
|
unsigned long new_base = PAGE_ALIGN(base);
|
|
|
|
size -= new_base - base;
|
|
if ((long) size < 0L)
|
|
size = 0UL;
|
|
base = new_base;
|
|
}
|
|
regs[i].phys_addr = base;
|
|
regs[i].reg_size = size;
|
|
}
|
|
sort(regs, ents, sizeof(struct linux_prom64_registers),
|
|
cmp_p64, NULL);
|
|
}
|
|
|
|
unsigned long *sparc64_valid_addr_bitmap __read_mostly;
|
|
|
|
/* Ugly, but necessary... -DaveM */
|
|
unsigned long phys_base __read_mostly;
|
|
unsigned long kern_base __read_mostly;
|
|
unsigned long kern_size __read_mostly;
|
|
unsigned long pfn_base __read_mostly;
|
|
|
|
/* get_new_mmu_context() uses "cache + 1". */
|
|
DEFINE_SPINLOCK(ctx_alloc_lock);
|
|
unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
|
|
#define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
|
|
unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
|
|
|
|
/* References to special section boundaries */
|
|
extern char _start[], _end[];
|
|
|
|
/* Initial ramdisk setup */
|
|
extern unsigned long sparc_ramdisk_image64;
|
|
extern unsigned int sparc_ramdisk_image;
|
|
extern unsigned int sparc_ramdisk_size;
|
|
|
|
struct page *mem_map_zero __read_mostly;
|
|
|
|
unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
|
|
|
|
unsigned long sparc64_kern_pri_context __read_mostly;
|
|
unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
|
|
unsigned long sparc64_kern_sec_context __read_mostly;
|
|
|
|
int bigkernel = 0;
|
|
|
|
/* XXX Tune this... */
|
|
#define PGT_CACHE_LOW 25
|
|
#define PGT_CACHE_HIGH 50
|
|
|
|
void check_pgt_cache(void)
|
|
{
|
|
preempt_disable();
|
|
if (pgtable_cache_size > PGT_CACHE_HIGH) {
|
|
do {
|
|
if (pgd_quicklist)
|
|
free_pgd_slow(get_pgd_fast());
|
|
if (pte_quicklist[0])
|
|
free_pte_slow(pte_alloc_one_fast(NULL, 0));
|
|
if (pte_quicklist[1])
|
|
free_pte_slow(pte_alloc_one_fast(NULL, 1 << (PAGE_SHIFT + 10)));
|
|
} while (pgtable_cache_size > PGT_CACHE_LOW);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_DCFLUSH
|
|
atomic_t dcpage_flushes = ATOMIC_INIT(0);
|
|
#ifdef CONFIG_SMP
|
|
atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
|
|
#endif
|
|
#endif
|
|
|
|
__inline__ void flush_dcache_page_impl(struct page *page)
|
|
{
|
|
#ifdef CONFIG_DEBUG_DCFLUSH
|
|
atomic_inc(&dcpage_flushes);
|
|
#endif
|
|
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
__flush_dcache_page(page_address(page),
|
|
((tlb_type == spitfire) &&
|
|
page_mapping(page) != NULL));
|
|
#else
|
|
if (page_mapping(page) != NULL &&
|
|
tlb_type == spitfire)
|
|
__flush_icache_page(__pa(page_address(page)));
|
|
#endif
|
|
}
|
|
|
|
#define PG_dcache_dirty PG_arch_1
|
|
#define PG_dcache_cpu_shift 24
|
|
#define PG_dcache_cpu_mask (256 - 1)
|
|
|
|
#if NR_CPUS > 256
|
|
#error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
|
|
#endif
|
|
|
|
#define dcache_dirty_cpu(page) \
|
|
(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
|
|
|
|
static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
|
|
{
|
|
unsigned long mask = this_cpu;
|
|
unsigned long non_cpu_bits;
|
|
|
|
non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
|
|
mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
|
|
|
|
__asm__ __volatile__("1:\n\t"
|
|
"ldx [%2], %%g7\n\t"
|
|
"and %%g7, %1, %%g1\n\t"
|
|
"or %%g1, %0, %%g1\n\t"
|
|
"casx [%2], %%g7, %%g1\n\t"
|
|
"cmp %%g7, %%g1\n\t"
|
|
"membar #StoreLoad | #StoreStore\n\t"
|
|
"bne,pn %%xcc, 1b\n\t"
|
|
" nop"
|
|
: /* no outputs */
|
|
: "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
|
|
: "g1", "g7");
|
|
}
|
|
|
|
static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
|
|
{
|
|
unsigned long mask = (1UL << PG_dcache_dirty);
|
|
|
|
__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
|
|
"1:\n\t"
|
|
"ldx [%2], %%g7\n\t"
|
|
"srlx %%g7, %4, %%g1\n\t"
|
|
"and %%g1, %3, %%g1\n\t"
|
|
"cmp %%g1, %0\n\t"
|
|
"bne,pn %%icc, 2f\n\t"
|
|
" andn %%g7, %1, %%g1\n\t"
|
|
"casx [%2], %%g7, %%g1\n\t"
|
|
"cmp %%g7, %%g1\n\t"
|
|
"membar #StoreLoad | #StoreStore\n\t"
|
|
"bne,pn %%xcc, 1b\n\t"
|
|
" nop\n"
|
|
"2:"
|
|
: /* no outputs */
|
|
: "r" (cpu), "r" (mask), "r" (&page->flags),
|
|
"i" (PG_dcache_cpu_mask),
|
|
"i" (PG_dcache_cpu_shift)
|
|
: "g1", "g7");
|
|
}
|
|
|
|
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
|
|
{
|
|
struct page *page;
|
|
unsigned long pfn;
|
|
unsigned long pg_flags;
|
|
|
|
pfn = pte_pfn(pte);
|
|
if (pfn_valid(pfn) &&
|
|
(page = pfn_to_page(pfn), page_mapping(page)) &&
|
|
((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
|
|
int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
|
|
PG_dcache_cpu_mask);
|
|
int this_cpu = get_cpu();
|
|
|
|
/* This is just to optimize away some function calls
|
|
* in the SMP case.
|
|
*/
|
|
if (cpu == this_cpu)
|
|
flush_dcache_page_impl(page);
|
|
else
|
|
smp_flush_dcache_page_impl(page, cpu);
|
|
|
|
clear_dcache_dirty_cpu(page, cpu);
|
|
|
|
put_cpu();
|
|
}
|
|
}
|
|
|
|
void flush_dcache_page(struct page *page)
|
|
{
|
|
struct address_space *mapping;
|
|
int this_cpu;
|
|
|
|
/* Do not bother with the expensive D-cache flush if it
|
|
* is merely the zero page. The 'bigcore' testcase in GDB
|
|
* causes this case to run millions of times.
