android_kernel_xiaomi_sm8350/drivers/video/offb.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

662 lines
19 KiB
C

/*
* linux/drivers/video/offb.c -- Open Firmware based frame buffer device
*
* Copyright (C) 1997 Geert Uytterhoeven
*
* This driver is partly based on the PowerMac console driver:
*
* Copyright (C) 1996 Paul Mackerras
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <asm/io.h>
#include <asm/prom.h>
#ifdef CONFIG_PPC64
#include <asm/pci-bridge.h>
#endif
#ifdef CONFIG_PPC32
#include <asm/bootx.h>
#endif
#include "macmodes.h"
/* Supported palette hacks */
enum {
cmap_unknown,
cmap_m64, /* ATI Mach64 */
cmap_r128, /* ATI Rage128 */
cmap_M3A, /* ATI Rage Mobility M3 Head A */
cmap_M3B, /* ATI Rage Mobility M3 Head B */
cmap_radeon, /* ATI Radeon */
cmap_gxt2000, /* IBM GXT2000 */
cmap_avivo, /* ATI R5xx */
};
struct offb_par {
volatile void __iomem *cmap_adr;
volatile void __iomem *cmap_data;
int cmap_type;
int blanked;
};
struct offb_par default_par;
#ifdef CONFIG_PPC32
extern boot_infos_t *boot_infos;
#endif
/* Definitions used by the Avivo palette hack */
#define AVIVO_DC_LUT_RW_SELECT 0x6480
#define AVIVO_DC_LUT_RW_MODE 0x6484
#define AVIVO_DC_LUT_RW_INDEX 0x6488
#define AVIVO_DC_LUT_SEQ_COLOR 0x648c
#define AVIVO_DC_LUT_PWL_DATA 0x6490
#define AVIVO_DC_LUT_30_COLOR 0x6494
#define AVIVO_DC_LUT_READ_PIPE_SELECT 0x6498
#define AVIVO_DC_LUT_WRITE_EN_MASK 0x649c
#define AVIVO_DC_LUT_AUTOFILL 0x64a0
#define AVIVO_DC_LUTA_CONTROL 0x64c0
#define AVIVO_DC_LUTA_BLACK_OFFSET_BLUE 0x64c4
#define AVIVO_DC_LUTA_BLACK_OFFSET_GREEN 0x64c8
#define AVIVO_DC_LUTA_BLACK_OFFSET_RED 0x64cc
#define AVIVO_DC_LUTA_WHITE_OFFSET_BLUE 0x64d0
#define AVIVO_DC_LUTA_WHITE_OFFSET_GREEN 0x64d4
#define AVIVO_DC_LUTA_WHITE_OFFSET_RED 0x64d8
#define AVIVO_DC_LUTB_CONTROL 0x6cc0
#define AVIVO_DC_LUTB_BLACK_OFFSET_BLUE 0x6cc4
#define AVIVO_DC_LUTB_BLACK_OFFSET_GREEN 0x6cc8
#define AVIVO_DC_LUTB_BLACK_OFFSET_RED 0x6ccc
#define AVIVO_DC_LUTB_WHITE_OFFSET_BLUE 0x6cd0
#define AVIVO_DC_LUTB_WHITE_OFFSET_GREEN 0x6cd4
#define AVIVO_DC_LUTB_WHITE_OFFSET_RED 0x6cd8
/*
* Set a single color register. The values supplied are already
* rounded down to the hardware's capabilities (according to the
* entries in the var structure). Return != 0 for invalid regno.
