android_kernel_xiaomi_sm8350/drivers/scsi/sg.c
Greg KH 5e3c34c1e9 [SCSI] Remove devfs support from the SCSI subsystem
As devfs has been disabled from the kernel tree for a number of months
now (5 to be exact), here's a patch against 2.6.16-rc1-git1 that removes
support for it from the SCSI subsystem.

The patch also removes the scsi_disk devfs_name field as it's no longer
needed.

Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2006-02-27 22:55:04 -06:00

2970 lines
79 KiB
C

/*
* History:
* Started: Aug 9 by Lawrence Foard (entropy@world.std.com),
* to allow user process control of SCSI devices.
* Development Sponsored by Killy Corp. NY NY
*
* Original driver (sg.c):
* Copyright (C) 1992 Lawrence Foard
* Version 2 and 3 extensions to driver:
* Copyright (C) 1998 - 2005 Douglas Gilbert
*
* Modified 19-JAN-1998 Richard Gooch <rgooch@atnf.csiro.au> Devfs support
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
*/
static int sg_version_num = 30533; /* 2 digits for each component */
#define SG_VERSION_STR "3.5.33"
/*
* D. P. Gilbert (dgilbert@interlog.com, dougg@triode.net.au), notes:
* - scsi logging is available via SCSI_LOG_TIMEOUT macros. First
* the kernel/module needs to be built with CONFIG_SCSI_LOGGING
* (otherwise the macros compile to empty statements).
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/errno.h>
#include <linux/mtio.h>
#include <linux/ioctl.h>
#include <linux/fcntl.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/smp_lock.h>
#include <linux/moduleparam.h>
#include <linux/cdev.h>
#include <linux/seq_file.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/scatterlist.h>
#include "scsi.h"
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_driver.h>
#include <scsi/scsi_ioctl.h>
#include <scsi/sg.h>
#include "scsi_logging.h"
#ifdef CONFIG_SCSI_PROC_FS
#include <linux/proc_fs.h>
static char *sg_version_date = "20050908";
static int sg_proc_init(void);
static void sg_proc_cleanup(void);
#endif
#define SG_ALLOW_DIO_DEF 0
#define SG_ALLOW_DIO_CODE /* compile out by commenting this define */
#define SG_MAX_DEVS 32768
/*
* Suppose you want to calculate the formula muldiv(x,m,d)=int(x * m / d)
* Then when using 32 bit integers x * m may overflow during the calculation.
* Replacing muldiv(x) by muldiv(x)=((x % d) * m) / d + int(x / d) * m
* calculates the same, but prevents the overflow when both m and d
* are "small" numbers (like HZ and USER_HZ).
* Of course an overflow is inavoidable if the result of muldiv doesn't fit
* in 32 bits.
*/
#define MULDIV(X,MUL,DIV) ((((X % DIV) * MUL) / DIV) + ((X / DIV) * MUL))
#define SG_DEFAULT_TIMEOUT MULDIV(SG_DEFAULT_TIMEOUT_USER, HZ, USER_HZ)
int sg_big_buff = SG_DEF_RESERVED_SIZE;
/* N.B. This variable is readable and writeable via
/proc/scsi/sg/def_reserved_size . Each time sg_open() is called a buffer
of this size (or less if there is not enough memory) will be reserved
for use by this file descriptor. [Deprecated usage: this variable is also
readable via /proc/sys/kernel/sg-big-buff if the sg driver is built into
the kernel (i.e. it is not a module).] */
static int def_reserved_size = -1; /* picks up init parameter */
static int sg_allow_dio = SG_ALLOW_DIO_DEF;
#define SG_SECTOR_SZ 512
#define SG_SECTOR_MSK (SG_SECTOR_SZ - 1)
