android_kernel_xiaomi_sm8350/drivers/dma/ioatdma.c
Christoph Lameter e94b176609 [PATCH] slab: remove SLAB_KERNEL
SLAB_KERNEL is an alias of GFP_KERNEL.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:24 -08:00

842 lines
23 KiB
C

/*
* Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The full GNU General Public License is included in this distribution in the
* file called COPYING.
*/
/*
* This driver supports an Intel I/OAT DMA engine, which does asynchronous
* copy operations.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include "ioatdma.h"
#include "ioatdma_io.h"
#include "ioatdma_registers.h"
#include "ioatdma_hw.h"
#define to_ioat_chan(chan) container_of(chan, struct ioat_dma_chan, common)
#define to_ioat_device(dev) container_of(dev, struct ioat_device, common)
#define to_ioat_desc(lh) container_of(lh, struct ioat_desc_sw, node)
/* internal functions */
static int __devinit ioat_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
static void __devexit ioat_remove(struct pci_dev *pdev);
static int enumerate_dma_channels(struct ioat_device *device)
{
u8 xfercap_scale;
u32 xfercap;
int i;
struct ioat_dma_chan *ioat_chan;
device->common.chancnt = ioatdma_read8(device, IOAT_CHANCNT_OFFSET);
xfercap_scale = ioatdma_read8(device, IOAT_XFERCAP_OFFSET);
xfercap = (xfercap_scale == 0 ? -1 : (1UL << xfercap_scale));
for (i = 0; i < device->common.chancnt; i++) {
ioat_chan = kzalloc(sizeof(*ioat_chan), GFP_KERNEL);
if (!ioat_chan) {
device->common.chancnt = i;
break;
}
ioat_chan->device = device;
ioat_chan->reg_base = device->reg_base + (0x80 * (i + 1));
ioat_chan->xfercap = xfercap;
spin_lock_init(&ioat_chan->cleanup_lock);
spin_lock_init(&ioat_chan->desc_lock);
INIT_LIST_HEAD(&ioat_chan->free_desc);
INIT_LIST_HEAD(&ioat_chan->used_desc);
/* This should be made common somewhere in dmaengine.c */
ioat_chan->common.device = &device->common;
ioat_chan->common.client = NULL;
list_add_tail(&ioat_chan->common.device_node,
&device->common.channels);
}
return device->common.chancnt;
}
static struct ioat_desc_sw *ioat_dma_alloc_descriptor(
struct ioat_dma_chan *ioat_chan,
gfp_t flags)
{
struct ioat_dma_descriptor *desc;
struct ioat_desc_sw *desc_sw;
struct ioat_device *ioat_device;
dma_addr_t phys;
ioat_device = to_ioat_device(ioat_chan->common.device);
desc = pci_pool_alloc(ioat_device->dma_pool, flags, &phys);
if (unlikely(!desc))
return NULL;
desc_sw = kzalloc(sizeof(*desc_sw), flags);
if (unlikely(!desc_sw)) {
pci_pool_free(ioat_device->dma_pool, desc, phys);
return NULL;
}
memset(desc, 0, sizeof(*desc));
desc_sw->hw = desc;
desc_sw->phys = phys;
return desc_sw;
}
#define INITIAL_IOAT_DESC_COUNT 128
static void ioat_start_null_desc(struct ioat_dma_chan *ioat_chan);
/* returns the actual number of allocated descriptors */
static int ioat_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
struct ioat_desc_sw *desc = NULL;
u16 chanctrl;
u32 chanerr;
int i;
LIST_HEAD(tmp_list);
/*
* In-use bit automatically set by reading chanctrl
* If 0, we got it, if 1, someone else did
*/
chanctrl = ioatdma_chan_read16(ioat_chan, IOAT_CHANCTRL_OFFSET);
if (chanctrl & IOAT_CHANCTRL_CHANNEL_IN_USE)
return -EBUSY;
/* Setup register to interrupt and write completion status on error */
chanctrl = IOAT_CHANCTRL_CHANNEL_IN_USE |
IOAT_CHANCTRL_ERR_INT_EN |
IOAT_CHANCTRL_ANY_ERR_ABORT_EN |