|
|
*/
|
|
if (page == ZERO_PAGE(0))
|
|
return;
|
|
|
|
this_cpu = get_cpu();
|
|
|
|
mapping = page_mapping(page);
|
|
if (mapping && !mapping_mapped(mapping)) {
|
|
int dirty = test_bit(PG_dcache_dirty, &page->flags);
|
|
if (dirty) {
|
|
int dirty_cpu = dcache_dirty_cpu(page);
|
|
|
|
if (dirty_cpu == this_cpu)
|
|
goto out;
|
|
smp_flush_dcache_page_impl(page, dirty_cpu);
|
|
}
|
|
set_dcache_dirty(page, this_cpu);
|
|
} else {
|
|
/* We could delay the flush for the !page_mapping
|
|
* case too. But that case is for exec env/arg
|
|
* pages and those are %99 certainly going to get
|
|
* faulted into the tlb (and thus flushed) anyways.
|
|
*/
|
|
flush_dcache_page_impl(page);
|
|
}
|
|
|
|
out:
|
|
put_cpu();
|
|
}
|
|
|
|
void __kprobes flush_icache_range(unsigned long start, unsigned long end)
|
|
{
|
|
/* Cheetah has coherent I-cache. */
|
|
if (tlb_type == spitfire) {
|
|
unsigned long kaddr;
|
|
|
|
for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
|
|
__flush_icache_page(__get_phys(kaddr));
|
|
}
|
|
}
|
|
|
|
unsigned long page_to_pfn(struct page *page)
|
|
{
|
|
return (unsigned long) ((page - mem_map) + pfn_base);
|
|
}
|
|
|
|
struct page *pfn_to_page(unsigned long pfn)
|
|
{
|
|
return (mem_map + (pfn - pfn_base));
|
|
}
|
|
|
|
void show_mem(void)
|
|
{
|
|
printk("Mem-info:\n");
|
|
show_free_areas();
|
|
printk("Free swap: %6ldkB\n",
|
|
nr_swap_pages << (PAGE_SHIFT-10));
|
|
printk("%ld pages of RAM\n", num_physpages);
|
|
printk("%d free pages\n", nr_free_pages());
|
|
printk("%d pages in page table cache\n",pgtable_cache_size);
|
|
}
|
|
|
|
void mmu_info(struct seq_file *m)
|
|
{
|
|
if (tlb_type == cheetah)
|
|
seq_printf(m, "MMU Type\t: Cheetah\n");
|
|
else if (tlb_type == cheetah_plus)
|
|
seq_printf(m, "MMU Type\t: Cheetah+\n");
|
|
else if (tlb_type == spitfire)
|
|
seq_printf(m, "MMU Type\t: Spitfire\n");
|
|
else
|
|
seq_printf(m, "MMU Type\t: ???\n");
|
|
|
|
#ifdef CONFIG_DEBUG_DCFLUSH
|
|
seq_printf(m, "DCPageFlushes\t: %d\n",
|
|
atomic_read(&dcpage_flushes));
|
|
#ifdef CONFIG_SMP
|
|
seq_printf(m, "DCPageFlushesXC\t: %d\n",
|
|
atomic_read(&dcpage_flushes_xcall));
|
|
#endif /* CONFIG_SMP */
|
|
#endif /* CONFIG_DEBUG_DCFLUSH */
|
|
}
|
|
|
|
struct linux_prom_translation {
|
|
unsigned long virt;
|
|
unsigned long size;
|
|
unsigned long data;
|
|
};
|
|
static struct linux_prom_translation prom_trans[512] __initdata;
|
|
static unsigned int prom_trans_ents __initdata;
|
|
|
|
extern unsigned long prom_boot_page;
|
|
extern void prom_remap(unsigned long physpage, unsigned long virtpage, int mmu_ihandle);
|
|
extern int prom_get_mmu_ihandle(void);
|
|
extern void register_prom_callbacks(void);
|
|
|
|
/* Exported for SMP bootup purposes. */
|
|
unsigned long kern_locked_tte_data;
|
|
|
|
/* Exported for kernel TLB miss handling in ktlb.S */
|
|
unsigned long prom_pmd_phys __read_mostly;
|
|
unsigned int swapper_pgd_zero __read_mostly;
|
|
|
|
static pmd_t *prompmd __read_mostly;
|
|
|
|
#define BASE_PAGE_SIZE 8192
|
|
|
|
/*
|
|
* Translate PROM's mapping we capture at boot time into physical address.
|
|
* The second parameter is only set from prom_callback() invocations.
|
|
*/
|
|
unsigned long prom_virt_to_phys(unsigned long promva, int *error)
|
|
{
|
|
pmd_t *pmdp = prompmd + ((promva >> 23) & 0x7ff);
|
|
pte_t *ptep;
|
|
unsigned long base;
|
|
|
|
if (pmd_none(*pmdp)) {
|
|
if (error)
|
|
*error = 1;
|
|
return 0;
|
|
}
|
|
ptep = (pte_t *)__pmd_page(*pmdp) + ((promva >> 13) & 0x3ff);
|
|
if (!pte_present(*ptep)) {
|
|
if (error)
|
|
*error = 1;
|
|
return 0;
|
|
}
|
|
if (error) {
|
|
*error = 0;
|
|
return pte_val(*ptep);
|
|
}
|
|
base = pte_val(*ptep) & _PAGE_PADDR;
|
|
|
|
return base + (promva & (BASE_PAGE_SIZE - 1));
|
|
}
|
|
|
|
/* The obp translations are saved based on 8k pagesize, since obp can
|
|
* use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
|
|
* HI_OBP_ADDRESS range are handled in entry.S and do not use the vpte
|
|
* scheme (also, see rant in inherit_locked_prom_mappings()).
|
|
*/
|
|
static void __init build_obp_range(unsigned long start, unsigned long end, unsigned long data)
|
|
{
|
|
unsigned long vaddr;
|
|
|
|
for (vaddr = start; vaddr < end; vaddr += BASE_PAGE_SIZE) {
|
|
unsigned long val;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
pmd = prompmd + ((vaddr >> 23) & 0x7ff);
|
|
if (pmd_none(*pmd)) {
|
|
pte = __alloc_bootmem(BASE_PAGE_SIZE, BASE_PAGE_SIZE,
|
|
PAGE_SIZE);
|
|
if (!pte)
|
|
prom_halt();
|
|
memset(pte, 0, BASE_PAGE_SIZE);
|
|
pmd_set(pmd, pte);
|
|
}
|
|
pte = (pte_t *) __pmd_page(*pmd) + ((vaddr >> 13) & 0x3ff);
|
|
|
|
val = data;
|
|
|
|
/* Clear diag TTE bits. */
|
|
if (tlb_type == spitfire)
|
|
val &= ~0x0003fe0000000000UL;
|
|
|
|
set_pte_at(&init_mm, vaddr, pte,
|
|
__pte(val | _PAGE_MODIFIED));
|
|
|
|
data += BASE_PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
static inline int in_obp_range(unsigned long vaddr)
|
|
{
|
|
return (vaddr >= LOW_OBP_ADDRESS &&
|
|
vaddr < HI_OBP_ADDRESS);
|
|
}
|
|
|
|
#define OBP_PMD_SIZE 2048
|
|
static void __init build_obp_pgtable(void)
|
|
{
|
|
unsigned long i;
|
|
|
|
prompmd = __alloc_bootmem(OBP_PMD_SIZE, OBP_PMD_SIZE, PAGE_SIZE);
|
|
if (!prompmd)
|
|
prom_halt();
|
|
|
|
memset(prompmd, 0, OBP_PMD_SIZE);
|
|
|
|
prom_pmd_phys = __pa(prompmd);
|
|
|
|
for (i = 0; i < prom_trans_ents; i++) {
|
|
unsigned long start, end;
|
|
|
|
if (!in_obp_range(prom_trans[i].virt))
|
|
continue;
|
|
|
|
start = prom_trans[i].virt;
|
|
end = start + prom_trans[i].size;
|
|
if (end > HI_OBP_ADDRESS)
|
|
end = HI_OBP_ADDRESS;
|
|
|
|
build_obp_range(start, end, prom_trans[i].data);
|
|
}
|
|
}
|
|
|
|
/* Read OBP translations property into 'prom_trans[]'.
