android_kernel_xiaomi_sm8350/arch/powerpc/kernel/prom.c
Benjamin Herrenschmidt 0ebfff1491 [POWERPC] Add new interrupt mapping core and change platforms to use it
This adds the new irq remapper core and removes the old one.  Because
there are some fundamental conflicts with the old code, like the value
of NO_IRQ which I'm now setting to 0 (as per discussions with Linus),
etc..., this commit also changes the relevant platform and driver code
over to use the new remapper (so as not to cause difficulties later
in bisecting).

This patch removes the old pre-parsing of the open firmware interrupt
tree along with all the bogus assumptions it made to try to renumber
interrupts according to the platform. This is all to be handled by the
new code now.

For the pSeries XICS interrupt controller, a single remapper host is
created for the whole machine regardless of how many interrupt
presentation and source controllers are found, and it's set to match
any device node that isn't a 8259.  That works fine on pSeries and
avoids having to deal with some of the complexities of split source
controllers vs. presentation controllers in the pSeries device trees.

The powerpc i8259 PIC driver now always requests the legacy interrupt
range. It also has the feature of being able to match any device node
(including NULL) if passed no device node as an input. That will help
porting over platforms with broken device-trees like Pegasos who don't
have a proper interrupt tree.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-07-03 21:36:01 +10:00

1715 lines
40 KiB
C

/*
* Procedures for creating, accessing and interpreting the device tree.
*
* Paul Mackerras August 1996.
* Copyright (C) 1996-2005 Paul Mackerras.
*
* Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
* {engebret|bergner}@us.ibm.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <stdarg.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/threads.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/stringify.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/kexec.h>
#include <linux/debugfs.h>
#include <linux/irq.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/lmb.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/kdump.h>
#include <asm/smp.h>
#include <asm/system.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/pci.h>
#include <asm/iommu.h>
#include <asm/btext.h>
#include <asm/sections.h>
#include <asm/machdep.h>
#include <asm/pSeries_reconfig.h>
#include <asm/pci-bridge.h>
#include <asm/kexec.h>
#ifdef DEBUG
#define DBG(fmt...) printk(KERN_ERR fmt)
#else
#define DBG(fmt...)
#endif
static int __initdata dt_root_addr_cells;
static int __initdata dt_root_size_cells;
#ifdef CONFIG_PPC64
int __initdata iommu_is_off;
int __initdata iommu_force_on;
unsigned long tce_alloc_start, tce_alloc_end;
#endif
typedef u32 cell_t;
#if 0
static struct boot_param_header *initial_boot_params __initdata;
#else
struct boot_param_header *initial_boot_params;
#endif
static struct device_node *allnodes = NULL;
/* use when traversing tree through the allnext, child, sibling,
* or parent members of struct device_node.
*/
static DEFINE_RWLOCK(devtree_lock);
/* export that to outside world */
struct device_node *of_chosen;
static inline char *find_flat_dt_string(u32 offset)
{
return ((char *)initial_boot_params) +
initial_boot_params->off_dt_strings + offset;
}
/**
* This function is used to scan the flattened device-tree, it is
* used to extract the memory informations at boot before we can
* unflatten the tree
*/
int __init of_scan_flat_dt(int (*it)(unsigned long node,
const char *uname, int depth,
void *data),
void *data)
{
unsigned long p = ((unsigned long)initial_boot_params) +
initial_boot_params->off_dt_struct;
int rc = 0;
int depth = -1;
do {
u32 tag = *((u32 *)p);
char *pathp;
p += 4;
if (tag == OF_DT_END_NODE) {
depth --;
continue;
}
if (tag == OF_DT_NOP)
continue;
if (tag == OF_DT_END)
break;
if (tag == OF_DT_PROP) {
u32 sz = *((u32 *)p);
p += 8;
if (initial_boot_params->version < 0x10)
p = _ALIGN(p, sz >= 8 ? 8 : 4);
p += sz;
p = _ALIGN(p, 4);
continue;
}
if (tag != OF_DT_BEGIN_NODE) {
printk(KERN_WARNING "Invalid tag %x scanning flattened"
" device tree !\n", tag);
return -EINVAL;
}
depth++;
pathp = (char *)p;
p = _ALIGN(p + strlen(pathp) + 1, 4);
if ((*pathp) == '/') {
char *lp, *np;
for (lp = NULL, np = pathp; *np; np++)
if ((*np) == '/')
lp = np+1;
if (lp != NULL)
pathp = lp;
}
rc = it(p, pathp, depth, data);
if (rc != 0)
break;
} while(1);
return rc;
}
unsigned long __init of_get_flat_dt_root(void)
{
unsigned long p = ((unsigned long)initial_boot_params) +
initial_boot_params->off_dt_struct;
while(*((u32 *)p) == OF_DT_NOP)
p += 4;
BUG_ON (*((u32 *)p) != OF_DT_BEGIN_NODE);
p += 4;
return _ALIGN(p + strlen((char *)p) + 1, 4);
}
/**
* This function can be used within scan_flattened_dt callback to get
* access to properties
*/
void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
unsigned long *size)
{
unsigned long p = node;
do {
u32 tag = *((u32 *)p);
u32 sz, noff;
const char *nstr;
p += 4;
if (tag == OF_DT_NOP)
continue;
if (tag != OF_DT_PROP)
return NULL;