IOAT_CHANCTRL_ERR_COMPLETION_EN;
ioatdma_chan_write16(ioat_chan, IOAT_CHANCTRL_OFFSET, chanctrl);
chanerr = ioatdma_chan_read32(ioat_chan, IOAT_CHANERR_OFFSET);
if (chanerr) {
printk("IOAT: CHANERR = %x, clearing\n", chanerr);
ioatdma_chan_write32(ioat_chan, IOAT_CHANERR_OFFSET, chanerr);
}
/* Allocate descriptors */
for (i = 0; i < INITIAL_IOAT_DESC_COUNT; i++) {
desc = ioat_dma_alloc_descriptor(ioat_chan, GFP_KERNEL);
if (!desc) {
printk(KERN_ERR "IOAT: Only %d initial descriptors\n", i);
break;
}
list_add_tail(&desc->node, &tmp_list);
}
spin_lock_bh(&ioat_chan->desc_lock);
list_splice(&tmp_list, &ioat_chan->free_desc);
spin_unlock_bh(&ioat_chan->desc_lock);
/* allocate a completion writeback area */
/* doing 2 32bit writes to mmio since 1 64b write doesn't work */
ioat_chan->completion_virt =
pci_pool_alloc(ioat_chan->device->completion_pool,
GFP_KERNEL,
&ioat_chan->completion_addr);
memset(ioat_chan->completion_virt, 0,
sizeof(*ioat_chan->completion_virt));
ioatdma_chan_write32(ioat_chan, IOAT_CHANCMP_OFFSET_LOW,
((u64) ioat_chan->completion_addr) & 0x00000000FFFFFFFF);
ioatdma_chan_write32(ioat_chan, IOAT_CHANCMP_OFFSET_HIGH,
((u64) ioat_chan->completion_addr) >> 32);
ioat_start_null_desc(ioat_chan);
return i;
}
static void ioat_dma_memcpy_cleanup(struct ioat_dma_chan *ioat_chan);
static void ioat_dma_free_chan_resources(struct dma_chan *chan)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
struct ioat_device *ioat_device = to_ioat_device(chan->device);
struct ioat_desc_sw *desc, *_desc;
u16 chanctrl;
int in_use_descs = 0;
ioat_dma_memcpy_cleanup(ioat_chan);
ioatdma_chan_write8(ioat_chan, IOAT_CHANCMD_OFFSET, IOAT_CHANCMD_RESET);
spin_lock_bh(&ioat_chan->desc_lock);
list_for_each_entry_safe(desc, _desc, &ioat_chan->used_desc, node) {
in_use_descs++;
list_del(&desc->node);
pci_pool_free(ioat_device->dma_pool, desc->hw, desc->phys);
kfree(desc);
}
list_for_each_entry_safe(desc, _desc, &ioat_chan->free_desc, node) {
list_del(&desc->node);
pci_pool_free(ioat_device->dma_pool, desc->hw, desc->phys);
kfree(desc);
}
spin_unlock_bh(&ioat_chan->desc_lock);
pci_pool_free(ioat_device->completion_pool,
ioat_chan->completion_virt,
ioat_chan->completion_addr);
/* one is ok since we left it on there on purpose */
if (in_use_descs > 1)
printk(KERN_ERR "IOAT: Freeing %d in use descriptors!\n",
in_use_descs - 1);
ioat_chan->last_completion = ioat_chan->completion_addr = 0;
/* Tell hw the chan is free */
chanctrl = ioatdma_chan_read16(ioat_chan, IOAT_CHANCTRL_OFFSET);
chanctrl &= ~IOAT_CHANCTRL_CHANNEL_IN_USE;
ioatdma_chan_write16(ioat_chan, IOAT_CHANCTRL_OFFSET, chanctrl);
}
/**
* do_ioat_dma_memcpy - actual function that initiates a IOAT DMA transaction
* @ioat_chan: IOAT DMA channel handle
* @dest: DMA destination address
* @src: DMA source address
* @len: transaction length in bytes
*/
static dma_cookie_t do_ioat_dma_memcpy(struct ioat_dma_chan *ioat_chan,
dma_addr_t dest,
dma_addr_t src,
size_t len)
{
struct ioat_desc_sw *first;
struct ioat_desc_sw *prev;
struct ioat_desc_sw *new;
dma_cookie_t cookie;
LIST_HEAD(new_chain);
u32 copy;
size_t orig_len;
dma_addr_t orig_src, orig_dst;
unsigned int desc_count = 0;
unsigned int append = 0;
if (!ioat_chan || !dest || !src)
return -EFAULT;
if (!len)
return ioat_chan->common.cookie;
orig_len = len;
orig_src = src;