#define SG_DEV_ARR_LUMP 32 /* amount to over allocate sg_dev_arr by */
static int sg_add(struct class_device *, struct class_interface *);
static void sg_remove(struct class_device *, struct class_interface *);
static DEFINE_RWLOCK(sg_dev_arr_lock); /* Also used to lock
file descriptor list for device */
static struct class_interface sg_interface = {
.add = sg_add,
.remove = sg_remove,
};
typedef struct sg_scatter_hold { /* holding area for scsi scatter gather info */
unsigned short k_use_sg; /* Count of kernel scatter-gather pieces */
unsigned short sglist_len; /* size of malloc'd scatter-gather list ++ */
unsigned bufflen; /* Size of (aggregate) data buffer */
unsigned b_malloc_len; /* actual len malloc'ed in buffer */
struct scatterlist *buffer;/* scatter list */
char dio_in_use; /* 0->indirect IO (or mmap), 1->dio */
unsigned char cmd_opcode; /* first byte of command */
} Sg_scatter_hold;
struct sg_device; /* forward declarations */
struct sg_fd;
typedef struct sg_request { /* SG_MAX_QUEUE requests outstanding per file */
struct sg_request *nextrp; /* NULL -> tail request (slist) */
struct sg_fd *parentfp; /* NULL -> not in use */
Sg_scatter_hold data; /* hold buffer, perhaps scatter list */
sg_io_hdr_t header; /* scsi command+info, see <scsi/sg.h> */
unsigned char sense_b[SCSI_SENSE_BUFFERSIZE];
char res_used; /* 1 -> using reserve buffer, 0 -> not ... */
char orphan; /* 1 -> drop on sight, 0 -> normal */
char sg_io_owned; /* 1 -> packet belongs to SG_IO */
volatile char done; /* 0->before bh, 1->before read, 2->read */
} Sg_request;
typedef struct sg_fd { /* holds the state of a file descriptor */
struct sg_fd *nextfp; /* NULL when last opened fd on this device */
struct sg_device *parentdp; /* owning device */
wait_queue_head_t read_wait; /* queue read until command done */
rwlock_t rq_list_lock; /* protect access to list in req_arr */
int timeout; /* defaults to SG_DEFAULT_TIMEOUT */
int timeout_user; /* defaults to SG_DEFAULT_TIMEOUT_USER */
Sg_scatter_hold reserve; /* buffer held for this file descriptor */
unsigned save_scat_len; /* original length of trunc. scat. element */
Sg_request *headrp; /* head of request slist, NULL->empty */
struct fasync_struct *async_qp; /* used by asynchronous notification */
Sg_request req_arr[SG_MAX_QUEUE]; /* used as singly-linked list */
char low_dma; /* as in parent but possibly overridden to 1 */
char force_packid; /* 1 -> pack_id input to read(), 0 -> ignored */
volatile char closed; /* 1 -> fd closed but request(s) outstanding */
char cmd_q; /* 1 -> allow command queuing, 0 -> don't */
char next_cmd_len; /* 0 -> automatic (def), >0 -> use on next write() */
char keep_orphan; /* 0 -> drop orphan (def), 1 -> keep for read() */
char mmap_called; /* 0 -> mmap() never called on this fd */
} Sg_fd;
typedef struct sg_device { /* holds the state of each scsi generic device */
struct scsi_device *device;
wait_queue_head_t o_excl_wait; /* queue open() when O_EXCL in use */
int sg_tablesize; /* adapter's max scatter-gather table size */
Sg_fd *headfp; /* first open fd belonging to this device */
volatile char detached; /* 0->attached, 1->detached pending removal */
volatile char exclude; /* opened for exclusive access */
char sgdebug; /* 0->off, 1->sense, 9->dump dev, 10-> all devs */
struct gendisk *disk;