|
|
* Return the number of entries.
|
|
*/
|
|
static void __init read_obp_translations(void)
|
|
{
|
|
int n, node;
|
|
|
|
node = prom_finddevice("/virtual-memory");
|
|
n = prom_getproplen(node, "translations");
|
|
if (unlikely(n == 0 || n == -1)) {
|
|
prom_printf("prom_mappings: Couldn't get size.\n");
|
|
prom_halt();
|
|
}
|
|
if (unlikely(n > sizeof(prom_trans))) {
|
|
prom_printf("prom_mappings: Size %Zd is too big.\n", n);
|
|
prom_halt();
|
|
}
|
|
|
|
if ((n = prom_getproperty(node, "translations",
|
|
(char *)&prom_trans[0],
|
|
sizeof(prom_trans))) == -1) {
|
|
prom_printf("prom_mappings: Couldn't get property.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
n = n / sizeof(struct linux_prom_translation);
|
|
|
|
prom_trans_ents = n;
|
|
}
|
|
|
|
static void __init remap_kernel(void)
|
|
{
|
|
unsigned long phys_page, tte_vaddr, tte_data;
|
|
int tlb_ent = sparc64_highest_locked_tlbent();
|
|
|
|
tte_vaddr = (unsigned long) KERNBASE;
|
|
phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
|
|
tte_data = (phys_page | (_PAGE_VALID | _PAGE_SZ4MB |
|
|
_PAGE_CP | _PAGE_CV | _PAGE_P |
|
|
_PAGE_L | _PAGE_W));
|
|
|
|
kern_locked_tte_data = tte_data;
|
|
|
|
/* Now lock us into the TLBs via OBP. */
|
|
prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
|
|
prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
|
|
if (bigkernel) {
|
|
tlb_ent -= 1;
|
|
prom_dtlb_load(tlb_ent,
|
|
tte_data + 0x400000,
|
|
tte_vaddr + 0x400000);
|
|
prom_itlb_load(tlb_ent,
|
|
tte_data + 0x400000,
|
|
tte_vaddr + 0x400000);
|
|
}
|
|
sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
|
|
if (tlb_type == cheetah_plus) {
|
|
sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
|
|
CTX_CHEETAH_PLUS_NUC);
|
|
sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
|
|
sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
|
|
}
|
|
}
|
|
|
|
|
|
static void __init inherit_prom_mappings_pre(void)
|
|
{
|
|
read_obp_translations();
|
|
|
|
/* Now fixup OBP's idea about where we really are mapped. */
|
|
prom_printf("Remapping the kernel... ");
|
|
remap_kernel();
|
|
|
|
prom_printf("done.\n");
|
|
}
|
|
|
|
static void __init inherit_prom_mappings_post(void)
|
|
{
|
|
build_obp_pgtable();
|
|
register_prom_callbacks();
|
|
}
|
|
|
|
/* The OBP specifications for sun4u mark 0xfffffffc00000000 and
|
|
* upwards as reserved for use by the firmware (I wonder if this
|
|
* will be the same on Cheetah...). We use this virtual address
|
|
* range for the VPTE table mappings of the nucleus so we need
|
|
* to zap them when we enter the PROM. -DaveM
|
|
*/
|
|
static void __flush_nucleus_vptes(void)
|
|
{
|
|
unsigned long prom_reserved_base = 0xfffffffc00000000UL;
|
|
int i;
|
|
|
|
/* Only DTLB must be checked for VPTE entries. */
|
|
if (tlb_type == spitfire) {
|
|
for (i = 0; i < 63; i++) {
|
|
unsigned long tag;
|
|
|
|
/* Spitfire Errata #32 workaround */
|
|
/* NOTE: Always runs on spitfire, so no cheetah+
|
|
* page size encodings.
|
|
*/
|
|
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
|
|
"flush %%g6"
|
|
: /* No outputs */
|
|
: "r" (0),
|
|
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
|
|
|
|
tag = spitfire_get_dtlb_tag(i);
|
|
if (((tag & ~(PAGE_MASK)) == 0) &&
|
|
((tag & (PAGE_MASK)) >= prom_reserved_base)) {
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
|
|
spitfire_put_dtlb_data(i, 0x0UL);
|
|
}
|
|
}
|
|
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
|
|
for (i = 0; i < 512; i++) {
|
|
unsigned long tag = cheetah_get_dtlb_tag(i, 2);
|
|
|
|
if ((tag & ~PAGE_MASK) == 0 &&
|
|
(tag & PAGE_MASK) >= prom_reserved_base) {
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
|
|
cheetah_put_dtlb_data(i, 0x0UL, 2);
|
|
}
|
|
|
|
if (tlb_type != cheetah_plus)
|
|
continue;
|
|
|
|
tag = cheetah_get_dtlb_tag(i, 3);
|
|
|
|
if ((tag & ~PAGE_MASK) == 0 &&
|
|
(tag & PAGE_MASK) >= prom_reserved_base) {
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
|
|
cheetah_put_dtlb_data(i, 0x0UL, 3);
|
|
}
|
|
}
|
|
} else {
|
|
/* Implement me :-) */
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static int prom_ditlb_set;
|
|
struct prom_tlb_entry {
|
|
int tlb_ent;
|
|
unsigned long tlb_tag;
|
|
unsigned long tlb_data;
|
|
};
|
|
struct prom_tlb_entry prom_itlb[16], prom_dtlb[16];
|
|
|
|
void prom_world(int enter)
|
|
{
|
|
unsigned long pstate;
|
|
int i;
|
|
|
|
if (!enter)
|
|
set_fs((mm_segment_t) { get_thread_current_ds() });
|
|
|
|
if (!prom_ditlb_set)
|
|
return;
|
|
|
|
/* Make sure the following runs atomically. */
|
|
__asm__ __volatile__("flushw\n\t"
|
|
"rdpr %%pstate, %0\n\t"
|
|