orig_dst = dest;
first = NULL;
prev = NULL;
spin_lock_bh(&ioat_chan->desc_lock);
while (len) {
if (!list_empty(&ioat_chan->free_desc)) {
new = to_ioat_desc(ioat_chan->free_desc.next);
list_del(&new->node);
} else {
/* try to get another desc */
new = ioat_dma_alloc_descriptor(ioat_chan, GFP_ATOMIC);
/* will this ever happen? */
/* TODO add upper limit on these */
BUG_ON(!new);
}
copy = min((u32) len, ioat_chan->xfercap);
new->hw->size = copy;
new->hw->ctl = 0;
new->hw->src_addr = src;
new->hw->dst_addr = dest;
new->cookie = 0;
/* chain together the physical address list for the HW */
if (!first)
first = new;
else
prev->hw->next = (u64) new->phys;
prev = new;
len -= copy;
dest += copy;
src += copy;
list_add_tail(&new->node, &new_chain);
desc_count++;
}
new->hw->ctl = IOAT_DMA_DESCRIPTOR_CTL_CP_STS;
new->hw->next = 0;
/* cookie incr and addition to used_list must be atomic */
cookie = ioat_chan->common.cookie;
cookie++;
if (cookie < 0)
cookie = 1;
ioat_chan->common.cookie = new->cookie = cookie;
pci_unmap_addr_set(new, src, orig_src);
pci_unmap_addr_set(new, dst, orig_dst);
pci_unmap_len_set(new, src_len, orig_len);
pci_unmap_len_set(new, dst_len, orig_len);
/* write address into NextDescriptor field of last desc in chain */
to_ioat_desc(ioat_chan->used_desc.prev)->hw->next = first->phys;
list_splice_init(&new_chain, ioat_chan->used_desc.prev);
ioat_chan->pending += desc_count;
if (ioat_chan->pending >= 20) {
append = 1;
ioat_chan->pending = 0;
}
spin_unlock_bh(&ioat_chan->desc_lock);
if (append)
ioatdma_chan_write8(ioat_chan,
IOAT_CHANCMD_OFFSET,
IOAT_CHANCMD_APPEND);
return cookie;
}
/**
* ioat_dma_memcpy_buf_to_buf - wrapper that takes src & dest bufs
* @chan: IOAT DMA channel handle
* @dest: DMA destination address
* @src: DMA source address
* @len: transaction length in bytes
*/
static dma_cookie_t ioat_dma_memcpy_buf_to_buf(struct dma_chan *chan,
void *dest,
void *src,
size_t len)
{
dma_addr_t dest_addr;
dma_addr_t src_addr;
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
dest_addr = pci_map_single(ioat_chan->device->pdev,
dest, len, PCI_DMA_FROMDEVICE);
src_addr = pci_map_single(ioat_chan->device->pdev,
src, len, PCI_DMA_TODEVICE);
return do_ioat_dma_memcpy(ioat_chan, dest_addr, src_addr, len);
}
/**
* ioat_dma_memcpy_buf_to_pg - wrapper, copying from a buf to a page
* @chan: IOAT DMA channel handle
* @page: pointer to the page to copy to
* @offset: offset into that page
* @src: DMA source address
* @len: transaction length in bytes
*/
static dma_cookie_t ioat_dma_memcpy_buf_to_pg(struct dma_chan *chan,
struct page *page,
unsigned int offset,
void *src,
size_t len)
{
dma_addr_t dest_addr;
dma_addr_t src_addr;
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
dest_addr = pci_map_page(ioat_chan->device->pdev,
page, offset, len, PCI_DMA_FROMDEVICE);
src_addr = pci_map_single(ioat_chan->device->pdev,
src, len, PCI_DMA_TODEVICE);
return do_ioat_dma_memcpy(ioat_chan, dest_addr, src_addr, len);
}
/**
* ioat_dma_memcpy_pg_to_pg - wrapper, copying between two pages
* @chan: IOAT DMA channel handle
* @dest_pg: pointer to the page to copy to
* @dest_off: offset into that page
* @src_pg: pointer to the page to copy from
* @src_off: offset into that page
* @len: transaction length in bytes. This is guaranteed not to make a copy
* across a page boundary.