*/
static int offb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *info)
{
struct offb_par *par = (struct offb_par *) info->par;
int i, depth;
u32 *pal = info->pseudo_palette;
depth = info->var.bits_per_pixel;
if (depth == 16)
depth = (info->var.green.length == 5) ? 15 : 16;
if (regno > 255 ||
(depth == 16 && regno > 63) ||
(depth == 15 && regno > 31))
return 1;
if (regno < 16) {
switch (depth) {
case 15:
pal[regno] = (regno << 10) | (regno << 5) | regno;
break;
case 16:
pal[regno] = (regno << 11) | (regno << 5) | regno;
break;
case 24:
pal[regno] = (regno << 16) | (regno << 8) | regno;
break;
case 32:
i = (regno << 8) | regno;
pal[regno] = (i << 16) | i;
break;
}
}
red >>= 8;
green >>= 8;
blue >>= 8;
if (!par->cmap_adr)
return 0;
switch (par->cmap_type) {
case cmap_m64:
writeb(regno, par->cmap_adr);
writeb(red, par->cmap_data);
writeb(green, par->cmap_data);
writeb(blue, par->cmap_data);
break;
case cmap_M3A:
/* Clear PALETTE_ACCESS_CNTL in DAC_CNTL */
out_le32(par->cmap_adr + 0x58,
in_le32(par->cmap_adr + 0x58) & ~0x20);
case cmap_r128:
/* Set palette index & data */
out_8(par->cmap_adr + 0xb0, regno);
out_le32(par->cmap_adr + 0xb4,
(red << 16 | green << 8 | blue));
break;
case cmap_M3B:
/* Set PALETTE_ACCESS_CNTL in DAC_CNTL */
out_le32(par->cmap_adr + 0x58,
in_le32(par->cmap_adr + 0x58) | 0x20);
/* Set palette index & data */
out_8(par->cmap_adr + 0xb0, regno);
out_le32(par->cmap_adr + 0xb4, (red << 16 | green << 8 | blue));
break;
case cmap_radeon:
/* Set palette index & data (could be smarter) */
out_8(par->cmap_adr + 0xb0, regno);
out_le32(par->cmap_adr + 0xb4, (red << 16 | green << 8 | blue));
break;
case cmap_gxt2000:
out_le32(((unsigned __iomem *) par->cmap_adr) + regno,
(red << 16 | green << 8 | blue));
break;
case cmap_avivo:
/* Write to both LUTs for now */
writel(1, par->cmap_adr + AVIVO_DC_LUT_RW_SELECT);
writeb(regno, par->cmap_adr + AVIVO_DC_LUT_RW_INDEX);
writel(((red) << 22) | ((green) << 12) | ((blue) << 2),
par->cmap_adr + AVIVO_DC_LUT_30_COLOR);
writel(0, par->cmap_adr + AVIVO_DC_LUT_RW_SELECT);
writeb(regno, par->cmap_adr + AVIVO_DC_LUT_RW_INDEX);
writel(((red) << 22) | ((green) << 12) | ((blue) << 2),
par->cmap_adr + AVIVO_DC_LUT_30_COLOR);
break;
}
return 0;
}
/*
* Blank the display.
*/
static int offb_blank(int blank, struct fb_info *info)
{
struct offb_par *par = (struct offb_par *) info->par;
int i, j;
if (!par->cmap_adr)
return 0;
if (!par->blanked)
if (!blank)
return 0;
par->blanked = blank;
if (blank)
for (i = 0; i < 256; i++) {
switch (par->cmap_type) {
case cmap_m64:
writeb(i, par->cmap_adr);
for (j = 0; j < 3; j++)
writeb(0, par->cmap_data);