"wrpr %0, %1, %%pstate"
|
|
: "=r" (pstate)
|
|
: "i" (PSTATE_IE));
|
|
|
|
if (enter) {
|
|
/* Kick out nucleus VPTEs. */
|
|
__flush_nucleus_vptes();
|
|
|
|
/* Install PROM world. */
|
|
for (i = 0; i < 16; i++) {
|
|
if (prom_dtlb[i].tlb_ent != -1) {
|
|
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
|
|
"membar #Sync"
|
|
: : "r" (prom_dtlb[i].tlb_tag), "r" (TLB_TAG_ACCESS),
|
|
"i" (ASI_DMMU));
|
|
if (tlb_type == spitfire)
|
|
spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent,
|
|
prom_dtlb[i].tlb_data);
|
|
else if (tlb_type == cheetah || tlb_type == cheetah_plus)
|
|
cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent,
|
|
prom_dtlb[i].tlb_data);
|
|
}
|
|
if (prom_itlb[i].tlb_ent != -1) {
|
|
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
|
|
"membar #Sync"
|
|
: : "r" (prom_itlb[i].tlb_tag),
|
|
"r" (TLB_TAG_ACCESS),
|
|
"i" (ASI_IMMU));
|
|
if (tlb_type == spitfire)
|
|
spitfire_put_itlb_data(prom_itlb[i].tlb_ent,
|
|
prom_itlb[i].tlb_data);
|
|
else if (tlb_type == cheetah || tlb_type == cheetah_plus)
|
|
cheetah_put_litlb_data(prom_itlb[i].tlb_ent,
|
|
prom_itlb[i].tlb_data);
|
|
}
|
|
}
|
|
} else {
|
|
for (i = 0; i < 16; i++) {
|
|
if (prom_dtlb[i].tlb_ent != -1) {
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
|
|
if (tlb_type == spitfire)
|
|
spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent, 0x0UL);
|
|
else
|
|
cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent, 0x0UL);
|
|
}
|
|
if (prom_itlb[i].tlb_ent != -1) {
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: : "r" (TLB_TAG_ACCESS),
|
|
"i" (ASI_IMMU));
|
|
if (tlb_type == spitfire)
|
|
spitfire_put_itlb_data(prom_itlb[i].tlb_ent, 0x0UL);
|
|
else
|
|
cheetah_put_litlb_data(prom_itlb[i].tlb_ent, 0x0UL);
|
|
}
|
|
}
|
|
}
|
|
__asm__ __volatile__("wrpr %0, 0, %%pstate"
|
|
: : "r" (pstate));
|
|
}
|
|
|
|
void inherit_locked_prom_mappings(int save_p)
|
|
{
|
|
int i;
|
|
int dtlb_seen = 0;
|
|
int itlb_seen = 0;
|
|
|
|
/* Fucking losing PROM has more mappings in the TLB, but
|
|
* it (conveniently) fails to mention any of these in the
|
|
* translations property. The only ones that matter are
|
|
* the locked PROM tlb entries, so we impose the following
|
|
* irrecovable rule on the PROM, it is allowed 8 locked
|
|
* entries in the ITLB and 8 in the DTLB.
|
|
*
|
|
* Supposedly the upper 16GB of the address space is
|
|
* reserved for OBP, BUT I WISH THIS WAS DOCUMENTED
|
|
* SOMEWHERE!!!!!!!!!!!!!!!!! Furthermore the entire interface
|
|
* used between the client program and the firmware on sun5
|
|
* systems to coordinate mmu mappings is also COMPLETELY
|
|
* UNDOCUMENTED!!!!!! Thanks S(t)un!
|
|
*/
|
|
if (save_p) {
|
|
for (i = 0; i < 16; i++) {
|
|
prom_itlb[i].tlb_ent = -1;
|
|
prom_dtlb[i].tlb_ent = -1;
|
|
}
|
|
}
|
|
if (tlb_type == spitfire) {
|
|
int high = sparc64_highest_unlocked_tlb_ent;
|
|
for (i = 0; i <= high; i++) {
|
|
unsigned long data;
|
|
|
|
/* Spitfire Errata #32 workaround */
|
|
/* NOTE: Always runs on spitfire, so no cheetah+
|
|
* page size encodings.
|
|
*/
|
|
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
|
|
"flush %%g6"
|
|
: /* No outputs */
|
|
: "r" (0),
|
|
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
|
|
|
|
data = spitfire_get_dtlb_data(i);
|
|
if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
|
|
unsigned long tag;
|
|
|
|
/* Spitfire Errata #32 workaround */
|
|
/* NOTE: Always runs on spitfire, so no
|
|
* cheetah+ page size encodings.
|
|
*/
|
|
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
|
|
"flush %%g6"
|
|
: /* No outputs */
|
|
: "r" (0),
|
|
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
|
|
|
|
tag = spitfire_get_dtlb_tag(i);
|
|
if (save_p) {
|
|
prom_dtlb[dtlb_seen].tlb_ent = i;
|
|
prom_dtlb[dtlb_seen].tlb_tag = tag;
|
|
prom_dtlb[dtlb_seen].tlb_data = data;
|
|
}
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
|
|
spitfire_put_dtlb_data(i, 0x0UL);
|
|
|
|
dtlb_seen++;
|
|
if (dtlb_seen > 15)
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < high; i++) {
|
|
unsigned long data;
|
|
|
|
/* Spitfire Errata #32 workaround */
|
|
/* NOTE: Always runs on spitfire, so no
|
|
* cheetah+ page size encodings.
|
|
*/
|
|
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
|
|
"flush %%g6"
|
|
: /* No outputs */
|
|
: "r" (0),
|
|
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
|
|
|
|
data = spitfire_get_itlb_data(i);
|
|
if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
|
|
unsigned long tag;
|
|
|
|
/* Spitfire Errata #32 workaround */
|
|
/* NOTE: Always runs on spitfire, so no
|
|
* cheetah+ page size encodings.