sz = *((u32 *)p);
noff = *((u32 *)(p + 4));
p += 8;
if (initial_boot_params->version < 0x10)
p = _ALIGN(p, sz >= 8 ? 8 : 4);
nstr = find_flat_dt_string(noff);
if (nstr == NULL) {
printk(KERN_WARNING "Can't find property index"
" name !\n");
return NULL;
}
if (strcmp(name, nstr) == 0) {
if (size)
*size = sz;
return (void *)p;
}
p += sz;
p = _ALIGN(p, 4);
} while(1);
}
int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
{
const char* cp;
unsigned long cplen, l;
cp = of_get_flat_dt_prop(node, "compatible", &cplen);
if (cp == NULL)
return 0;
while (cplen > 0) {
if (strncasecmp(cp, compat, strlen(compat)) == 0)
return 1;
l = strlen(cp) + 1;
cp += l;
cplen -= l;
}
return 0;
}
static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
unsigned long align)
{
void *res;
*mem = _ALIGN(*mem, align);
res = (void *)*mem;
*mem += size;
return res;
}
static unsigned long __init unflatten_dt_node(unsigned long mem,
unsigned long *p,
struct device_node *dad,
struct device_node ***allnextpp,
unsigned long fpsize)
{
struct device_node *np;
struct property *pp, **prev_pp = NULL;
char *pathp;
u32 tag;
unsigned int l, allocl;
int has_name = 0;
int new_format = 0;
tag = *((u32 *)(*p));
if (tag != OF_DT_BEGIN_NODE) {
printk("Weird tag at start of node: %x\n", tag);
return mem;
}
*p += 4;
pathp = (char *)*p;
l = allocl = strlen(pathp) + 1;
*p = _ALIGN(*p + l, 4);
/* version 0x10 has a more compact unit name here instead of the full
* path. we accumulate the full path size using "fpsize", we'll rebuild
* it later. We detect this because the first character of the name is
* not '/'.
*/
if ((*pathp) != '/') {
new_format = 1;
if (fpsize == 0) {
/* root node: special case. fpsize accounts for path
* plus terminating zero. root node only has '/', so
* fpsize should be 2, but we want to avoid the first
* level nodes to have two '/' so we use fpsize 1 here
*/
fpsize = 1;
allocl = 2;
} else {
/* account for '/' and path size minus terminal 0
* already in 'l'
*/
fpsize += l;
allocl = fpsize;
}
}
np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
__alignof__(struct device_node));
if (allnextpp) {
memset(np, 0, sizeof(*np));
np->full_name = ((char*)np) + sizeof(struct device_node);
if (new_format) {
char *p = np->full_name;
/* rebuild full path for new format */
if (dad && dad->parent) {
strcpy(p, dad->full_name);
#ifdef DEBUG
if ((strlen(p) + l + 1) != allocl) {
DBG("%s: p: %d, l: %d, a: %d\n",
pathp, (int)strlen(p), l, allocl);
}
#endif
p += strlen(p);
}
*(p++) = '/';
memcpy(p, pathp, l);
} else
memcpy(np->full_name, pathp, l);
prev_pp = &np->properties;
**allnextpp = np;
*allnextpp = &np->allnext;
if (dad != NULL) {
np->parent = dad;
/* we temporarily use the next field as `last_child'*/
if (dad->next == 0)
dad->child = np;
else
dad->next->sibling = np;
dad->next = np;
}
kref_init(&np->kref);
}
while(1) {
u32 sz, noff;
char *pname;
tag = *((u32 *)(*p));
if (tag == OF_DT_NOP) {
*p += 4;
continue;
}
if (tag != OF_DT_PROP)
break;
*p += 4;
sz = *((u32 *)(*p));
noff = *((u32 *)((*p) + 4));
*p += 8;
if (initial_boot_params->version < 0x10)
*p = _ALIGN(*p, sz >= 8 ? 8 : 4);
pname = find_flat_dt_string(noff);
if (pname == NULL) {
printk("Can't find property name in list !\n");
break;
}
if (strcmp(pname, "name") == 0)
has_name = 1;
l = strlen(pname) + 1;
pp = unflatten_dt_alloc(&mem, sizeof(struct property),
__alignof__(struct property));
if (allnextpp) {
if (strcmp(pname, "linux,phandle") == 0) {
np->node = *((u32 *)*p);
if (np->linux_phandle == 0)
np->linux_phandle = np->node;
}
if (strcmp(pname, "ibm,phandle") == 0)
np->linux_phandle = *((u32 *)*p);
pp->name = pname;
pp->length = sz;
pp->value = (void *)*p;
*prev_pp = pp;
prev_pp = &pp->next;
}
*p = _ALIGN((*p) + sz, 4);
}
/* with version 0x10 we may not have the name property, recreate
* it here from the unit name if absent
*/
if (!has_name) {
char *p = pathp, *ps = pathp, *pa = NULL;
int sz;
while (*p) {
if ((*p) == '@')
pa = p;
if ((*p) == '/')
ps = p + 1;
p++;
}
if (pa < ps)
pa = p;
sz = (pa - ps) + 1;
pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
__alignof__(struct property));
if (allnextpp) {
pp->name = "name";
pp->length = sz;
pp->value = (unsigned char *)(pp + 1);
*prev_pp = pp;
prev_pp = &pp->next;
memcpy(pp->value, ps, sz - 1);
((char *)pp->value)[sz - 1] = 0;
DBG("fixed up name for %s -> %s\n", pathp, pp->value);
}
}
if (allnextpp) {
*prev_pp = NULL;
np->name = get_property(np, "name", NULL);
np->type = get_property(np, "device_type", NULL);
if (!np->name)
np->name = "<NULL>";
if (!np->type)
np->type = "<NULL>";
}
while (tag == OF_DT_BEGIN_NODE) {
mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
tag = *((u32 *)(*p));
}
if (tag != OF_DT_END_NODE) {
printk("Weird tag at end of node: %x\n", tag);
return mem;
}
*p += 4;
return mem;
}
static int __init early_parse_mem(char *p)
{
if (!p)
return 1;
memory_limit = PAGE_ALIGN(memparse(p, &p));
DBG("memory limit = 0x%lx\n", memory_limit);
return 0;
}
early_param("mem", early_parse_mem);
/*
* The device tree may be allocated below our memory limit, or inside the
* crash kernel region for kdump. If so, move it out now.