*/
static dma_cookie_t ioat_dma_memcpy_pg_to_pg(struct dma_chan *chan,
struct page *dest_pg,
unsigned int dest_off,
struct page *src_pg,
unsigned int src_off,
size_t len)
{
dma_addr_t dest_addr;
dma_addr_t src_addr;
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
dest_addr = pci_map_page(ioat_chan->device->pdev,
dest_pg, dest_off, len, PCI_DMA_FROMDEVICE);
src_addr = pci_map_page(ioat_chan->device->pdev,
src_pg, src_off, len, PCI_DMA_TODEVICE);
return do_ioat_dma_memcpy(ioat_chan, dest_addr, src_addr, len);
}
/**
* ioat_dma_memcpy_issue_pending - push potentially unrecognized appended descriptors to hw
* @chan: DMA channel handle
*/
static void ioat_dma_memcpy_issue_pending(struct dma_chan *chan)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
if (ioat_chan->pending != 0) {
ioat_chan->pending = 0;
ioatdma_chan_write8(ioat_chan,
IOAT_CHANCMD_OFFSET,
IOAT_CHANCMD_APPEND);
}
}
static void ioat_dma_memcpy_cleanup(struct ioat_dma_chan *chan)
{
unsigned long phys_complete;
struct ioat_desc_sw *desc, *_desc;
dma_cookie_t cookie = 0;
prefetch(chan->completion_virt);
if (!spin_trylock(&chan->cleanup_lock))
return;
/* The completion writeback can happen at any time,
so reads by the driver need to be atomic operations
The descriptor physical addresses are limited to 32-bits
when the CPU can only do a 32-bit mov */
#if (BITS_PER_LONG == 64)
phys_complete =
chan->completion_virt->full & IOAT_CHANSTS_COMPLETED_DESCRIPTOR_ADDR;
#else
phys_complete = chan->completion_virt->low & IOAT_LOW_COMPLETION_MASK;
#endif
if ((chan->completion_virt->full & IOAT_CHANSTS_DMA_TRANSFER_STATUS) ==
IOAT_CHANSTS_DMA_TRANSFER_STATUS_HALTED) {
printk("IOAT: Channel halted, chanerr = %x\n",
ioatdma_chan_read32(chan, IOAT_CHANERR_OFFSET));
/* TODO do something to salvage the situation */
}
if (phys_complete == chan->last_completion) {
spin_unlock(&chan->cleanup_lock);
return;
}
spin_lock_bh(&chan->desc_lock);
list_for_each_entry_safe(desc, _desc, &chan->used_desc, node) {
/*
* Incoming DMA requests may use multiple descriptors, due to
* exceeding xfercap, perhaps. If so, only the last one will
* have a cookie, and require unmapping.
*/
if (desc->cookie) {
cookie = desc->cookie;
/* yes we are unmapping both _page and _single alloc'd
regions with unmap_page. Is this *really* that bad?
*/
pci_unmap_page(chan->device->pdev,
pci_unmap_addr(desc, dst),
pci_unmap_len(desc, dst_len),
PCI_DMA_FROMDEVICE);
pci_unmap_page(chan->device->pdev,
pci_unmap_addr(desc, src),
pci_unmap_len(desc, src_len),
PCI_DMA_TODEVICE);
}
if (desc->phys != phys_complete) {
/* a completed entry, but not the last, so cleanup */
list_del(&desc->node);
list_add_tail(&desc->node, &chan->free_desc);
} else {
/* last used desc. Do not remove, so we can append from
it, but don't look at it next time, either */
desc->cookie = 0;
/* TODO check status bits? */
break;
}
}
spin_unlock_bh(&chan->desc_lock);
chan->last_completion = phys_complete;
if (cookie != 0)
chan->completed_cookie = cookie;
spin_unlock(&chan->cleanup_lock);
}
/**
* ioat_dma_is_complete - poll the status of a IOAT DMA transaction
* @chan: IOAT DMA channel handle
* @cookie: DMA transaction identifier
* @done: if not %NULL, updated with last completed transaction
* @used: if not %NULL, updated with last used transaction
*/
static enum dma_status ioat_dma_is_complete(struct dma_chan *chan,
dma_cookie_t cookie,
dma_cookie_t *done,
dma_cookie_t *used)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
dma_cookie_t last_used;
dma_cookie_t last_complete;
enum dma_status ret;
last_used = chan->cookie;
last_complete = ioat_chan->completed_cookie;
if (done)