|
|
*/
|
|
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
|
|
"flush %%g6"
|
|
: /* No outputs */
|
|
: "r" (0),
|
|
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
|
|
|
|
tag = spitfire_get_itlb_tag(i);
|
|
if (save_p) {
|
|
prom_itlb[itlb_seen].tlb_ent = i;
|
|
prom_itlb[itlb_seen].tlb_tag = tag;
|
|
prom_itlb[itlb_seen].tlb_data = data;
|
|
}
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
|
|
spitfire_put_itlb_data(i, 0x0UL);
|
|
|
|
itlb_seen++;
|
|
if (itlb_seen > 15)
|
|
break;
|
|
}
|
|
}
|
|
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
|
|
int high = sparc64_highest_unlocked_tlb_ent;
|
|
|
|
for (i = 0; i <= high; i++) {
|
|
unsigned long data;
|
|
|
|
data = cheetah_get_ldtlb_data(i);
|
|
if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
|
|
unsigned long tag;
|
|
|
|
tag = cheetah_get_ldtlb_tag(i);
|
|
if (save_p) {
|
|
prom_dtlb[dtlb_seen].tlb_ent = i;
|
|
prom_dtlb[dtlb_seen].tlb_tag = tag;
|
|
prom_dtlb[dtlb_seen].tlb_data = data;
|
|
}
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
|
|
cheetah_put_ldtlb_data(i, 0x0UL);
|
|
|
|
dtlb_seen++;
|
|
if (dtlb_seen > 15)
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < high; i++) {
|
|
unsigned long data;
|
|
|
|
data = cheetah_get_litlb_data(i);
|
|
if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
|
|
unsigned long tag;
|
|
|
|
tag = cheetah_get_litlb_tag(i);
|
|
if (save_p) {
|
|
prom_itlb[itlb_seen].tlb_ent = i;
|
|
prom_itlb[itlb_seen].tlb_tag = tag;
|
|
prom_itlb[itlb_seen].tlb_data = data;
|
|
}
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
|
|
cheetah_put_litlb_data(i, 0x0UL);
|
|
|
|
itlb_seen++;
|
|
if (itlb_seen > 15)
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
/* Implement me :-) */
|
|
BUG();
|
|
}
|
|
if (save_p)
|
|
prom_ditlb_set = 1;
|
|
}
|
|
|
|
/* Give PROM back his world, done during reboots... */
|
|
void prom_reload_locked(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
if (prom_dtlb[i].tlb_ent != -1) {
|
|
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
|
|
"membar #Sync"
|
|
: : "r" (prom_dtlb[i].tlb_tag), "r" (TLB_TAG_ACCESS),
|
|
"i" (ASI_DMMU));
|
|
if (tlb_type == spitfire)
|
|
spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent,
|
|
prom_dtlb[i].tlb_data);
|
|
else if (tlb_type == cheetah || tlb_type == cheetah_plus)
|
|
cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent,
|
|
prom_dtlb[i].tlb_data);
|
|
}
|
|
|
|
if (prom_itlb[i].tlb_ent != -1) {
|
|
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
|
|
"membar #Sync"
|
|
: : "r" (prom_itlb[i].tlb_tag),
|
|
"r" (TLB_TAG_ACCESS),
|
|
"i" (ASI_IMMU));
|
|
if (tlb_type == spitfire)
|
|
spitfire_put_itlb_data(prom_itlb[i].tlb_ent,
|
|
prom_itlb[i].tlb_data);
|
|
else
|
|
cheetah_put_litlb_data(prom_itlb[i].tlb_ent,
|
|
prom_itlb[i].tlb_data);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
void __flush_dcache_range(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long va;
|
|
|
|
if (tlb_type == spitfire) {
|
|
int n = 0;
|
|
|
|
for (va = start; va < end; va += 32) {
|
|
spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
|
|
if (++n >= 512)
|
|
break;
|
|
}
|
|
} else {
|
|
start = __pa(start);
|
|
end = __pa(end);
|
|
for (va = start; va < end; va += 32)
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (va),
|
|
"i" (ASI_DCACHE_INVALIDATE));
|
|
}
|
|
}
|
|
#endif /* DCACHE_ALIASING_POSSIBLE */
|
|
|
|
/* If not locked, zap it. */
|
|
void __flush_tlb_all(void)
|
|
{
|
|
unsigned long pstate;
|
|
int i;
|
|
|
|
__asm__ __volatile__("flushw\n\t"
|
|
"rdpr %%pstate, %0\n\t"
|
|
"wrpr %0, %1, %%pstate"
|
|
: "=r" (pstate)
|
|
: "i" (PSTATE_IE));
|
|
if (tlb_type == spitfire) {
|
|
for (i = 0; i < 64; i++) {
|
|
/* Spitfire Errata #32 workaround */
|
|
/* NOTE: Always runs on spitfire, so no
|
|
* cheetah+ page size encodings.
|
|
*/
|
|
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
|
|
"flush %%g6"
|
|
: /* No outputs */
|
|
: "r" (0),
|
|
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
|
|
|
|
if (!(spitfire_get_dtlb_data(i) & _PAGE_L)) {
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
|
|
spitfire_put_dtlb_data(i, 0x0UL);
|
|
}
|
|
|
|
/* Spitfire Errata #32 workaround */
|
|
/* NOTE: Always runs on spitfire, so no
|
|
* cheetah+ page size encodings.
|
|
*/
|
|
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
|
|
"flush %%g6"
|
|
: /* No outputs */
|
|
: "r" (0),
|
|
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
|
|
|
|
if (!(spitfire_get_itlb_data(i) & _PAGE_L)) {
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
|
|
spitfire_put_itlb_data(i, 0x0UL);
|
|
}
|
|
}
|
|
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
|
|
cheetah_flush_dtlb_all();
|
|
cheetah_flush_itlb_all();
|
|
}
|
|
__asm__ __volatile__("wrpr %0, 0, %%pstate"
|
|
: : "r" (pstate));
|
|
}
|
|
|
|
/* Caller does TLB context flushing on local CPU if necessary.
|
|
* The caller also ensures that CTX_VALID(mm->context) is false.
|
|
*
|
|
* We must be careful about boundary cases so that we never
|
|
* let the user have CTX 0 (nucleus) or we ever use a CTX
|
|
* version of zero (and thus NO_CONTEXT would not be caught
|
|
* by version mis-match tests in mmu_context.h).
|
|
*/
|
|
void get_new_mmu_context(struct mm_struct *mm)
|
|
{
|
|
unsigned long ctx, new_ctx;
|
|
unsigned long orig_pgsz_bits;
|
|
|
|
|
|
spin_lock(&ctx_alloc_lock);
|
|
orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
|
|
ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
|
|
new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
|
|
if (new_ctx >= (1 << CTX_NR_BITS)) {
|
|
new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
|
|
if (new_ctx >= ctx) {
|
|
int i;
|
|
new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
|
|
CTX_FIRST_VERSION;
|
|
if (new_ctx == 1)
|
|
new_ctx = CTX_FIRST_VERSION;
|
|
|
|
/* Don't call memset, for 16 entries that's just
|
|
* plain silly...
|
|
*/
|
|
mmu_context_bmap[0] = 3;
|
|
mmu_context_bmap[1] = 0;
|
|
mmu_context_bmap[2] = 0;
|
|
mmu_context_bmap[3] = 0;
|
|
for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
|
|
mmu_context_bmap[i + 0] = 0;
|
|
mmu_context_bmap[i + 1] = 0;
|
|
mmu_context_bmap[i + 2] = 0;
|
|
mmu_context_bmap[i + 3] = 0;
|
|
}
|
|
goto out;
|
|
}
|
|
}
|
|
mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
|
|
new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
|
|
out:
|
|
tlb_context_cache = new_ctx;
|
|
mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
|
|
spin_unlock(&ctx_alloc_lock);
|
|
}
|
|
|
|
#ifndef CONFIG_SMP
|
|
struct pgtable_cache_struct pgt_quicklists;
|
|
#endif
|
|
|
|
/* OK, we have to color these pages. The page tables are accessed
|
|
* by non-Dcache enabled mapping in the VPTE area by the dtlb_backend.S
|
|
* code, as well as by PAGE_OFFSET range direct-mapped addresses by
|
|
* other parts of the kernel. By coloring, we make sure that the tlbmiss
|
|
* fast handlers do not get data from old/garbage dcache lines that
|
|
* correspond to an old/stale virtual address (user/kernel) that
|
|
* previously mapped the pagetable page while accessing vpte range
|
|
* addresses. The idea is that if the vpte color and PAGE_OFFSET range
|
|
* color is the same, then when the kernel initializes the pagetable
|
|
* using the later address range, accesses with the first address
|
|
* range will see the newly initialized data rather than the garbage.