*/
static void move_device_tree(void)
{
unsigned long start, size;
void *p;
DBG("-> move_device_tree\n");
start = __pa(initial_boot_params);
size = initial_boot_params->totalsize;
if ((memory_limit && (start + size) > memory_limit) ||
overlaps_crashkernel(start, size)) {
p = __va(lmb_alloc_base(size, PAGE_SIZE, lmb.rmo_size));
memcpy(p, initial_boot_params, size);
initial_boot_params = (struct boot_param_header *)p;
DBG("Moved device tree to 0x%p\n", p);
}
DBG("<- move_device_tree\n");
}
/**
* unflattens the device-tree passed by the firmware, creating the
* tree of struct device_node. It also fills the "name" and "type"
* pointers of the nodes so the normal device-tree walking functions
* can be used (this used to be done by finish_device_tree)
*/
void __init unflatten_device_tree(void)
{
unsigned long start, mem, size;
struct device_node **allnextp = &allnodes;
DBG(" -> unflatten_device_tree()\n");
/* First pass, scan for size */
start = ((unsigned long)initial_boot_params) +
initial_boot_params->off_dt_struct;
size = unflatten_dt_node(0, &start, NULL, NULL, 0);
size = (size | 3) + 1;
DBG(" size is %lx, allocating...\n", size);
/* Allocate memory for the expanded device tree */
mem = lmb_alloc(size + 4, __alignof__(struct device_node));
mem = (unsigned long) __va(mem);
((u32 *)mem)[size / 4] = 0xdeadbeef;
DBG(" unflattening %lx...\n", mem);
/* Second pass, do actual unflattening */
start = ((unsigned long)initial_boot_params) +
initial_boot_params->off_dt_struct;
unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
if (*((u32 *)start) != OF_DT_END)
printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
if (((u32 *)mem)[size / 4] != 0xdeadbeef)
printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
((u32 *)mem)[size / 4] );
*allnextp = NULL;
/* Get pointer to OF "/chosen" node for use everywhere */
of_chosen = of_find_node_by_path("/chosen");
if (of_chosen == NULL)
of_chosen = of_find_node_by_path("/chosen@0");
DBG(" <- unflatten_device_tree()\n");
}
/*
* ibm,pa-features is a per-cpu property that contains a string of
* attribute descriptors, each of which has a 2 byte header plus up
* to 254 bytes worth of processor attribute bits. First header
* byte specifies the number of bytes following the header.
* Second header byte is an "attribute-specifier" type, of which
* zero is the only currently-defined value.
* Implementation: Pass in the byte and bit offset for the feature
* that we are interested in. The function will return -1 if the
* pa-features property is missing, or a 1/0 to indicate if the feature
* is supported/not supported. Note that the bit numbers are
* big-endian to match the definition in PAPR.
*/
static struct ibm_pa_feature {
unsigned long cpu_features; /* CPU_FTR_xxx bit */
unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */
unsigned char pabyte; /* byte number in ibm,pa-features */
unsigned char pabit; /* bit number (big-endian) */
unsigned char invert; /* if 1, pa bit set => clear feature */
} ibm_pa_features[] __initdata = {
{0, PPC_FEATURE_HAS_MMU, 0, 0, 0},
{0, PPC_FEATURE_HAS_FPU, 0, 1, 0},
{CPU_FTR_SLB, 0, 0, 2, 0},
{CPU_FTR_CTRL, 0, 0, 3, 0},
{CPU_FTR_NOEXECUTE, 0, 0, 6, 0},
{CPU_FTR_NODSISRALIGN, 0, 1, 1, 1},
#if 0
/* put this back once we know how to test if firmware does 64k IO */
{CPU_FTR_CI_LARGE_PAGE, 0, 1, 2, 0},
#endif
{CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0},
};
static void __init check_cpu_pa_features(unsigned long node)
{
unsigned char *pa_ftrs;
unsigned long len, tablelen, i, bit;
pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
if (pa_ftrs == NULL)
return;
/* find descriptor with type == 0 */
for (;;) {
if (tablelen < 3)
return;
len = 2 + pa_ftrs[0];
if (tablelen < len)
return; /* descriptor 0 not found */
if (pa_ftrs[1] == 0)
break;
tablelen -= len;
pa_ftrs += len;
}
/* loop over bits we know about */
for (i = 0; i < ARRAY_SIZE(ibm_pa_features); ++i) {
struct ibm_pa_feature *fp = &ibm_pa_features[i];
if (fp->pabyte >= pa_ftrs[0])
continue;
bit = (pa_ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
if (bit ^ fp->invert) {
cur_cpu_spec->cpu_features |= fp->cpu_features;
cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
} else {
cur_cpu_spec->cpu_features &= ~fp->cpu_features;
cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
}
}
}
static int __init early_init_dt_scan_cpus(unsigned long node,
const char *uname, int depth,
void *data)
{
static int logical_cpuid = 0;
char *type = of_get_flat_dt_prop(node, "device_type", NULL);
#ifdef CONFIG_ALTIVEC
u32 *prop;
#endif
u32 *intserv;
int i, nthreads;
unsigned long len;
int found = 0;
/* We are scanning "cpu" nodes only */
if (type == NULL || strcmp(type, "cpu") != 0)
return 0;
/* Get physical cpuid */
intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
if (intserv) {
nthreads = len / sizeof(int);
} else {
intserv = of_get_flat_dt_prop(node, "reg", NULL);
nthreads = 1;
}
/*
* Now see if any of these threads match our boot cpu.