break;
case cmap_M3A:
/* Clear PALETTE_ACCESS_CNTL in DAC_CNTL */
out_le32(par->cmap_adr + 0x58,
in_le32(par->cmap_adr + 0x58) & ~0x20);
case cmap_r128:
/* Set palette index & data */
out_8(par->cmap_adr + 0xb0, i);
out_le32(par->cmap_adr + 0xb4, 0);
break;
case cmap_M3B:
/* Set PALETTE_ACCESS_CNTL in DAC_CNTL */
out_le32(par->cmap_adr + 0x58,
in_le32(par->cmap_adr + 0x58) | 0x20);
/* Set palette index & data */
out_8(par->cmap_adr + 0xb0, i);
out_le32(par->cmap_adr + 0xb4, 0);
break;
case cmap_radeon:
out_8(par->cmap_adr + 0xb0, i);
out_le32(par->cmap_adr + 0xb4, 0);
break;
case cmap_gxt2000:
out_le32(((unsigned __iomem *) par->cmap_adr) + i,
0);
break;
case cmap_avivo:
writel(1, par->cmap_adr + AVIVO_DC_LUT_RW_SELECT);
writeb(i, par->cmap_adr + AVIVO_DC_LUT_RW_INDEX);
writel(0, par->cmap_adr + AVIVO_DC_LUT_30_COLOR);
writel(0, par->cmap_adr + AVIVO_DC_LUT_RW_SELECT);
writeb(i, par->cmap_adr + AVIVO_DC_LUT_RW_INDEX);
writel(0, par->cmap_adr + AVIVO_DC_LUT_30_COLOR);
break;
}
} else
fb_set_cmap(&info->cmap, info);
return 0;
}
static int offb_set_par(struct fb_info *info)
{
struct offb_par *par = (struct offb_par *) info->par;
/* On avivo, initialize palette control */
if (par->cmap_type == cmap_avivo) {
writel(0, par->cmap_adr + AVIVO_DC_LUTA_CONTROL);
writel(0, par->cmap_adr + AVIVO_DC_LUTA_BLACK_OFFSET_BLUE);
writel(0, par->cmap_adr + AVIVO_DC_LUTA_BLACK_OFFSET_GREEN);
writel(0, par->cmap_adr + AVIVO_DC_LUTA_BLACK_OFFSET_RED);
writel(0x0000ffff, par->cmap_adr + AVIVO_DC_LUTA_WHITE_OFFSET_BLUE);
writel(0x0000ffff, par->cmap_adr + AVIVO_DC_LUTA_WHITE_OFFSET_GREEN);
writel(0x0000ffff, par->cmap_adr + AVIVO_DC_LUTA_WHITE_OFFSET_RED);
writel(0, par->cmap_adr + AVIVO_DC_LUTB_CONTROL);
writel(0, par->cmap_adr + AVIVO_DC_LUTB_BLACK_OFFSET_BLUE);
writel(0, par->cmap_adr + AVIVO_DC_LUTB_BLACK_OFFSET_GREEN);
writel(0, par->cmap_adr + AVIVO_DC_LUTB_BLACK_OFFSET_RED);
writel(0x0000ffff, par->cmap_adr + AVIVO_DC_LUTB_WHITE_OFFSET_BLUE);
writel(0x0000ffff, par->cmap_adr + AVIVO_DC_LUTB_WHITE_OFFSET_GREEN);
writel(0x0000ffff, par->cmap_adr + AVIVO_DC_LUTB_WHITE_OFFSET_RED);
writel(1, par->cmap_adr + AVIVO_DC_LUT_RW_SELECT);
writel(0, par->cmap_adr + AVIVO_DC_LUT_RW_MODE);
writel(0x0000003f, par->cmap_adr + AVIVO_DC_LUT_WRITE_EN_MASK);
writel(0, par->cmap_adr + AVIVO_DC_LUT_RW_SELECT);
writel(0, par->cmap_adr + AVIVO_DC_LUT_RW_MODE);
writel(0x0000003f, par->cmap_adr + AVIVO_DC_LUT_WRITE_EN_MASK);
}
return 0;
}
static void offb_destroy(struct fb_info *info)
{
if (info->screen_base)
iounmap(info->screen_base);
release_mem_region(info->aperture_base, info->aperture_size);