|
|
*/
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
#define DC_ALIAS_SHIFT 1
|
|
#else
|
|
#define DC_ALIAS_SHIFT 0
|
|
#endif
|
|
pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
|
|
{
|
|
struct page *page;
|
|
unsigned long color;
|
|
|
|
{
|
|
pte_t *ptep = pte_alloc_one_fast(mm, address);
|
|
|
|
if (ptep)
|
|
return ptep;
|
|
}
|
|
|
|
color = VPTE_COLOR(address);
|
|
page = alloc_pages(GFP_KERNEL|__GFP_REPEAT, DC_ALIAS_SHIFT);
|
|
if (page) {
|
|
unsigned long *to_free;
|
|
unsigned long paddr;
|
|
pte_t *pte;
|
|
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
set_page_count(page, 1);
|
|
ClearPageCompound(page);
|
|
|
|
set_page_count((page + 1), 1);
|
|
ClearPageCompound(page + 1);
|
|
#endif
|
|
paddr = (unsigned long) page_address(page);
|
|
memset((char *)paddr, 0, (PAGE_SIZE << DC_ALIAS_SHIFT));
|
|
|
|
if (!color) {
|
|
pte = (pte_t *) paddr;
|
|
to_free = (unsigned long *) (paddr + PAGE_SIZE);
|
|
} else {
|
|
pte = (pte_t *) (paddr + PAGE_SIZE);
|
|
to_free = (unsigned long *) paddr;
|
|
}
|
|
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
/* Now free the other one up, adjust cache size. */
|
|
preempt_disable();
|
|
*to_free = (unsigned long) pte_quicklist[color ^ 0x1];
|
|
pte_quicklist[color ^ 0x1] = to_free;
|
|
pgtable_cache_size++;
|
|
preempt_enable();
|
|
#endif
|
|
|
|
return pte;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void sparc_ultra_dump_itlb(void)
|
|
{
|
|
int slot;
|
|
|
|
if (tlb_type == spitfire) {
|
|
printk ("Contents of itlb: ");
|
|
for (slot = 0; slot < 14; slot++) printk (" ");
|
|
printk ("%2x:%016lx,%016lx\n",
|
|
0,
|
|
spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
|
|
for (slot = 1; slot < 64; slot+=3) {
|
|
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
|
|
slot,
|
|
spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
|
|
slot+1,
|
|
spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
|
|
slot+2,
|
|
spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
|
|
}
|
|
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
|
|
printk ("Contents of itlb0:\n");
|
|
for (slot = 0; slot < 16; slot+=2) {
|
|
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
|
|
slot,
|
|
cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
|
|
slot+1,
|
|
cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
|
|
}
|
|
printk ("Contents of itlb2:\n");
|
|
for (slot = 0; slot < 128; slot+=2) {
|
|
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
|
|
slot,
|
|
cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
|
|
slot+1,
|
|
cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
|
|
}
|
|
}
|
|
}
|
|
|
|
void sparc_ultra_dump_dtlb(void)
|
|
{
|
|
int slot;
|
|
|
|
if (tlb_type == spitfire) {
|
|
printk ("Contents of dtlb: ");
|
|
for (slot = 0; slot < 14; slot++) printk (" ");
|
|
printk ("%2x:%016lx,%016lx\n", 0,
|
|
spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
|
|
for (slot = 1; slot < 64; slot+=3) {
|
|
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
|
|
slot,
|
|
spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
|
|
slot+1,
|
|
spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
|
|
slot+2,
|
|
spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
|
|
}
|
|
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
|
|
printk ("Contents of dtlb0:\n");
|
|
for (slot = 0; slot < 16; slot+=2) {
|
|
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
|
|
slot,
|
|
cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
|
|
slot+1,
|
|
cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
|
|
}
|
|
printk ("Contents of dtlb2:\n");
|
|
for (slot = 0; slot < 512; slot+=2) {
|
|
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
|
|
slot,
|
|
cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
|
|
slot+1,
|
|
cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
|
|
}
|
|
if (tlb_type == cheetah_plus) {
|
|
printk ("Contents of dtlb3:\n");
|
|
for (slot = 0; slot < 512; slot+=2) {
|
|
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
|
|
slot,
|
|
cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
|
|
slot+1,
|
|
cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
extern unsigned long cmdline_memory_size;
|
|
|
|
unsigned long __init bootmem_init(unsigned long *pages_avail)
|
|
{
|
|
unsigned long bootmap_size, start_pfn, end_pfn;
|
|
unsigned long end_of_phys_memory = 0UL;
|
|
unsigned long bootmap_pfn, bytes_avail, size;
|
|
int i;
|
|
|
|
#ifdef CONFIG_DEBUG_BOOTMEM
|
|
prom_printf("bootmem_init: Scan pavail, ");
|
|
#endif
|
|
|
|
bytes_avail = 0UL;
|
|
for (i = 0; i < pavail_ents; i++) {
|
|
end_of_phys_memory = pavail[i].phys_addr +
|
|
pavail[i].reg_size;
|
|
bytes_avail += pavail[i].reg_size;
|
|
if (cmdline_memory_size) {
|
|
if (bytes_avail > cmdline_memory_size) {
|
|
unsigned long slack = bytes_avail - cmdline_memory_size;
|
|
|
|
bytes_avail -= slack;
|
|
end_of_phys_memory -= slack;
|
|
|
|
pavail[i].reg_size -= slack;
|
|
if ((long)pavail[i].reg_size <= 0L) {
|
|
pavail[i].phys_addr = 0xdeadbeefUL;
|
|
pavail[i].reg_size = 0UL;
|
|
pavail_ents = i;
|
|
} else {
|
|
pavail[i+1].reg_size = 0Ul;
|
|
pavail[i+1].phys_addr = 0xdeadbeefUL;
|
|
pavail_ents = i + 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
*pages_avail = bytes_avail >> PAGE_SHIFT;
|
|
|
|
/* Start with page aligned address of last symbol in kernel
|
|
* image. The kernel is hard mapped below PAGE_OFFSET in a
|
|
* 4MB locked TLB translation.
|
|
*/
|
|
start_pfn = PAGE_ALIGN(kern_base + kern_size) >> PAGE_SHIFT;
|
|
|
|
bootmap_pfn = start_pfn;
|
|
|
|
end_pfn = end_of_phys_memory >> PAGE_SHIFT;
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
/* Now have to check initial ramdisk, so that bootmap does not overwrite it */
|
|
if (sparc_ramdisk_image || sparc_ramdisk_image64) {
|
|
unsigned long ramdisk_image = sparc_ramdisk_image ?