* NOTE: This must match the parsing done in smp_setup_cpu_maps.
*/
for (i = 0; i < nthreads; i++) {
/*
* version 2 of the kexec param format adds the phys cpuid of
* booted proc.
*/
if (initial_boot_params && initial_boot_params->version >= 2) {
if (intserv[i] ==
initial_boot_params->boot_cpuid_phys) {
found = 1;
break;
}
} else {
/*
* Check if it's the boot-cpu, set it's hw index now,
* unfortunately this format did not support booting
* off secondary threads.
*/
if (of_get_flat_dt_prop(node,
"linux,boot-cpu", NULL) != NULL) {
found = 1;
break;
}
}
#ifdef CONFIG_SMP
/* logical cpu id is always 0 on UP kernels */
logical_cpuid++;
#endif
}
if (found) {
DBG("boot cpu: logical %d physical %d\n", logical_cpuid,
intserv[i]);
boot_cpuid = logical_cpuid;
set_hard_smp_processor_id(boot_cpuid, intserv[i]);
}
#ifdef CONFIG_ALTIVEC
/* Check if we have a VMX and eventually update CPU features */
prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
if (prop && (*prop) > 0) {
cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
}
/* Same goes for Apple's "altivec" property */
prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
if (prop) {
cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
}
#endif /* CONFIG_ALTIVEC */
check_cpu_pa_features(node);
#ifdef CONFIG_PPC_PSERIES
if (nthreads > 1)
cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
else
cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
#endif
return 0;
}
static int __init early_init_dt_scan_chosen(unsigned long node,
const char *uname, int depth, void *data)
{
unsigned long *lprop;
unsigned long l;
char *p;
DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
if (depth != 1 ||
(strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
return 0;
#ifdef CONFIG_PPC64
/* check if iommu is forced on or off */
if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
iommu_is_off = 1;
if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
iommu_force_on = 1;
#endif
/* mem=x on the command line is the preferred mechanism */
lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
if (lprop)
memory_limit = *lprop;
#ifdef CONFIG_PPC64
lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
if (lprop)
tce_alloc_start = *lprop;
lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
if (lprop)
tce_alloc_end = *lprop;
#endif
#ifdef CONFIG_KEXEC
lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
if (lprop)
crashk_res.start = *lprop;
lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
if (lprop)
crashk_res.end = crashk_res.start + *lprop - 1;
#endif
/* Retreive command line */
p = of_get_flat_dt_prop(node, "bootargs", &l);
if (p != NULL && l > 0)
strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
#ifdef CONFIG_CMDLINE
if (l == 0 || (l == 1 && (*p) == 0))
strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
#endif /* CONFIG_CMDLINE */
DBG("Command line is: %s\n", cmd_line);
/* break now */
return 1;
}
static int __init early_init_dt_scan_root(unsigned long node,
const char *uname, int depth, void *data)
{
u32 *prop;
if (depth != 0)
return 0;
prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
dt_root_size_cells = (prop == NULL) ? 1 : *prop;
DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
/* break now */
return 1;
}
static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
{
cell_t *p = *cellp;
unsigned long r;
/* Ignore more than 2 cells */
while (s > sizeof(unsigned long) / 4) {
p++;
s--;
}
r = *p++;
#ifdef CONFIG_PPC64
if (s > 1) {
r <<= 32;
r |= *(p++);
s--;
}
#endif
*cellp = p;
return r;
}
static int __init early_init_dt_scan_memory(unsigned long node,
const char *uname, int depth, void *data)
{
char *type = of_get_flat_dt_prop(node, "device_type", NULL);
cell_t *reg, *endp;
unsigned long l;
/* We are scanning "memory" nodes only */
if (type == NULL) {
/*
* The longtrail doesn't have a device_type on the
* /memory node, so look for the node called /memory@0.