*done= last_complete;
if (used)
*used = last_used;
ret = dma_async_is_complete(cookie, last_complete, last_used);
if (ret == DMA_SUCCESS)
return ret;
ioat_dma_memcpy_cleanup(ioat_chan);
last_used = chan->cookie;
last_complete = ioat_chan->completed_cookie;
if (done)
*done= last_complete;
if (used)
*used = last_used;
return dma_async_is_complete(cookie, last_complete, last_used);
}
/* PCI API */
static struct pci_device_id ioat_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT) },
{ 0, }
};
static struct pci_driver ioat_pci_drv = {
.name = "ioatdma",
.id_table = ioat_pci_tbl,
.probe = ioat_probe,
.remove = __devexit_p(ioat_remove),
};
static irqreturn_t ioat_do_interrupt(int irq, void *data)
{
struct ioat_device *instance = data;
unsigned long attnstatus;
u8 intrctrl;
intrctrl = ioatdma_read8(instance, IOAT_INTRCTRL_OFFSET);
if (!(intrctrl & IOAT_INTRCTRL_MASTER_INT_EN))
return IRQ_NONE;
if (!(intrctrl & IOAT_INTRCTRL_INT_STATUS)) {
ioatdma_write8(instance, IOAT_INTRCTRL_OFFSET, intrctrl);
return IRQ_NONE;
}
attnstatus = ioatdma_read32(instance, IOAT_ATTNSTATUS_OFFSET);
printk(KERN_ERR "ioatdma error: interrupt! status %lx\n", attnstatus);
ioatdma_write8(instance, IOAT_INTRCTRL_OFFSET, intrctrl);
return IRQ_HANDLED;
}
static void ioat_start_null_desc(struct ioat_dma_chan *ioat_chan)
{
struct ioat_desc_sw *desc;
spin_lock_bh(&ioat_chan->desc_lock);
if (!list_empty(&ioat_chan->free_desc)) {
desc = to_ioat_desc(ioat_chan->free_desc.next);
list_del(&desc->node);
} else {
/* try to get another desc */
spin_unlock_bh(&ioat_chan->desc_lock);
desc = ioat_dma_alloc_descriptor(ioat_chan, GFP_KERNEL);
spin_lock_bh(&ioat_chan->desc_lock);
/* will this ever happen? */
BUG_ON(!desc);
}
desc->hw->ctl = IOAT_DMA_DESCRIPTOR_NUL;
desc->hw->next = 0;
list_add_tail(&desc->node, &ioat_chan->used_desc);
spin_unlock_bh(&ioat_chan->desc_lock);
#if (BITS_PER_LONG == 64)
ioatdma_chan_write64(ioat_chan, IOAT_CHAINADDR_OFFSET, desc->phys);
#else
ioatdma_chan_write32(ioat_chan,
IOAT_CHAINADDR_OFFSET_LOW,
(u32) desc->phys);
ioatdma_chan_write32(ioat_chan, IOAT_CHAINADDR_OFFSET_HIGH, 0);
#endif
ioatdma_chan_write8(ioat_chan, IOAT_CHANCMD_OFFSET, IOAT_CHANCMD_START);
}
/*
* Perform a IOAT transaction to verify the HW works.
*/
#define IOAT_TEST_SIZE 2000
static int ioat_self_test(struct ioat_device *device)
{
int i;
u8 *src;
u8 *dest;
struct dma_chan *dma_chan;
dma_cookie_t cookie;
int err = 0;
src = kzalloc(sizeof(u8) * IOAT_TEST_SIZE, GFP_KERNEL);
if (!src)
return -ENOMEM;
dest = kzalloc(sizeof(u8) * IOAT_TEST_SIZE, GFP_KERNEL);
if (!dest) {
kfree(src);
return -ENOMEM;
}
/* Fill in src buffer */
for (i = 0; i < IOAT_TEST_SIZE; i++)
src[i] = (u8)i;
/* Start copy, using first DMA channel */
dma_chan = container_of(device->common.channels.next,
struct dma_chan,
device_node);
if (ioat_dma_alloc_chan_resources(dma_chan) < 1) {
err = -ENODEV;
goto out;
}
cookie = ioat_dma_memcpy_buf_to_buf(dma_chan, dest, src, IOAT_TEST_SIZE);
ioat_dma_memcpy_issue_pending(dma_chan);
msleep(1);
if (ioat_dma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
printk(KERN_ERR "ioatdma: Self-test copy timed out, disabling\n");
err = -ENODEV;
goto free_resources;
}
if (memcmp(src, dest, IOAT_TEST_SIZE)) {
printk(KERN_ERR "ioatdma: Self-test copy failed compare, disabling\n");
err = -ENODEV;
goto free_resources;
}
free_resources:
ioat_dma_free_chan_resources(dma_chan);
out:
kfree(src);
kfree(dest);
return err;
}
static int __devinit ioat_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int err;
unsigned long mmio_start, mmio_len;
void __iomem *reg_base;
struct ioat_device *device;