|
|
sparc_ramdisk_image : sparc_ramdisk_image64;
|
|
if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
|
|
ramdisk_image -= KERNBASE;
|
|
initrd_start = ramdisk_image + phys_base;
|
|
initrd_end = initrd_start + sparc_ramdisk_size;
|
|
if (initrd_end > end_of_phys_memory) {
|
|
printk(KERN_CRIT "initrd extends beyond end of memory "
|
|
"(0x%016lx > 0x%016lx)\ndisabling initrd\n",
|
|
initrd_end, end_of_phys_memory);
|
|
initrd_start = 0;
|
|
}
|
|
if (initrd_start) {
|
|
if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
|
|
initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
|
|
bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
|
|
}
|
|
}
|
|
#endif
|
|
/* Initialize the boot-time allocator. */
|
|
max_pfn = max_low_pfn = end_pfn;
|
|
min_low_pfn = pfn_base;
|
|
|
|
#ifdef CONFIG_DEBUG_BOOTMEM
|
|
prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
|
|
min_low_pfn, bootmap_pfn, max_low_pfn);
|
|
#endif
|
|
bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn);
|
|
|
|
/* Now register the available physical memory with the
|
|
* allocator.
|
|
*/
|
|
for (i = 0; i < pavail_ents; i++) {
|
|
#ifdef CONFIG_DEBUG_BOOTMEM
|
|
prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
|
|
i, pavail[i].phys_addr, pavail[i].reg_size);
|
|
#endif
|
|
free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
if (initrd_start) {
|
|
size = initrd_end - initrd_start;
|
|
|
|
/* Resert the initrd image area. */
|
|
#ifdef CONFIG_DEBUG_BOOTMEM
|
|
prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
|
|
initrd_start, initrd_end);
|
|
#endif
|
|
reserve_bootmem(initrd_start, size);
|
|
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
|
|
initrd_start += PAGE_OFFSET;
|
|
initrd_end += PAGE_OFFSET;
|
|
}
|
|
#endif
|
|
/* Reserve the kernel text/data/bss. */
|
|
#ifdef CONFIG_DEBUG_BOOTMEM
|
|
prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
|
|
#endif
|
|
reserve_bootmem(kern_base, kern_size);
|
|
*pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
|
|
|
|
/* Reserve the bootmem map. We do not account for it
|
|
* in pages_avail because we will release that memory
|
|
* in free_all_bootmem.
|
|
*/
|
|
size = bootmap_size;
|
|
#ifdef CONFIG_DEBUG_BOOTMEM
|
|
prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
|
|
(bootmap_pfn << PAGE_SHIFT), size);
|
|
#endif
|
|
reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
|
|
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
|
|
return end_pfn;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
|
|
{
|
|
unsigned long vstart = PAGE_OFFSET + pstart;
|
|
unsigned long vend = PAGE_OFFSET + pend;
|
|
unsigned long alloc_bytes = 0UL;
|
|
|
|
if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
|
|
prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
|
|
vstart, vend);
|
|
prom_halt();
|
|
}
|
|
|
|
while (vstart < vend) {
|
|
unsigned long this_end, paddr = __pa(vstart);
|
|
pgd_t *pgd = pgd_offset_k(vstart);
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
pud = pud_offset(pgd, vstart);
|
|
if (pud_none(*pud)) {
|
|
pmd_t *new;
|
|
|
|
new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
|
|
alloc_bytes += PAGE_SIZE;
|
|
pud_populate(&init_mm, pud, new);
|
|
}
|
|
|
|
pmd = pmd_offset(pud, vstart);
|
|
if (!pmd_present(*pmd)) {
|
|
pte_t *new;
|
|
|
|
new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
|
|
alloc_bytes += PAGE_SIZE;
|
|
pmd_populate_kernel(&init_mm, pmd, new);
|
|
}
|
|
|
|
pte = pte_offset_kernel(pmd, vstart);
|
|
this_end = (vstart + PMD_SIZE) & PMD_MASK;
|
|
if (this_end > vend)
|
|
this_end = vend;
|
|
|
|
while (vstart < this_end) {
|
|
pte_val(*pte) = (paddr | pgprot_val(prot));
|
|
|
|
vstart += PAGE_SIZE;
|
|
paddr += PAGE_SIZE;
|
|
pte++;
|
|
}
|
|
}
|
|
|
|
return alloc_bytes;
|
|
}
|
|
|
|
static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
|
|
static int pall_ents __initdata;
|
|
|
|
extern unsigned int kvmap_linear_patch[1];
|
|
|
|
static void __init kernel_physical_mapping_init(void)
|
|
{
|
|
unsigned long i, mem_alloced = 0UL;
|
|
|
|
read_obp_memory("reg", &pall[0], &pall_ents);
|
|
|
|
for (i = 0; i < pall_ents; i++) {
|
|
unsigned long phys_start, phys_end;
|
|
|
|
phys_start = pall[i].phys_addr;
|
|
phys_end = phys_start + pall[i].reg_size;
|
|
mem_alloced += kernel_map_range(phys_start, phys_end,
|
|
PAGE_KERNEL);
|
|
}
|
|
|
|
printk("Allocated %ld bytes for kernel page tables.\n",
|
|
mem_alloced);
|
|
|
|
kvmap_linear_patch[0] = 0x01000000; /* nop */
|
|
flushi(&kvmap_linear_patch[0]);
|
|
|
|
__flush_tlb_all();
|
|
}
|
|
|
|
void kernel_map_pages(struct page *page, int numpages, int enable)
|
|
{
|
|
unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
|
|
unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
|
|
|
|
kernel_map_range(phys_start, phys_end,
|
|
(enable ? PAGE_KERNEL : __pgprot(0)));
|
|
|
|
/* we should perform an IPI and flush all tlbs,
|
|
* but that can deadlock->flush only current cpu.
|
|
*/
|
|
__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
|
|
PAGE_OFFSET + phys_end);
|
|
}
|
|
#endif
|
|
|
|
unsigned long __init find_ecache_flush_span(unsigned long size)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < pavail_ents; i++) {
|
|
if (pavail[i].reg_size >= size)
|
|
return pavail[i].phys_addr;
|
|
}
|
|
|
|
return ~0UL;
|
|
}
|
|
|
|
/* paging_init() sets up the page tables */
|
|
|
|
extern void cheetah_ecache_flush_init(void);
|
|
|
|
static unsigned long last_valid_pfn;
|
|
pgd_t swapper_pg_dir[2048];
|
|
|
|
void __init paging_init(void)
|
|
{
|
|
unsigned long end_pfn, pages_avail, shift;
|
|
unsigned long real_end, i;
|
|
|
|
/* Find available physical memory... */
|
|
read_obp_memory("available", &pavail[0], &pavail_ents);
|
|
|
|
phys_base = 0xffffffffffffffffUL;
|
|
for (i = 0; i < pavail_ents; i++)
|
|
phys_base = min(phys_base, pavail[i].phys_addr);
|
|
|
|
pfn_base = phys_base >> PAGE_SHIFT;
|
|
|
|
kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
|
|
kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
|
|
|
|
set_bit(0, mmu_context_bmap);
|
|
|
|
shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
|
|
|
|
real_end = (unsigned long)_end;
|
|
if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
|
|
bigkernel = 1;
|
|
if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
|
|
prom_printf("paging_init: Kernel > 8MB, too large.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
/* Set kernel pgd to upper alias so physical page computations
|
|
* work.
