android_kernel_xiaomi_sm8350/drivers/base/arch_topology.c
Greg Kroah-Hartman 3fc02367ac This is the 5.4.221 stable release
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAmNc4nUACgkQONu9yGCS
 aT6NRg//X4IyNkBvuf6LaDBOiu+tR59A76eJVP/s+D0hD6PsxnMoezDbunrQsf79
 lm/eZD0tF4vKM5M/mSmXg0I663tyLoYUeWig9zkqAC4j8WdfeyrPrUBCU3bEn91I
 Dkwg7YP+M1ZbxSNyKvVO26LYgc6pRsX3WyN6+vhwVrX/0vlD1cmpYs59zgQVrQyC
 SnCt+QnrFDOfbMwgXfPrOqthAunk83dzf7692CosA7eQYRluPC0MTfos/nKWlPxy
 R+eVpQgZ8QLOb/59xwebPulWSTTdglED+3/+NXcgLlgsGV8/Q+c1iYmvPPYmVeCY
 htxjcy24ZK5PlHrUEJVN7EONKJEZWflbmQRShGyz6AL49F1C0fgpoGlRH5XDOQcz
 I48EpgKVIZxGSkImkrfTBS98AFg04a3qePUNnafgbMkNlcm2AiEkaKvjZ2VOMgFT
 ZW1k9WjrOWvvmF0QxGBbw67luaW5l4I4Ja/It1JJS+aGMt9hqgr9dzwqfMp9lSW0
 Qp7IgbbOifC4OUtJ5+KnASpjNuj2HQ7sSgsqrTuGxginHpQA526Ngam1CKWEn6C4
 H4VZoX3RdsC6s6ttBFLT/nhRlEIDN/Z2YMDNxdZxNbg15ZYflcrNvJU7wZ3aid6c
 qpMmf+QizbURJrkJQFiTTvBSJ4PtbVo2NwALJtOWZDEfTLE/E2o=
 =Do3N
 -----END PGP SIGNATURE-----

Merge 5.4.221 into android11-5.4-lts

Changes in 5.4.221
	xfs: open code insert range extent split helper
	xfs: rework insert range into an atomic operation
	xfs: rework collapse range into an atomic operation
	xfs: add a function to deal with corrupt buffers post-verifiers
	xfs: xfs_buf_corruption_error should take __this_address
	xfs: fix buffer corruption reporting when xfs_dir3_free_header_check fails
	xfs: check owner of dir3 data blocks
	xfs: check owner of dir3 blocks
	xfs: Use scnprintf() for avoiding potential buffer overflow
	xfs: remove the xfs_disk_dquot_t and xfs_dquot_t
	xfs: remove the xfs_dq_logitem_t typedef
	xfs: remove the xfs_qoff_logitem_t typedef
	xfs: Replace function declaration by actual definition
	xfs: factor out quotaoff intent AIL removal and memory free
	xfs: fix unmount hang and memory leak on shutdown during quotaoff
	xfs: preserve default grace interval during quotacheck
	xfs: Lower CIL flush limit for large logs
	xfs: Throttle commits on delayed background CIL push
	xfs: factor common AIL item deletion code
	xfs: tail updates only need to occur when LSN changes
	xfs: don't write a corrupt unmount record to force summary counter recalc
	xfs: trylock underlying buffer on dquot flush
	xfs: factor out a new xfs_log_force_inode helper
	xfs: reflink should force the log out if mounted with wsync
	xfs: move inode flush to the sync workqueue
	xfs: fix use-after-free on CIL context on shutdown
	ocfs2: clear dinode links count in case of error
	ocfs2: fix BUG when iput after ocfs2_mknod fails
	x86/microcode/AMD: Apply the patch early on every logical thread
	hwmon/coretemp: Handle large core ID value
	ata: ahci-imx: Fix MODULE_ALIAS
	ata: ahci: Match EM_MAX_SLOTS with SATA_PMP_MAX_PORTS
	KVM: arm64: vgic: Fix exit condition in scan_its_table()
	media: venus: dec: Handle the case where find_format fails
	arm64: errata: Remove AES hwcap for COMPAT tasks
	r8152: add PID for the Lenovo OneLink+ Dock
	btrfs: fix processing of delayed data refs during backref walking
	btrfs: fix processing of delayed tree block refs during backref walking
	ACPI: extlog: Handle multiple records
	tipc: Fix recognition of trial period
	tipc: fix an information leak in tipc_topsrv_kern_subscr
	HID: magicmouse: Do not set BTN_MOUSE on double report
	net/atm: fix proc_mpc_write incorrect return value
	net: phy: dp83867: Extend RX strap quirk for SGMII mode
	net: sched: cake: fix null pointer access issue when cake_init() fails
	net: hns: fix possible memory leak in hnae_ae_register()
	iommu/vt-d: Clean up si_domain in the init_dmars() error path
	arm64: topology: move store_cpu_topology() to shared code
	riscv: topology: fix default topology reporting
	ACPI: video: Force backlight native for more TongFang devices
	Makefile.debug: re-enable debug info for .S files
	hv_netvsc: Fix race between VF offering and VF association message from host
	mm: /proc/pid/smaps_rollup: fix no vma's null-deref
	Linux 5.4.221

Change-Id: I6f01d64978900d3bf878c86075beb1969e810825
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
2022-11-16 16:06:10 +00:00

589 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Arch specific cpu topology information
*
* Copyright (C) 2016, ARM Ltd.