*/
if (depth != 1 || strcmp(uname, "memory@0") != 0)
return 0;
} else if (strcmp(type, "memory") != 0)
return 0;
reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
if (reg == NULL)
reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
if (reg == NULL)
return 0;
endp = reg + (l / sizeof(cell_t));
DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
uname, l, reg[0], reg[1], reg[2], reg[3]);
while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
unsigned long base, size;
base = dt_mem_next_cell(dt_root_addr_cells, &reg);
size = dt_mem_next_cell(dt_root_size_cells, &reg);
if (size == 0)
continue;
DBG(" - %lx , %lx\n", base, size);
#ifdef CONFIG_PPC64
if (iommu_is_off) {
if (base >= 0x80000000ul)
continue;
if ((base + size) > 0x80000000ul)
size = 0x80000000ul - base;
}
#endif
lmb_add(base, size);
}
return 0;
}
static void __init early_reserve_mem(void)
{
u64 base, size;
u64 *reserve_map;
unsigned long self_base;
unsigned long self_size;
reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
initial_boot_params->off_mem_rsvmap);
/* before we do anything, lets reserve the dt blob */
self_base = __pa((unsigned long)initial_boot_params);
self_size = initial_boot_params->totalsize;
lmb_reserve(self_base, self_size);
#ifdef CONFIG_PPC32
/*
* Handle the case where we might be booting from an old kexec
* image that setup the mem_rsvmap as pairs of 32-bit values
*/
if (*reserve_map > 0xffffffffull) {
u32 base_32, size_32;
u32 *reserve_map_32 = (u32 *)reserve_map;
while (1) {
base_32 = *(reserve_map_32++);
size_32 = *(reserve_map_32++);
if (size_32 == 0)
break;
/* skip if the reservation is for the blob */
if (base_32 == self_base && size_32 == self_size)
continue;
DBG("reserving: %x -> %x\n", base_32, size_32);
lmb_reserve(base_32, size_32);
}
return;
}
#endif
while (1) {
base = *(reserve_map++);
size = *(reserve_map++);
if (size == 0)
break;
/* skip if the reservation is for the blob */
if (base == self_base && size == self_size)
continue;
DBG("reserving: %llx -> %llx\n", base, size);
lmb_reserve(base, size);
}
#if 0
DBG("memory reserved, lmbs :\n");
lmb_dump_all();
#endif
}
void __init early_init_devtree(void *params)
{
DBG(" -> early_init_devtree()\n");
/* Setup flat device-tree pointer */
initial_boot_params = params;
#ifdef CONFIG_PPC_RTAS
/* Some machines might need RTAS info for debugging, grab it now. */
of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
#endif
/* Retrieve various informations from the /chosen node of the
* device-tree, including the platform type, initrd location and
* size, TCE reserve, and more ...
*/
of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
/* Scan memory nodes and rebuild LMBs */
lmb_init();
of_scan_flat_dt(early_init_dt_scan_root, NULL);
of_scan_flat_dt(early_init_dt_scan_memory, NULL);
/* Save command line for /proc/cmdline and then parse parameters */
strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
parse_early_param();
/* Reserve LMB regions used by kernel, initrd, dt, etc... */
lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
reserve_kdump_trampoline();
reserve_crashkernel();
early_reserve_mem();
lmb_enforce_memory_limit(memory_limit);
lmb_analyze();
DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
/* We may need to relocate the flat tree, do it now.
* FIXME .. and the initrd too? */
move_device_tree();
DBG("Scanning CPUs ...\n");
/* Retreive CPU related informations from the flat tree
* (altivec support, boot CPU ID, ...)
*/
of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
DBG(" <- early_init_devtree()\n");
}
#undef printk
int
prom_n_addr_cells(struct device_node* np)
{
int* ip;
do {
if (np->parent)
np = np->parent;
ip = (int *) get_property(np, "#address-cells", NULL);
if (ip != NULL)
return *ip;
} while (np->parent);
/* No #address-cells property for the root node, default to 1 */
return 1;
}
EXPORT_SYMBOL(prom_n_addr_cells);
int
prom_n_size_cells(struct device_node* np)
{
int* ip;
do {
if (np->parent)
np = np->parent;
ip = (int *) get_property(np, "#size-cells", NULL);
if (ip != NULL)
return *ip;
} while (np->parent);
/* No #size-cells property for the root node, default to 1 */
return 1;
}
EXPORT_SYMBOL(prom_n_size_cells);
/**
* Construct and return a list of the device_nodes with a given name.
*/
struct device_node *find_devices(const char *name)
{
struct device_node *head, **prevp, *np;
prevp = &head;
for (np = allnodes; np != 0; np = np->allnext) {
if (np->name != 0 && strcasecmp(np->name, name) == 0) {
*prevp = np;
prevp = &np->next;
}
}
*prevp = NULL;
return head;
}
EXPORT_SYMBOL(find_devices);
/**
* Construct and return a list of the device_nodes with a given type.
*/
struct device_node *find_type_devices(const char *type)
{
struct device_node *head, **prevp, *np;
prevp = &head;
for (np = allnodes; np != 0; np = np->allnext) {
if (np->type != 0 && strcasecmp(np->type, type) == 0) {
*prevp = np;
prevp = &np->next;
}
}
*prevp = NULL;
return head;
}
EXPORT_SYMBOL(find_type_devices);
/**
* Returns all nodes linked together
*/
struct device_node *find_all_nodes(void)
{
struct device_node *head, **prevp, *np;
prevp = &head;
for (np = allnodes; np != 0; np = np->allnext) {
*prevp = np;
prevp = &np->next;
}
*prevp = NULL;
return head;
}
EXPORT_SYMBOL(find_all_nodes);
/** Checks if the given "compat" string matches one of the strings in
* the device's "compatible" property
*/
int device_is_compatible(struct device_node *device, const char *compat)
{
const char* cp;
int cplen, l;
cp = (char *) get_property(device, "compatible", &cplen);
if (cp == NULL)
return 0;
while (cplen > 0) {
if (strncasecmp(cp, compat, strlen(compat)) == 0)
return 1;
l = strlen(cp) + 1;
cp += l;
cplen -= l;
}
return 0;
}
EXPORT_SYMBOL(device_is_compatible);
/**
* Indicates whether the root node has a given value in its
* compatible property.