err = pci_enable_device(pdev);
if (err)
goto err_enable_device;
err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
if (err)
err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (err)
goto err_set_dma_mask;
err = pci_request_regions(pdev, ioat_pci_drv.name);
if (err)
goto err_request_regions;
mmio_start = pci_resource_start(pdev, 0);
mmio_len = pci_resource_len(pdev, 0);
reg_base = ioremap(mmio_start, mmio_len);
if (!reg_base) {
err = -ENOMEM;
goto err_ioremap;
}
device = kzalloc(sizeof(*device), GFP_KERNEL);
if (!device) {
err = -ENOMEM;
goto err_kzalloc;
}
/* DMA coherent memory pool for DMA descriptor allocations */
device->dma_pool = pci_pool_create("dma_desc_pool", pdev,
sizeof(struct ioat_dma_descriptor), 64, 0);
if (!device->dma_pool) {
err = -ENOMEM;
goto err_dma_pool;
}
device->completion_pool = pci_pool_create("completion_pool", pdev, sizeof(u64), SMP_CACHE_BYTES, SMP_CACHE_BYTES);
if (!device->completion_pool) {
err = -ENOMEM;
goto err_completion_pool;
}
device->pdev = pdev;
pci_set_drvdata(pdev, device);
#ifdef CONFIG_PCI_MSI
if (pci_enable_msi(pdev) == 0) {
device->msi = 1;
} else {
device->msi = 0;
}
#endif
err = request_irq(pdev->irq, &ioat_do_interrupt, IRQF_SHARED, "ioat",
device);
if (err)
goto err_irq;
device->reg_base = reg_base;
ioatdma_write8(device, IOAT_INTRCTRL_OFFSET, IOAT_INTRCTRL_MASTER_INT_EN);
pci_set_master(pdev);
INIT_LIST_HEAD(&device->common.channels);
enumerate_dma_channels(device);
device->common.device_alloc_chan_resources = ioat_dma_alloc_chan_resources;
device->common.device_free_chan_resources = ioat_dma_free_chan_resources;
device->common.device_memcpy_buf_to_buf = ioat_dma_memcpy_buf_to_buf;
device->common.device_memcpy_buf_to_pg = ioat_dma_memcpy_buf_to_pg;
device->common.device_memcpy_pg_to_pg = ioat_dma_memcpy_pg_to_pg;
device->common.device_memcpy_complete = ioat_dma_is_complete;
device->common.device_memcpy_issue_pending = ioat_dma_memcpy_issue_pending;
printk(KERN_INFO "Intel(R) I/OAT DMA Engine found, %d channels\n",
device->common.chancnt);
err = ioat_self_test(device);
if (err)
goto err_self_test;
dma_async_device_register(&device->common);
return 0;
err_self_test:
err_irq:
pci_pool_destroy(device->completion_pool);
err_completion_pool:
pci_pool_destroy(device->dma_pool);
err_dma_pool:
kfree(device);
err_kzalloc:
iounmap(reg_base);
err_ioremap:
pci_release_regions(pdev);
err_request_regions:
err_set_dma_mask:
pci_disable_device(pdev);
err_enable_device:
return err;
}
static void __devexit ioat_remove(struct pci_dev *pdev)
{
struct ioat_device *device;
struct dma_chan *chan, *_chan;
struct ioat_dma_chan *ioat_chan;
device = pci_get_drvdata(pdev);
dma_async_device_unregister(&device->common);
free_irq(device->pdev->irq, device);
#ifdef CONFIG_PCI_MSI
if (device->msi)
pci_disable_msi(device->pdev);
#endif
pci_pool_destroy(device->dma_pool);
pci_pool_destroy(device->completion_pool);
iounmap(device->reg_base);
pci_release_regions(pdev);
pci_disable_device(pdev);
list_for_each_entry_safe(chan, _chan, &device->common.channels, device_node) {
ioat_chan = to_ioat_chan(chan);
list_del(&chan->device_node);
kfree(ioat_chan);
}
kfree(device);
}
/* MODULE API */
MODULE_VERSION("1.7");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Intel Corporation");
static int __init ioat_init_module(void)
{
/* it's currently unsafe to unload this module */
/* if forced, worst case is that rmmod hangs */
__unsafe(THIS_MODULE);
return pci_register_driver(&ioat_pci_drv);
}
module_init(ioat_init_module);
static void __exit ioat_exit_module(void)
{
pci_unregister_driver(&ioat_pci_drv);
}
module_exit(ioat_exit_module);