* Written by: Juri Lelli, ARM Ltd.
*/
#include <linux/acpi.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/sched/topology.h>
#include <linux/cpuset.h>
#include <linux/cpumask.h>
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <trace/hooks/topology.h>
DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
DEFINE_PER_CPU(unsigned long, max_cpu_freq);
DEFINE_PER_CPU(unsigned long, max_freq_scale) = SCHED_CAPACITY_SCALE;
void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
unsigned long max_freq)
{
unsigned long scale;
int i;
scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
trace_android_vh_arch_set_freq_scale(cpus, cur_freq, max_freq, &scale);
for_each_cpu(i, cpus){
per_cpu(freq_scale, i) = scale;
per_cpu(max_cpu_freq, i) = max_freq;
}
}
void arch_set_max_freq_scale(struct cpumask *cpus,
unsigned long policy_max_freq)
{
unsigned long scale, max_freq;
int cpu = cpumask_first(cpus);
if (cpu > nr_cpu_ids)
return;
max_freq = per_cpu(max_cpu_freq, cpu);
if (!max_freq)
return;
scale = (policy_max_freq << SCHED_CAPACITY_SHIFT) / max_freq;
trace_android_vh_arch_set_freq_scale(cpus, policy_max_freq, max_freq, &scale);
for_each_cpu(cpu, cpus)
per_cpu(max_freq_scale, cpu) = scale;
}
DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
{
per_cpu(cpu_scale, cpu) = capacity;
}
static ssize_t cpu_capacity_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cpu *cpu = container_of(dev, struct cpu, dev);
return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
}
static void update_topology_flags_workfn(struct work_struct *work);
static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
static DEVICE_ATTR_RO(cpu_capacity);
static int register_cpu_capacity_sysctl(void)
{
int i;
struct device *cpu;
for_each_possible_cpu(i) {
cpu = get_cpu_device(i);
if (!cpu) {
pr_err("%s: too early to get CPU%d device!\n",
__func__, i);
continue;
}
device_create_file(cpu, &dev_attr_cpu_capacity);
}
return 0;
}
subsys_initcall(register_cpu_capacity_sysctl);
static int update_topology;
int topology_update_cpu_topology(void)
{
return update_topology;
}
/*
* Updating the sched_domains can't be done directly from cpufreq callbacks
* due to locking, so queue the work for later.