framebuffer_release(info);
}
static struct fb_ops offb_ops = {
.owner = THIS_MODULE,
.fb_destroy = offb_destroy,
.fb_setcolreg = offb_setcolreg,
.fb_set_par = offb_set_par,
.fb_blank = offb_blank,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
};
static void __iomem *offb_map_reg(struct device_node *np, int index,
unsigned long offset, unsigned long size)
{
const u32 *addrp;
u64 asize, taddr;
unsigned int flags;
addrp = of_get_pci_address(np, index, &asize, &flags);
if (addrp == NULL)
addrp = of_get_address(np, index, &asize, &flags);
if (addrp == NULL)
return NULL;
if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
return NULL;
if ((offset + size) > asize)
return NULL;
taddr = of_translate_address(np, addrp);
if (taddr == OF_BAD_ADDR)
return NULL;
return ioremap(taddr + offset, size);
}
static void offb_init_palette_hacks(struct fb_info *info, struct device_node *dp,
const char *name, unsigned long address)
{
struct offb_par *par = (struct offb_par *) info->par;
if (dp && !strncmp(name, "ATY,Rage128", 11)) {
par->cmap_adr = offb_map_reg(dp, 2, 0, 0x1fff);
if (par->cmap_adr)
par->cmap_type = cmap_r128;
} else if (dp && (!strncmp(name, "ATY,RageM3pA", 12)
|| !strncmp(name, "ATY,RageM3p12A", 14))) {
par->cmap_adr = offb_map_reg(dp, 2, 0, 0x1fff);
if (par->cmap_adr)
par->cmap_type = cmap_M3A;
} else if (dp && !strncmp(name, "ATY,RageM3pB", 12)) {
par->cmap_adr = offb_map_reg(dp, 2, 0, 0x1fff);
if (par->cmap_adr)
par->cmap_type = cmap_M3B;
} else if (dp && !strncmp(name, "ATY,Rage6", 9)) {
par->cmap_adr = offb_map_reg(dp, 1, 0, 0x1fff);
if (par->cmap_adr)
par->cmap_type = cmap_radeon;
} else if (!strncmp(name, "ATY,", 4)) {
unsigned long base = address & 0xff000000UL;
par->cmap_adr =
ioremap(base + 0x7ff000, 0x1000) + 0xcc0;
par->cmap_data = par->cmap_adr + 1;
par->cmap_type = cmap_m64;
} else if (dp && (of_device_is_compatible(dp, "pci1014,b7") ||
of_device_is_compatible(dp, "pci1014,21c"))) {
par->cmap_adr = offb_map_reg(dp, 0, 0x6000, 0x1000);
if (par->cmap_adr)
par->cmap_type = cmap_gxt2000;
} else if (dp && !strncmp(name, "vga,Display-", 12)) {
/* Look for AVIVO initialized by SLOF */
struct device_node *pciparent = of_get_parent(dp);
const u32 *vid, *did;
vid = of_get_property(pciparent, "vendor-id", NULL);
did = of_get_property(pciparent, "device-id", NULL);
/* This will match most R5xx */
if (vid && did && *vid == 0x1002 &&
((*did >= 0x7100 && *did < 0x7800) ||
(*did >= 0x9400))) {
par->cmap_adr = offb_map_reg(pciparent, 2, 0, 0x10000);
if (par->cmap_adr)
par->cmap_type = cmap_avivo;
}
of_node_put(pciparent);
}
info->fix.visual = (par->cmap_type != cmap_unknown) ?
FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_STATIC_PSEUDOCOLOR;
}
static void __init offb_init_fb(const char *name, const char *full_name,
int width, int height, int depth,
int pitch, unsigned long address,
int foreign_endian, struct device_node *dp)
{
unsigned long res_size = pitch * height * (depth + 7) / 8;
struct offb_par *par = &default_par;
unsigned long res_start = address;
struct fb_fix_screeninfo *fix;
struct fb_var_screeninfo *var;
struct fb_info *info;
if (!request_mem_region(res_start, res_size, "offb"))
return;
printk(KERN_INFO
"Using unsupported %dx%d %s at %lx, depth=%d, pitch=%d\n",
width, height, name, address, depth, pitch);
if (depth != 8 && depth != 15 && depth != 16 && depth != 32) {
printk(KERN_ERR "%s: can't use depth = %d\n", full_name,
depth);
release_mem_region(res_start, res_size);
return;
}
info = framebuffer_alloc(sizeof(u32) * 16, NULL);
if (info == 0) {
release_mem_region(res_start, res_size);
return;
}
fix = &info->fix;
var = &info->var;
info->par = par;
strcpy(fix->id, "OFfb ");
strncat(fix->id, name, sizeof(fix->id) - sizeof("OFfb "));
fix->id[sizeof(fix->id) - 1] = '\0';
var->xres = var->xres_virtual = width;
var->yres = var->yres_virtual = height;
fix->line_length = pitch;
fix->smem_start = address;
fix->smem_len = pitch * height;
fix->type = FB_TYPE_PACKED_PIXELS;
fix->type_aux = 0;
par->cmap_type = cmap_unknown;
if (depth == 8)
offb_init_palette_hacks(info, dp, name, address);
else
fix->visual = FB_VISUAL_TRUECOLOR;
var->xoffset = var->yoffset = 0;
switch (depth) {
case 8:
var->bits_per_pixel = 8;
var->red.offset = 0;
var->red.length = 8;
var->green.offset = 0;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->transp.offset = 0;
var->transp.length = 0;
break;
case 15: /* RGB 555 */
var->bits_per_pixel = 16;
var->red.offset = 10;
var->red.length = 5;
var->green.offset = 5;
var->green.length = 5;
var->blue.offset = 0;
var->blue.length = 5;
var->transp.offset = 0;
var->transp.length = 0;
break;
case 16: /* RGB 565 */
var->bits_per_pixel = 16;
var->red.offset = 11;
var->red.length = 5;
var->green.offset = 5;
var->green.length = 6;
var->blue.offset = 0;
var->blue.length = 5;
var->transp.offset = 0;
var->transp.length = 0;
break;
case 32: /* RGB 888 */
var->bits_per_pixel = 32;
var->red.offset = 16;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->transp.offset = 24;
var->transp.length = 8;
break;
}
var->red.msb_right = var->green.msb_right = var->blue.msb_right =
var->transp.msb_right = 0;
var->grayscale = 0;
var->nonstd = 0;
var->activate = 0;
var->height = var->width = -1;
var->pixclock = 10000;
var->left_margin = var->right_margin = 16;
var->upper_margin = var->lower_margin = 16;
var->hsync_len = var->vsync_len = 8;
var->sync = 0;
var->vmode = FB_VMODE_NONINTERLACED;
/* set offb aperture size for generic probing */
info->aperture_base = address;
info->aperture_size = fix->smem_len;
info->fbops = &offb_ops;
info->screen_base = ioremap(address, fix->smem_len);
info->pseudo_palette = (void *) (info + 1);
info->flags = FBINFO_DEFAULT | FBINFO_MISC_FIRMWARE | foreign_endian;
fb_alloc_cmap(&info->cmap, 256, 0);
if (register_framebuffer(info) < 0) {
iounmap(par->cmap_adr);
par->cmap_adr = NULL;
iounmap(info->screen_base);
framebuffer_release(info);
release_mem_region(res_start, res_size);
return;
}
printk(KERN_INFO "fb%d: Open Firmware frame buffer device on %s\n",
info->node, full_name);
}
static void __init offb_init_nodriver(struct device_node *dp, int no_real_node)
{
unsigned int len;
int i, width = 640, height = 480, depth = 8, pitch = 640;
unsigned int flags, rsize, addr_prop = 0;
unsigned long max_size = 0;
u64 rstart, address = OF_BAD_ADDR;
const u32 *pp, *addrp, *up;
u64 asize;
int foreign_endian = 0;
#ifdef __BIG_ENDIAN
if (of_get_property(dp, "little-endian", NULL))
foreign_endian = FBINFO_FOREIGN_ENDIAN;
#else
if (of_get_property(dp, "big-endian", NULL))
foreign_endian = FBINFO_FOREIGN_ENDIAN;
#endif
pp = of_get_property(dp, "linux,bootx-depth", &len);
if (pp == NULL)
pp = of_get_property(dp, "depth", &len);
if (pp && len == sizeof(u32))
depth = *pp;
pp = of_get_property(dp, "linux,bootx-width", &len);
if (pp == NULL)
pp = of_get_property(dp, "width", &len);
if (pp && len == sizeof(u32))
width = *pp;
pp = of_get_property(dp, "linux,bootx-height", &len);
if (pp == NULL)
pp = of_get_property(dp, "height", &len);
if (pp && len == sizeof(u32))
height = *pp;
pp = of_get_property(dp, "linux,bootx-linebytes", &len);
if (pp == NULL)
pp = of_get_property(dp, "linebytes", &len);
if (pp && len == sizeof(u32) && (*pp != 0xffffffffu))
pitch = *pp;
else
pitch = width * ((depth + 7) / 8);
rsize = (unsigned long)pitch * (unsigned long)height;
/* Ok, now we try to figure out the address of the framebuffer.