*/
int machine_is_compatible(const char *compat)
{
struct device_node *root;
int rc = 0;
root = of_find_node_by_path("/");
if (root) {
rc = device_is_compatible(root, compat);
of_node_put(root);
}
return rc;
}
EXPORT_SYMBOL(machine_is_compatible);
/**
* Construct and return a list of the device_nodes with a given type
* and compatible property.
*/
struct device_node *find_compatible_devices(const char *type,
const char *compat)
{
struct device_node *head, **prevp, *np;
prevp = &head;
for (np = allnodes; np != 0; np = np->allnext) {
if (type != NULL
&& !(np->type != 0 && strcasecmp(np->type, type) == 0))
continue;
if (device_is_compatible(np, compat)) {
*prevp = np;
prevp = &np->next;
}
}
*prevp = NULL;
return head;
}
EXPORT_SYMBOL(find_compatible_devices);
/**
* Find the device_node with a given full_name.
*/
struct device_node *find_path_device(const char *path)
{
struct device_node *np;
for (np = allnodes; np != 0; np = np->allnext)
if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
return np;
return NULL;
}
EXPORT_SYMBOL(find_path_device);
/*******
*
* New implementation of the OF "find" APIs, return a refcounted
* object, call of_node_put() when done. The device tree and list
* are protected by a rw_lock.
*
* Note that property management will need some locking as well,
* this isn't dealt with yet.
*
*******/
/**
* of_find_node_by_name - Find a node by its "name" property
* @from: The node to start searching from or NULL, the node
* you pass will not be searched, only the next one
* will; typically, you pass what the previous call
* returned. of_node_put() will be called on it
* @name: The name string to match against
*
* Returns a node pointer with refcount incremented, use
* of_node_put() on it when done.
*/
struct device_node *of_find_node_by_name(struct device_node *from,
const char *name)
{
struct device_node *np;
read_lock(&devtree_lock);
np = from ? from->allnext : allnodes;
for (; np != NULL; np = np->allnext)
if (np->name != NULL && strcasecmp(np->name, name) == 0
&& of_node_get(np))
break;
if (from)
of_node_put(from);
read_unlock(&devtree_lock);
return np;
}
EXPORT_SYMBOL(of_find_node_by_name);
/**
* of_find_node_by_type - Find a node by its "device_type" property
* @from: The node to start searching from or NULL, the node
* you pass will not be searched, only the next one
* will; typically, you pass what the previous call
* returned. of_node_put() will be called on it
* @name: The type string to match against
*
* Returns a node pointer with refcount incremented, use
* of_node_put() on it when done.
*/
struct device_node *of_find_node_by_type(struct device_node *from,
const char *type)
{
struct device_node *np;
read_lock(&devtree_lock);
np = from ? from->allnext : allnodes;
for (; np != 0; np = np->allnext)
if (np->type != 0 && strcasecmp(np->type, type) == 0
&& of_node_get(np))
break;
if (from)
of_node_put(from);
read_unlock(&devtree_lock);
return np;
}
EXPORT_SYMBOL(of_find_node_by_type);
/**
* of_find_compatible_node - Find a node based on type and one of the
* tokens in its "compatible" property
* @from: The node to start searching from or NULL, the node
* you pass will not be searched, only the next one
* will; typically, you pass what the previous call
* returned. of_node_put() will be called on it
* @type: The type string to match "device_type" or NULL to ignore
* @compatible: The string to match to one of the tokens in the device
* "compatible" list.
*
* Returns a node pointer with refcount incremented, use
* of_node_put() on it when done.
*/
struct device_node *of_find_compatible_node(struct device_node *from,
const char *type, const char *compatible)
{
struct device_node *np;
read_lock(&devtree_lock);
np = from ? from->allnext : allnodes;
for (; np != 0; np = np->allnext) {
if (type != NULL
&& !(np->type != 0 && strcasecmp(np->type, type) == 0))
continue;
if (device_is_compatible(np, compatible) && of_node_get(np))
break;
}
if (from)
of_node_put(from);
read_unlock(&devtree_lock);
return np;
}
EXPORT_SYMBOL(of_find_compatible_node);
/**
* of_find_node_by_path - Find a node matching a full OF path
* @path: The full path to match
*
* Returns a node pointer with refcount incremented, use
* of_node_put() on it when done.
*/
struct device_node *of_find_node_by_path(const char *path)
{
struct device_node *np = allnodes;
read_lock(&devtree_lock);
for (; np != 0; np = np->allnext) {
if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
&& of_node_get(np))
break;
}
read_unlock(&devtree_lock);
return np;
}
EXPORT_SYMBOL(of_find_node_by_path);
/**
* of_find_node_by_phandle - Find a node given a phandle
* @handle: phandle of the node to find
*
* Returns a node pointer with refcount incremented, use
* of_node_put() on it when done.