*/
static void update_topology_flags_workfn(struct work_struct *work)
{
update_topology = 1;
rebuild_sched_domains();
pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
update_topology = 0;
}
static u32 capacity_scale;
static u32 *raw_capacity;
static int free_raw_capacity(void)
{
kfree(raw_capacity);
raw_capacity = NULL;
return 0;
}
void topology_normalize_cpu_scale(void)
{
u64 capacity;
int cpu;
if (!raw_capacity)
return;
pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
for_each_possible_cpu(cpu) {
pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
cpu, raw_capacity[cpu]);
capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
/ capacity_scale;
topology_set_cpu_scale(cpu, capacity);
pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
cpu, topology_get_cpu_scale(cpu));
}
}
bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
{
static bool cap_parsing_failed;
int ret;
u32 cpu_capacity;
if (cap_parsing_failed)
return false;
ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
&cpu_capacity);
if (!ret) {
if (!raw_capacity) {
raw_capacity = kcalloc(num_possible_cpus(),
sizeof(*raw_capacity),
GFP_KERNEL);
if (!raw_capacity) {
cap_parsing_failed = true;
return false;
}
}
capacity_scale = max(cpu_capacity, capacity_scale);
raw_capacity[cpu] = cpu_capacity;
pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
cpu_node, raw_capacity[cpu]);
} else {
if (raw_capacity) {
pr_err("cpu_capacity: missing %pOF raw capacity\n",
cpu_node);
pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
}
cap_parsing_failed = true;
free_raw_capacity();
}
return !ret;
}
#ifdef CONFIG_CPU_FREQ
static cpumask_var_t cpus_to_visit;
static void parsing_done_workfn(struct work_struct *work);
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
static int
init_cpu_capacity_callback(struct notifier_block *nb,
unsigned long val,
void *data)
{
struct cpufreq_policy *policy = data;
int cpu;
if (!raw_capacity)
return 0;
if (val != CPUFREQ_CREATE_POLICY)
return 0;
pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
cpumask_pr_args(policy->related_cpus),
cpumask_pr_args(cpus_to_visit));
cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
for_each_cpu(cpu, policy->related_cpus) {
raw_capacity[cpu] = topology_get_cpu_scale(cpu) *
policy->cpuinfo.max_freq / 1000UL;
capacity_scale = max(raw_capacity[cpu], capacity_scale);
}
if (cpumask_empty(cpus_to_visit)) {
topology_normalize_cpu_scale();
schedule_work(&update_topology_flags_work);
free_raw_capacity();
pr_debug("cpu_capacity: parsing done\n");
schedule_work(&parsing_done_work);
}
return 0;
}
static struct notifier_block init_cpu_capacity_notifier = {
.notifier_call = init_cpu_capacity_callback,
};
static int __init register_cpufreq_notifier(void)
{
int ret;
/*
* on ACPI-based systems we need to use the default cpu capacity
* until we have the necessary code to parse the cpu capacity, so
* skip registering cpufreq notifier.
*/
if (!acpi_disabled || !raw_capacity)
return -EINVAL;
if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
return -ENOMEM;
cpumask_copy(cpus_to_visit, cpu_possible_mask);
ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
CPUFREQ_POLICY_NOTIFIER);
if (ret)
free_cpumask_var(cpus_to_visit);
return ret;
}
core_initcall(register_cpufreq_notifier);
static void parsing_done_workfn(struct work_struct *work)
{
cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
CPUFREQ_POLICY_NOTIFIER);
free_cpumask_var(cpus_to_visit);
}
#else
core_initcall(free_raw_capacity);
#endif
#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
static int __init get_cpu_for_node(struct device_node *node)
{
struct device_node *cpu_node;
int cpu;
cpu_node = of_parse_phandle(node, "cpu", 0);
if (!cpu_node)
return -1;
cpu = of_cpu_node_to_id(cpu_node);
if (cpu >= 0)
topology_parse_cpu_capacity(cpu_node, cpu);
else
pr_crit("Unable to find CPU node for %pOF\n", cpu_node);
of_node_put(cpu_node);
return cpu;
}
static int __init parse_core(struct device_node *core, int package_id,
int core_id)
{
char name[20];
bool leaf = true;
int i = 0;
int cpu;
struct device_node *t;
do {
snprintf(name, sizeof(name), "thread%d", i);
t = of_get_child_by_name(core, name);
if (t) {
leaf = false;
cpu = get_cpu_for_node(t);
if (cpu >= 0) {
cpu_topology[cpu].package_id = package_id;
cpu_topology[cpu].core_id = core_id;
cpu_topology[cpu].thread_id = i;
} else {
pr_err("%pOF: Can't get CPU for thread\n",
t);
of_node_put(t);
return -EINVAL;
}
of_node_put(t);
}
i++;
} while (t);
cpu = get_cpu_for_node(core);
if (cpu >= 0) {
if (!leaf) {
pr_err("%pOF: Core has both threads and CPU\n",
core);
return -EINVAL;
}
cpu_topology[cpu].package_id = package_id;
cpu_topology[cpu].core_id = core_id;
} else if (leaf) {
pr_err("%pOF: Can't get CPU for leaf core\n", core);
return -EINVAL;
}
return 0;
}
static int __init parse_cluster(struct device_node *cluster, int depth)
{
char name[20];
bool leaf = true;
bool has_cores = false;
struct device_node *c;
static int package_id __initdata;
int core_id = 0;
int i, ret;
/*
* First check for child clusters; we currently ignore any
* information about the nesting of clusters and present the
* scheduler with a flat list of them.