*
* Unfortunately, Open Firmware doesn't provide a standard way to do
* so. All we can do is a dodgy heuristic that happens to work in
* practice. On most machines, the "address" property contains what
* we need, though not on Matrox cards found in IBM machines. What I've
* found that appears to give good results is to go through the PCI
* ranges and pick one that is both big enough and if possible encloses
* the "address" property. If none match, we pick the biggest
*/
up = of_get_property(dp, "linux,bootx-addr", &len);
if (up == NULL)
up = of_get_property(dp, "address", &len);
if (up && len == sizeof(u32))
addr_prop = *up;
/* Hack for when BootX is passing us */
if (no_real_node)
goto skip_addr;
for (i = 0; (addrp = of_get_address(dp, i, &asize, &flags))
!= NULL; i++) {
int match_addrp = 0;
if (!(flags & IORESOURCE_MEM))
continue;
if (asize < rsize)
continue;
rstart = of_translate_address(dp, addrp);
if (rstart == OF_BAD_ADDR)
continue;
if (addr_prop && (rstart <= addr_prop) &&
((rstart + asize) >= (addr_prop + rsize)))
match_addrp = 1;
if (match_addrp) {
address = addr_prop;
break;
}
if (rsize > max_size) {
max_size = rsize;
address = OF_BAD_ADDR;
}
if (address == OF_BAD_ADDR)
address = rstart;
}
skip_addr:
if (address == OF_BAD_ADDR && addr_prop)
address = (u64)addr_prop;
if (address != OF_BAD_ADDR) {
/* kludge for valkyrie */
if (strcmp(dp->name, "valkyrie") == 0)
address += 0x1000;
offb_init_fb(no_real_node ? "bootx" : dp->name,
no_real_node ? "display" : dp->full_name,
width, height, depth, pitch, address,
foreign_endian, no_real_node ? NULL : dp);
}
}
static int __init offb_init(void)
{
struct device_node *dp = NULL, *boot_disp = NULL;
if (fb_get_options("offb", NULL))
return -ENODEV;
/* Check if we have a MacOS display without a node spec */
if (of_get_property(of_chosen, "linux,bootx-noscreen", NULL) != NULL) {
/* The old code tried to work out which node was the MacOS
* display based on the address. I'm dropping that since the
* lack of a node spec only happens with old BootX versions
* (users can update) and with this code, they'll still get
* a display (just not the palette hacks).
*/
offb_init_nodriver(of_chosen, 1);
}
for (dp = NULL; (dp = of_find_node_by_type(dp, "display"));) {
if (of_get_property(dp, "linux,opened", NULL) &&
of_get_property(dp, "linux,boot-display", NULL)) {
boot_disp = dp;
offb_init_nodriver(dp, 0);
}
}
for (dp = NULL; (dp = of_find_node_by_type(dp, "display"));) {
if (of_get_property(dp, "linux,opened", NULL) &&
dp != boot_disp)
offb_init_nodriver(dp, 0);
}
return 0;
}
module_init(offb_init);
MODULE_LICENSE("GPL");