*/
struct device_node *of_find_node_by_phandle(phandle handle)
{
struct device_node *np;
read_lock(&devtree_lock);
for (np = allnodes; np != 0; np = np->allnext)
if (np->linux_phandle == handle)
break;
if (np)
of_node_get(np);
read_unlock(&devtree_lock);
return np;
}
EXPORT_SYMBOL(of_find_node_by_phandle);
/**
* of_find_all_nodes - Get next node in global list
* @prev: Previous node or NULL to start iteration
* of_node_put() will be called on it
*
* Returns a node pointer with refcount incremented, use
* of_node_put() on it when done.
*/
struct device_node *of_find_all_nodes(struct device_node *prev)
{
struct device_node *np;
read_lock(&devtree_lock);
np = prev ? prev->allnext : allnodes;
for (; np != 0; np = np->allnext)
if (of_node_get(np))
break;
if (prev)
of_node_put(prev);
read_unlock(&devtree_lock);
return np;
}
EXPORT_SYMBOL(of_find_all_nodes);
/**
* of_get_parent - Get a node's parent if any
* @node: Node to get parent
*
* Returns a node pointer with refcount incremented, use
* of_node_put() on it when done.
*/
struct device_node *of_get_parent(const struct device_node *node)
{
struct device_node *np;
if (!node)
return NULL;
read_lock(&devtree_lock);
np = of_node_get(node->parent);
read_unlock(&devtree_lock);
return np;
}
EXPORT_SYMBOL(of_get_parent);
/**
* of_get_next_child - Iterate a node childs
* @node: parent node
* @prev: previous child of the parent node, or NULL to get first
*
* Returns a node pointer with refcount incremented, use
* of_node_put() on it when done.
*/
struct device_node *of_get_next_child(const struct device_node *node,
struct device_node *prev)
{
struct device_node *next;
read_lock(&devtree_lock);
next = prev ? prev->sibling : node->child;
for (; next != 0; next = next->sibling)
if (of_node_get(next))
break;
if (prev)
of_node_put(prev);
read_unlock(&devtree_lock);
return next;
}
EXPORT_SYMBOL(of_get_next_child);
/**
* of_node_get - Increment refcount of a node
* @node: Node to inc refcount, NULL is supported to
* simplify writing of callers
*
* Returns node.
*/
struct device_node *of_node_get(struct device_node *node)
{
if (node)
kref_get(&node->kref);
return node;
}
EXPORT_SYMBOL(of_node_get);
static inline struct device_node * kref_to_device_node(struct kref *kref)
{
return container_of(kref, struct device_node, kref);
}
/**
* of_node_release - release a dynamically allocated node
* @kref: kref element of the node to be released
*
* In of_node_put() this function is passed to kref_put()
* as the destructor.
*/
static void of_node_release(struct kref *kref)
{
struct device_node *node = kref_to_device_node(kref);
struct property *prop = node->properties;
if (!OF_IS_DYNAMIC(node))
return;
while (prop) {
struct property *next = prop->next;
kfree(prop->name);
kfree(prop->value);
kfree(prop);
prop = next;
if (!prop) {
prop = node->deadprops;
node->deadprops = NULL;
}
}
kfree(node->full_name);
kfree(node->data);
kfree(node);
}
/**
* of_node_put - Decrement refcount of a node
* @node: Node to dec refcount, NULL is supported to
* simplify writing of callers
*
*/
void of_node_put(struct device_node *node)
{
if (node)
kref_put(&node->kref, of_node_release);
}
EXPORT_SYMBOL(of_node_put);
/*
* Plug a device node into the tree and global list.
*/
void of_attach_node(struct device_node *np)
{
write_lock(&devtree_lock);
np->sibling = np->parent->child;
np->allnext = allnodes;
np->parent->child = np;
allnodes = np;
write_unlock(&devtree_lock);
}
/*
* "Unplug" a node from the device tree. The caller must hold
* a reference to the node. The memory associated with the node
* is not freed until its refcount goes to zero.
*/
void of_detach_node(const struct device_node *np)
{
struct device_node *parent;
write_lock(&devtree_lock);
parent = np->parent;
if (allnodes == np)
allnodes = np->allnext;
else {
struct device_node *prev;
for (prev = allnodes;
prev->allnext != np;
prev = prev->allnext)
;
prev->allnext = np->allnext;
}
if (parent->child == np)
parent->child = np->sibling;
else {
struct device_node *prevsib;
for (prevsib = np->parent->child;
prevsib->sibling != np;
prevsib = prevsib->sibling)
;
prevsib->sibling = np->sibling;
}
write_unlock(&devtree_lock);
}
#ifdef CONFIG_PPC_PSERIES
/*
* Fix up the uninitialized fields in a new device node:
* name, type and pci-specific fields
*/
static int of_finish_dynamic_node(struct device_node *node)
{
struct device_node *parent = of_get_parent(node);
int err = 0;
phandle *ibm_phandle;
node->name = get_property(node, "name", NULL);
node->type = get_property(node, "device_type", NULL);
if (!parent) {
err = -ENODEV;
goto out;
}
/* We don't support that function on PowerMac, at least
* not yet
*/
if (machine_is(powermac))
return -ENODEV;
/* fix up new node's linux_phandle field */
if ((ibm_phandle = (unsigned int *)get_property(node,
"ibm,phandle", NULL)))
node->linux_phandle = *ibm_phandle;
out:
of_node_put(parent);
return err;
}
static int prom_reconfig_notifier(struct notifier_block *nb,
unsigned long action, void *node)
{
int err;
switch (action) {
case PSERIES_RECONFIG_ADD:
err = of_finish_dynamic_node(node);
if (err < 0) {
printk(KERN_ERR "finish_node returned %d\n", err);
err = NOTIFY_BAD;
}
break;
default:
err = NOTIFY_DONE;
break;
}
return err;
}
static struct notifier_block prom_reconfig_nb = {
.notifier_call = prom_reconfig_notifier,
.priority = 10, /* This one needs to run first */
};
static int __init prom_reconfig_setup(void)
{
return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
}
__initcall(prom_reconfig_setup);
#endif
struct property *of_find_property(struct device_node *np, const char *name,
int *lenp)
{
struct property *pp;
read_lock(&devtree_lock);
for (pp = np->properties; pp != 0; pp = pp->next)
if (strcmp(pp->name, name) == 0) {
if (lenp != 0)
*lenp = pp->length;
break;
}
read_unlock(&devtree_lock);
return pp;
}
/*
* Find a property with a given name for a given node
* and return the value.