*/
i = 0;
do {
snprintf(name, sizeof(name), "cluster%d", i);
c = of_get_child_by_name(cluster, name);
if (c) {
leaf = false;
ret = parse_cluster(c, depth + 1);
of_node_put(c);
if (ret != 0)
return ret;
}
i++;
} while (c);
/* Now check for cores */
i = 0;
do {
snprintf(name, sizeof(name), "core%d", i);
c = of_get_child_by_name(cluster, name);
if (c) {
has_cores = true;
if (depth == 0) {
pr_err("%pOF: cpu-map children should be clusters\n",
c);
of_node_put(c);
return -EINVAL;
}
if (leaf) {
ret = parse_core(c, package_id, core_id++);
} else {
pr_err("%pOF: Non-leaf cluster with core %s\n",
cluster, name);
ret = -EINVAL;
}
of_node_put(c);
if (ret != 0)
return ret;
}
i++;
} while (c);
if (leaf && !has_cores)
pr_warn("%pOF: empty cluster\n", cluster);
if (leaf)
package_id++;
return 0;
}
static int __init parse_dt_topology(void)
{
struct device_node *cn, *map;
int ret = 0;
int cpu;
cn = of_find_node_by_path("/cpus");
if (!cn) {
pr_err("No CPU information found in DT\n");
return 0;
}
/*
* When topology is provided cpu-map is essentially a root
* cluster with restricted subnodes.
*/
map = of_get_child_by_name(cn, "cpu-map");
if (!map)
goto out;
ret = parse_cluster(map, 0);
if (ret != 0)
goto out_map;
topology_normalize_cpu_scale();
/*
* Check that all cores are in the topology; the SMP code will
* only mark cores described in the DT as possible.
*/
for_each_possible_cpu(cpu)
if (cpu_topology[cpu].package_id == -1)
ret = -EINVAL;
out_map:
of_node_put(map);
out:
of_node_put(cn);
return ret;
}
#endif
/*
* cpu topology table
*/
struct cpu_topology cpu_topology[NR_CPUS];
EXPORT_SYMBOL_GPL(cpu_topology);
const struct cpumask *cpu_coregroup_mask(int cpu)
{
const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
/* Find the smaller of NUMA, core or LLC siblings */
if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
/* not numa in package, lets use the package siblings */
core_mask = &cpu_topology[cpu].core_sibling;
}
if (cpu_topology[cpu].llc_id != -1) {
if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
core_mask = &cpu_topology[cpu].llc_sibling;
}
return core_mask;
}
void update_siblings_masks(unsigned int cpuid)
{
struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
int cpu;
/* update core and thread sibling masks */
for_each_online_cpu(cpu) {
cpu_topo = &cpu_topology[cpu];
if (cpu_topo->llc_id != -1 && cpuid_topo->llc_id == cpu_topo->llc_id) {
cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
}
if (cpuid_topo->package_id != cpu_topo->package_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
if (cpuid_topo->core_id != cpu_topo->core_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
}
}
static void clear_cpu_topology(int cpu)
{
struct cpu_topology *cpu_topo = &cpu_topology[cpu];
cpumask_clear(&cpu_topo->llc_sibling);
cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
cpumask_clear(&cpu_topo->core_sibling);
cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
cpumask_clear(&cpu_topo->thread_sibling);
cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
}
void __init reset_cpu_topology(void)
{
unsigned int cpu;
for_each_possible_cpu(cpu) {
struct cpu_topology *cpu_topo = &cpu_topology[cpu];
cpu_topo->thread_id = -1;
cpu_topo->core_id = -1;
cpu_topo->package_id = -1;
cpu_topo->llc_id = -1;
clear_cpu_topology(cpu);
}
}
void remove_cpu_topology(unsigned int cpu)
{
int sibling;
for_each_cpu(sibling, topology_core_cpumask(cpu))
cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
for_each_cpu(sibling, topology_sibling_cpumask(cpu))
cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
for_each_cpu(sibling, topology_llc_cpumask(cpu))
cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
clear_cpu_topology(cpu);
}
__weak int __init parse_acpi_topology(void)
{
return 0;
}
#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
void __init init_cpu_topology(void)
{
reset_cpu_topology();
/*
* Discard anything that was parsed if we hit an error so we
* don't use partial information.
*/
if (parse_acpi_topology())
reset_cpu_topology();
else if (of_have_populated_dt() && parse_dt_topology())
reset_cpu_topology();
}
void store_cpu_topology(unsigned int cpuid)
{
struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
if (cpuid_topo->package_id != -1)
goto topology_populated;
cpuid_topo->thread_id = -1;
cpuid_topo->core_id = cpuid;
cpuid_topo->package_id = cpu_to_node(cpuid);
pr_debug("CPU%u: package %d core %d thread %d\n",
cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
cpuid_topo->thread_id);
topology_populated:
update_siblings_masks(cpuid);
}
#endif