struct cdev * cdev; /* char_dev [sysfs: /sys/cdev/major/sg<n>] */
} Sg_device;
static int sg_fasync(int fd, struct file *filp, int mode);
/* tasklet or soft irq callback */
static void sg_cmd_done(void *data, char *sense, int result, int resid);
static int sg_start_req(Sg_request * srp);
static void sg_finish_rem_req(Sg_request * srp);
static int sg_build_indirect(Sg_scatter_hold * schp, Sg_fd * sfp, int buff_size);
static int sg_build_sgat(Sg_scatter_hold * schp, const Sg_fd * sfp,
int tablesize);
static ssize_t sg_new_read(Sg_fd * sfp, char __user *buf, size_t count,
Sg_request * srp);
static ssize_t sg_new_write(Sg_fd * sfp, const char __user *buf, size_t count,
int blocking, int read_only, Sg_request ** o_srp);
static int sg_common_write(Sg_fd * sfp, Sg_request * srp,
unsigned char *cmnd, int timeout, int blocking);
static int sg_u_iovec(sg_io_hdr_t * hp, int sg_num, int ind,
int wr_xf, int *countp, unsigned char __user **up);
static int sg_write_xfer(Sg_request * srp);
static int sg_read_xfer(Sg_request * srp);
static int sg_read_oxfer(Sg_request * srp, char __user *outp, int num_read_xfer);
static void sg_remove_scat(Sg_scatter_hold * schp);
static void sg_build_reserve(Sg_fd * sfp, int req_size);
static void sg_link_reserve(Sg_fd * sfp, Sg_request * srp, int size);
static void sg_unlink_reserve(Sg_fd * sfp, Sg_request * srp);
static struct page *sg_page_malloc(int rqSz, int lowDma, int *retSzp);
static void sg_page_free(struct page *page, int size);
static Sg_fd *sg_add_sfp(Sg_device * sdp, int dev);
static int sg_remove_sfp(Sg_device * sdp, Sg_fd * sfp);
static void __sg_remove_sfp(Sg_device * sdp, Sg_fd * sfp);
static Sg_request *sg_get_rq_mark(Sg_fd * sfp, int pack_id);
static Sg_request *sg_add_request(Sg_fd * sfp);
static int sg_remove_request(Sg_fd * sfp, Sg_request * srp);
static int sg_res_in_use(Sg_fd * sfp);
static int sg_allow_access(unsigned char opcode, char dev_type);
static int sg_build_direct(Sg_request * srp, Sg_fd * sfp, int dxfer_len);
static Sg_device *sg_get_dev(int dev);
#ifdef CONFIG_SCSI_PROC_FS
static int sg_last_dev(void);
#endif
static Sg_device **sg_dev_arr = NULL;
static int sg_dev_max;
static int sg_nr_dev;
#define SZ_SG_HEADER sizeof(struct sg_header)
#define SZ_SG_IO_HDR sizeof(sg_io_hdr_t)
#define SZ_SG_IOVEC sizeof(sg_iovec_t)
#define SZ_SG_REQ_INFO sizeof(sg_req_info_t)
static int
sg_open(struct inode *inode, struct file *filp)
{
int dev = iminor(inode);
int flags = filp->f_flags;
struct request_queue *q;
Sg_device *sdp;
Sg_fd *sfp;
int res;
int retval;
nonseekable_open(inode, filp);
SCSI_LOG_TIMEOUT(3, printk("sg_open: dev=%d, flags=0x%x\n", dev, flags));
sdp = sg_get_dev(dev);
if ((!sdp) || (!sdp->device))
return -ENXIO;
if (sdp->detached)
return -ENODEV;
/* This driver's module count bumped by fops_get in <linux/fs.h> */
/* Prevent the device driver from vanishing while we sleep */
retval = scsi_device_get(sdp->device);
if (retval)
return retval;
if (!((flags & O_NONBLOCK) ||
scsi_block_when_processing_errors(sdp->device))) {
retval = -ENXIO;
/* we are in error recovery for this device */
goto error_out;
}
if (flags & O_EXCL) {
if (O_RDONLY == (flags & O_ACCMODE)) {
retval = -EPERM; /* Can't lock it with read only access */
goto error_out;
}
if (sdp->headfp && (flags & O_NONBLOCK)) {
retval = -EBUSY;
goto error_out;