*/
void *get_property(struct device_node *np, const char *name, int *lenp)
{
struct property *pp = of_find_property(np,name,lenp);
return pp ? pp->value : NULL;
}
EXPORT_SYMBOL(get_property);
/*
* Add a property to a node
*/
int prom_add_property(struct device_node* np, struct property* prop)
{
struct property **next;
prop->next = NULL;
write_lock(&devtree_lock);
next = &np->properties;
while (*next) {
if (strcmp(prop->name, (*next)->name) == 0) {
/* duplicate ! don't insert it */
write_unlock(&devtree_lock);
return -1;
}
next = &(*next)->next;
}
*next = prop;
write_unlock(&devtree_lock);
#ifdef CONFIG_PROC_DEVICETREE
/* try to add to proc as well if it was initialized */
if (np->pde)
proc_device_tree_add_prop(np->pde, prop);
#endif /* CONFIG_PROC_DEVICETREE */
return 0;
}
/*
* Remove a property from a node. Note that we don't actually
* remove it, since we have given out who-knows-how-many pointers
* to the data using get-property. Instead we just move the property
* to the "dead properties" list, so it won't be found any more.
*/
int prom_remove_property(struct device_node *np, struct property *prop)
{
struct property **next;
int found = 0;
write_lock(&devtree_lock);
next = &np->properties;
while (*next) {
if (*next == prop) {
/* found the node */
*next = prop->next;
prop->next = np->deadprops;
np->deadprops = prop;
found = 1;
break;
}
next = &(*next)->next;
}
write_unlock(&devtree_lock);
if (!found)
return -ENODEV;
#ifdef CONFIG_PROC_DEVICETREE
/* try to remove the proc node as well */
if (np->pde)
proc_device_tree_remove_prop(np->pde, prop);
#endif /* CONFIG_PROC_DEVICETREE */
return 0;
}
/*
* Update a property in a node. Note that we don't actually
* remove it, since we have given out who-knows-how-many pointers
* to the data using get-property. Instead we just move the property
* to the "dead properties" list, and add the new property to the
* property list
*/
int prom_update_property(struct device_node *np,
struct property *newprop,
struct property *oldprop)
{
struct property **next;
int found = 0;
write_lock(&devtree_lock);
next = &np->properties;
while (*next) {
if (*next == oldprop) {
/* found the node */
newprop->next = oldprop->next;
*next = newprop;
oldprop->next = np->deadprops;
np->deadprops = oldprop;
found = 1;
break;
}
next = &(*next)->next;
}
write_unlock(&devtree_lock);
if (!found)
return -ENODEV;
#ifdef CONFIG_PROC_DEVICETREE
/* try to add to proc as well if it was initialized */
if (np->pde)
proc_device_tree_update_prop(np->pde, newprop, oldprop);
#endif /* CONFIG_PROC_DEVICETREE */
return 0;
}
/* Find the device node for a given logical cpu number, also returns the cpu
* local thread number (index in ibm,interrupt-server#s) if relevant and
* asked for (non NULL)
*/
struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
{
int hardid;
struct device_node *np;
hardid = get_hard_smp_processor_id(cpu);
for_each_node_by_type(np, "cpu") {
u32 *intserv;
unsigned int plen, t;
/* Check for ibm,ppc-interrupt-server#s. If it doesn't exist
* fallback to "reg" property and assume no threads
*/
intserv = (u32 *)get_property(np, "ibm,ppc-interrupt-server#s",
&plen);
if (intserv == NULL) {
u32 *reg = (u32 *)get_property(np, "reg", NULL);
if (reg == NULL)
continue;
if (*reg == hardid) {
if (thread)
*thread = 0;
return np;
}
} else {
plen /= sizeof(u32);
for (t = 0; t < plen; t++) {
if (hardid == intserv[t]) {
if (thread)
*thread = t;
return np;
}
}
}
}
return NULL;
}
#ifdef DEBUG
static struct debugfs_blob_wrapper flat_dt_blob;
static int __init export_flat_device_tree(void)
{
struct dentry *d;
d = debugfs_create_dir("powerpc", NULL);
if (!d)
return 1;
flat_dt_blob.data = initial_boot_params;
flat_dt_blob.size = initial_boot_params->totalsize;
d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR,
d, &flat_dt_blob);
if (!d)
return 1;
return 0;
}
__initcall(export_flat_device_tree);
#endif