|
|
*/
|
|
init_mm.pgd += ((shift) / (sizeof(pgd_t)));
|
|
|
|
memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
|
|
|
|
/* Now can init the kernel/bad page tables. */
|
|
pud_set(pud_offset(&swapper_pg_dir[0], 0),
|
|
swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
|
|
|
|
swapper_pgd_zero = pgd_val(swapper_pg_dir[0]);
|
|
|
|
inherit_prom_mappings_pre();
|
|
|
|
/* Ok, we can use our TLB miss and window trap handlers safely.
|
|
* We need to do a quick peek here to see if we are on StarFire
|
|
* or not, so setup_tba can setup the IRQ globals correctly (it
|
|
* needs to get the hard smp processor id correctly).
|
|
*/
|
|
{
|
|
extern void setup_tba(int);
|
|
setup_tba(this_is_starfire);
|
|
}
|
|
__flush_tlb_all();
|
|
|
|
/* Everything from this point forward, until we are done with
|
|
* inherit_prom_mappings_post(), must complete successfully
|
|
* without calling into the firmware. The firwmare page tables
|
|
* have not been built, but we are running on the Linux kernel's
|
|
* trap table.
|
|
*/
|
|
|
|
/* Setup bootmem... */
|
|
pages_avail = 0;
|
|
last_valid_pfn = end_pfn = bootmem_init(&pages_avail);
|
|
|
|
inherit_prom_mappings_post();
|
|
|
|
inherit_locked_prom_mappings(1);
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
kernel_physical_mapping_init();
|
|
#endif
|
|
|
|
{
|
|
unsigned long zones_size[MAX_NR_ZONES];
|
|
unsigned long zholes_size[MAX_NR_ZONES];
|
|
unsigned long npages;
|
|
int znum;
|
|
|
|
for (znum = 0; znum < MAX_NR_ZONES; znum++)
|
|
zones_size[znum] = zholes_size[znum] = 0;
|
|
|
|
npages = end_pfn - pfn_base;
|
|
zones_size[ZONE_DMA] = npages;
|
|
zholes_size[ZONE_DMA] = npages - pages_avail;
|
|
|
|
free_area_init_node(0, &contig_page_data, zones_size,
|
|
phys_base >> PAGE_SHIFT, zholes_size);
|
|
}
|
|
|
|
device_scan();
|
|
}
|
|
|
|
static void __init taint_real_pages(void)
|
|
{
|
|
int i;
|
|
|
|
read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
|
|
|
|
/* Find changes discovered in the physmem available rescan and
|
|
* reserve the lost portions in the bootmem maps.
|
|
*/
|
|
for (i = 0; i < pavail_ents; i++) {
|
|
unsigned long old_start, old_end;
|
|
|
|
old_start = pavail[i].phys_addr;
|
|
old_end = old_start +
|
|
pavail[i].reg_size;
|
|
while (old_start < old_end) {
|
|
int n;
|
|
|
|
for (n = 0; pavail_rescan_ents; n++) {
|
|
unsigned long new_start, new_end;
|
|
|
|
new_start = pavail_rescan[n].phys_addr;
|
|
new_end = new_start +
|
|
pavail_rescan[n].reg_size;
|
|
|
|
if (new_start <= old_start &&
|
|
new_end >= (old_start + PAGE_SIZE)) {
|
|
set_bit(old_start >> 22,
|
|
sparc64_valid_addr_bitmap);
|
|
goto do_next_page;
|
|
}
|
|
}
|
|
reserve_bootmem(old_start, PAGE_SIZE);
|
|
|
|
do_next_page:
|
|
old_start += PAGE_SIZE;
|
|
}
|
|
}
|
|
}
|
|
|
|
void __init mem_init(void)
|
|
{
|
|
unsigned long codepages, datapages, initpages;
|
|
unsigned long addr, last;
|
|
int i;
|
|
|
|
i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
|
|
i += 1;
|
|
sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
|
|
if (sparc64_valid_addr_bitmap == NULL) {
|
|
prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
|
|
prom_halt();
|
|
}
|
|
memset(sparc64_valid_addr_bitmap, 0, i << 3);
|
|
|
|
addr = PAGE_OFFSET + kern_base;
|
|
last = PAGE_ALIGN(kern_size) + addr;
|
|
while (addr < last) {
|
|
set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
|
|
addr += PAGE_SIZE;
|
|
}
|
|
|
|
taint_real_pages();
|
|
|
|
max_mapnr = last_valid_pfn - pfn_base;
|
|
high_memory = __va(last_valid_pfn << PAGE_SHIFT);
|
|
|
|
#ifdef CONFIG_DEBUG_BOOTMEM
|
|
prom_printf("mem_init: Calling free_all_bootmem().\n");
|
|
#endif
|
|
totalram_pages = num_physpages = free_all_bootmem() - 1;
|
|
|
|
/*
|
|
* Set up the zero page, mark it reserved, so that page count
|
|
* is not manipulated when freeing the page from user ptes.
|
|
*/
|
|
mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
|
|
if (mem_map_zero == NULL) {
|
|
prom_printf("paging_init: Cannot alloc zero page.\n");
|
|
prom_halt();
|
|
}
|
|
SetPageReserved(mem_map_zero);
|
|
|
|
codepages = (((unsigned long) _etext) - ((unsigned long) _start));
|
|
codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
|
|
datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
|
|
datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
|
|
initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
|
|
initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
|
|
|
|
printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
|
|
nr_free_pages() << (PAGE_SHIFT-10),
|
|
codepages << (PAGE_SHIFT-10),
|
|
datapages << (PAGE_SHIFT-10),
|
|
initpages << (PAGE_SHIFT-10),
|
|
PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
|
|
|
|
if (tlb_type == cheetah || tlb_type == cheetah_plus)
|
|
cheetah_ecache_flush_init();
|
|
}
|
|
|
|
void free_initmem(void)
|
|
{
|
|
unsigned long addr, initend;
|
|
|
|
/*
|
|
* The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
|
|
*/
|
|
addr = PAGE_ALIGN((unsigned long)(__init_begin));
|
|
initend = (unsigned long)(__init_end) & PAGE_MASK;
|
|
for (; addr < initend; addr += PAGE_SIZE) {
|
|
unsigned long page;
|
|
struct page *p;
|
|
|
|
page = (addr +
|
|
((unsigned long) __va(kern_base)) -
|
|
((unsigned long) KERNBASE));
|
|
memset((void *)addr, 0xcc, PAGE_SIZE);
|
|
p = virt_to_page(page);
|
|
|
|
ClearPageReserved(p);
|
|
set_page_count(p, 1);
|
|
__free_page(p);
|
|
num_physpages++;
|
|
totalram_pages++;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
void free_initrd_mem(unsigned long start, unsigned long end)
|
|
{
|
|
if (start < end)
|
|
printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
|
|
for (; start < end; start += PAGE_SIZE) {
|
|
struct page *p = virt_to_page(start);
|
|
|
|
ClearPageReserved(p);
|
|
set_page_count(p, 1);
|
|
__free_page(p);
|
|
num_physpages++;
|
|
totalram_pages++;
|
|
}
|
|
}
|
|
#endif
|