}
res = 0;
__wait_event_interruptible(sdp->o_excl_wait,
((sdp->headfp || sdp->exclude) ? 0 : (sdp->exclude = 1)), res);
if (res) {
retval = res; /* -ERESTARTSYS because signal hit process */
goto error_out;
}
} else if (sdp->exclude) { /* some other fd has an exclusive lock on dev */
if (flags & O_NONBLOCK) {
retval = -EBUSY;
goto error_out;
}
res = 0;
__wait_event_interruptible(sdp->o_excl_wait, (!sdp->exclude),
res);
if (res) {
retval = res; /* -ERESTARTSYS because signal hit process */
goto error_out;
}
}
if (sdp->detached) {
retval = -ENODEV;
goto error_out;
}
if (!sdp->headfp) { /* no existing opens on this device */
sdp->sgdebug = 0;
q = sdp->device->request_queue;
sdp->sg_tablesize = min(q->max_hw_segments,
q->max_phys_segments);
}
if ((sfp = sg_add_sfp(sdp, dev)))
filp->private_data = sfp;
else {
if (flags & O_EXCL)
sdp->exclude = 0; /* undo if error */
retval = -ENOMEM;
goto error_out;
}
return 0;
error_out:
scsi_device_put(sdp->device);
return retval;
}
/* Following function was formerly called 'sg_close' */
static int
sg_release(struct inode *inode, struct file *filp)
{
Sg_device *sdp;
Sg_fd *sfp;
if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp)))
return -ENXIO;
SCSI_LOG_TIMEOUT(3, printk("sg_release: %s\n", sdp->disk->disk_name));
sg_fasync(-1, filp, 0); /* remove filp from async notification list */
if (0 == sg_remove_sfp(sdp, sfp)) { /* Returns 1 when sdp gone */
if (!sdp->detached) {
scsi_device_put(sdp->device);
}
sdp->exclude = 0;
wake_up_interruptible(&sdp->o_excl_wait);
}
return 0;
}
static ssize_t
sg_read(struct file *filp, char __user *buf, size_t count, loff_t * ppos)
{
Sg_device *sdp;
Sg_fd *sfp;
Sg_request *srp;
int req_pack_id = -1;
sg_io_hdr_t *hp;
struct sg_header *old_hdr = NULL;
int retval = 0;
if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp)))
return -ENXIO;
SCSI_LOG_TIMEOUT(3, printk("sg_read: %s, count=%d\n",
sdp->disk->disk_name, (int) count));
if (!access_ok(VERIFY_WRITE, buf, count))
return -EFAULT;
if (sfp->force_packid && (count >= SZ_SG_HEADER)) {
old_hdr = kmalloc(SZ_SG_HEADER, GFP_KERNEL);
if (!old_hdr)
return -ENOMEM;
if (__copy_from_user(old_hdr, buf, SZ_SG_HEADER)) {
retval = -EFAULT;
goto free_old_hdr;
}
if (old_hdr->reply_len < 0) {
if (count >= SZ_SG_IO_HDR) {
sg_io_hdr_t *new_hdr;
new_hdr = kmalloc(SZ_SG_IO_HDR, GFP_KERNEL);
if (!new_hdr) {
retval = -ENOMEM;
goto free_old_hdr;
}
retval =__copy_from_user
(new_hdr, buf, SZ_SG_IO_HDR);
req_pack_id = new_hdr->pack_id;
kfree(new_hdr);
if (retval) {
retval = -EFAULT;
goto free_old_hdr;
}
}
} else
req_pack_id = old_hdr->pack_id;
}
srp = sg_get_rq_mark(sfp, req_pack_id);
if (!srp) { /* now wait on packet to arrive */
if (sdp->detached) {
retval = -ENODEV;
goto free_old_hdr;
}
if (filp->f_flags & O_NONBLOCK) {
retval = -EAGAIN;
goto free_old_hdr;
}
while (1) {
retval = 0; /* following macro beats race condition */
__wait_event_interruptible(sfp->read_wait,
(sdp->detached ||
(srp = sg_get_rq_mark(sfp, req_pack_id))),
retval);
if (sdp->detached) {
retval = -ENODEV;
goto free_old_hdr;
}
if (0 == retval)
break;
/* -ERESTARTSYS as signal hit process */
goto free_old_hdr;
}
}
if (srp->header.interface_id != '\0') {
retval = sg_new_read(sfp, buf, count, srp);
goto free_old_hdr;
}
hp = &srp->header;
if (old_hdr == NULL) {
old_hdr = kmalloc(SZ_SG_HEADER, GFP_KERNEL);
if (! old_hdr) {
retval = -ENOMEM;
goto free_old_hdr;
}
}
memset(old_hdr, 0, SZ_SG_HEADER);
old_hdr->reply_len = (int) hp->timeout;
old_hdr->pack_len = old_hdr->reply_len; /* old, strange behaviour */
old_hdr->pack_id = hp->pack_id;
old_hdr->twelve_byte =
((srp->data.cmd_opcode >= 0xc0) && (12 == hp->cmd_len)) ? 1 : 0;
old_hdr->target_status = hp->masked_status;
old_hdr->host_status = hp->host_status;
old_hdr->driver_status = hp->driver_status;
if ((CHECK_CONDITION & hp->masked_status) ||
(DRIVER_SENSE & hp->driver_status))
memcpy(old_hdr->sense_buffer, srp->sense_b,
sizeof (old_hdr->sense_buffer));
switch (hp->host_status) {
/* This setup of 'result' is for backward compatibility and is best
ignored by the user who should use target, host + driver status */
case DID_OK:
case DID_PASSTHROUGH:
case DID_SOFT_ERROR:
old_hdr->result = 0;
break;
case DID_NO_CONNECT:
case DID_BUS_BUSY:
case DID_TIME_OUT:
old_hdr->result = EBUSY;
break;
case DID_BAD_TARGET:
case DID_ABORT:
case DID_PARITY:
case DID_RESET:
case DID_BAD_INTR:
old_hdr->result = EIO;
break;
case DID_ERROR:
old_hdr->result = (srp->sense_b[0] == 0 &&
hp->masked_status == GOOD) ? 0 : EIO;
break;
default:
old_hdr->result = EIO;
break;
}
/* Now copy the result back to the user buffer. */
if (count >= SZ_SG_HEADER) {
if (__copy_to_user(buf, old_hdr, SZ_SG_HEADER)) {
retval = -EFAULT;
goto free_old_hdr;
}
buf += SZ_SG_HEADER;
if (count > old_hdr->reply_len)
count = old_hdr->reply_len;
if (count > SZ_SG_HEADER) {
if (sg_read_oxfer(srp, buf, count - SZ_SG_HEADER)) {
retval = -EFAULT;
goto free_old_hdr;
}
}
} else
count = (old_hdr->result == 0) ? 0 : -EIO;
sg_finish_rem_req(srp);
retval = count;
free_old_hdr:
kfree(old_hdr);
return retval;
}
static ssize_t
sg_new_read(Sg_fd * sfp, char __user *buf, size_t count, Sg_request * srp)
{
sg_io_hdr_t *hp = &srp->header;
int err = 0;
int len;
if (count < SZ_SG_IO_HDR) {
err = -EINVAL;
goto err_out;
}
hp->sb_len_wr = 0;
if ((hp->mx_sb_len > 0) && hp->sbp) {
if ((CHECK_CONDITION & hp->masked_status) ||
(DRIVER_SENSE & hp->driver_status)) {
int sb_len = SCSI_SENSE_BUFFERSIZE;
sb_len = (hp->mx_sb_len > sb_len) ? sb_len : hp->mx_sb_len;
len = 8 + (int) srp->sense_b[7]; /* Additional sense length field */
len = (len > sb_len) ? sb_len : len;
if (copy_to_user(hp->sbp, srp->sense_b, len)) {
err = -EFAULT;
goto err_out;
}
hp->sb_len_wr = len;
}
}
if (hp->masked_status || hp->host_status || hp->driver_status)
hp->info |= SG_INFO_CHECK;
if (copy_to_user(buf, hp, SZ_SG_IO_HDR)) {
err = -EFAULT;
goto err_out;
}
err = sg_read_xfer(srp);
err_out:
sg_finish_rem_req(srp);
return (0 == err) ? count : err;
}
static ssize_t
sg_write(struct file *filp, const char __user *buf, size_t count, loff_t * ppos)
{
int mxsize, cmd_size, k;
int input_size, blocking;
unsigned char opcode;
Sg_device *sdp;
Sg_fd *sfp;
Sg_request *srp;
struct sg_header old_hdr;
sg_io_hdr_t *hp;
unsigned char cmnd[MAX_COMMAND_SIZE];
if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp)))
return -ENXIO;
SCSI_LOG_TIMEOUT(3, printk("sg_write: %s, count=%d\n",
sdp->disk->disk_name, (int) count));
if (sdp->detached)
return -ENODEV;
if (!((filp->f_flags & O_NONBLOCK) ||
scsi_block_when_processing_errors(sdp->device)))
return -ENXIO;
if (!access_ok(VERIFY_READ, buf, count))
return -EFAULT; /* protects following copy_from_user()s + get_user()s */
if (count < SZ_SG_HEADER)
return -EIO;
if (__copy_from_user(&old_hdr, buf, SZ_SG_HEADER))
return -EFAULT;
blocking = !(filp->f_flags & O_NONBLOCK);
if (old_hdr.reply_len < 0)
return sg_new_write(sfp, buf, count, blocking, 0, NULL);
if (count < (SZ_SG_HEADER + 6))
return -EIO; /* The minimum scsi command length is 6 bytes. */
if (!(srp = sg_add_request(sfp))) {
SCSI_LOG_TIMEOUT(1, printk("sg_write: queue full\n"));
return -EDOM;
}
buf += SZ_SG_HEADER;
__get_user(opcode, buf);
if (sfp->next_cmd_len > 0) {
if (sfp->next_cmd_len > MAX_COMMAND_SIZE) {
SCSI_LOG_TIMEOUT(1, printk("sg_write: command length too long\n"));
sfp->next_cmd_len = 0;
sg_remove_request(sfp, srp);
return -EIO;
}
cmd_size = sfp->next_cmd_len;
sfp->next_cmd_len = 0; /* reset so only this write() effected */
} else {
cmd_size = COMMAND_SIZE(opcode); /* based on SCSI command group */
if ((opcode >= 0xc0) && old_hdr.twelve_byte)
cmd_size = 12;
}
SCSI_LOG_TIMEOUT(4, printk(
"sg_write: scsi opcode=0x%02x, cmd_size=%d\n", (int) opcode, cmd_size));
/* Determine buffer size. */
input_size = count - cmd_size;
mxsize = (input_size > old_hdr.reply_len) ? input_size : old_hdr.reply_len;
mxsize -= SZ_SG_HEADER;
input_size -= SZ_SG_HEADER;
if (input_size < 0) {
sg_remove_request(sfp, srp);
return -EIO; /* User did not pass enough bytes for this command. */
}
hp = &srp->header;
hp->interface_id = '\0'; /* indicator of old interface tunnelled */
hp->cmd_len = (unsigned char) cmd_size;
hp->iovec_count = 0;
hp->mx_sb_len = 0;
if (input_size > 0)
hp->dxfer_direction = (old_hdr.reply_len > SZ_SG_HEADER) ?
SG_DXFER_TO_FROM_DEV : SG_DXFER_TO_DEV;
else
hp->dxfer_direction = (mxsize > 0) ? SG_DXFER_FROM_DEV : SG_DXFER_NONE;
hp->dxfer_len = mxsize;
hp->dxferp = (char __user *)buf + cmd_size;
hp->sbp = NULL;
hp->timeout = old_hdr.reply_len; /* structure abuse ... */
hp->flags = input_size; /* structure abuse ... */
hp->pack_id = old_hdr.pack_id;
hp->usr_ptr = NULL;
if (__copy_from_user(cmnd, buf, cmd_size))
return -EFAULT;
/*
* SG_DXFER_TO_FROM_DEV is functionally equivalent to SG_DXFER_FROM_DEV,
* but is is possible that the app intended SG_DXFER_TO_DEV, because there
* is a non-zero input_size, so emit a warning.
*/
if (hp->dxfer_direction == SG_DXFER_TO_FROM_DEV)
if (printk_ratelimit())
printk(KERN_WARNING
"sg_write: data in/out %d/%d bytes for SCSI command 0x%x--"
"guessing data in;\n" KERN_WARNING " "
"program %s not setting count and/or reply_len properly\n",
old_hdr.reply_len - (int)SZ_SG_HEADER,
input_size, (unsigned int) cmnd[0],
current->comm);
k = sg_common_write(sfp, srp, cmnd, sfp->timeout, blocking);
return (k < 0) ? k : count;
}
static ssize_t
sg_new_write(Sg_fd * sfp, const char __user *buf, size_t count,
int blocking, int read_only, Sg_request ** o_srp)
{
int k;
Sg_request *srp;
sg_io_hdr_t *hp;
unsigned char cmnd[MAX_COMMAND_SIZE];
int timeout;
unsigned long ul_timeout;
if (count < SZ_SG_IO_HDR)
return -EINVAL;
if (!access_ok(VERIFY_READ, buf, count))
return -EFAULT; /* protects following copy_from_user()s + get_user()s */
sfp->cmd_q = 1; /* when sg_io_hdr seen, set command queuing on */
if (!(srp = sg_add_request(sfp))) {
SCSI_LOG_TIMEOUT(1, printk("sg_new_write: queue full\n"));
return -EDOM;
}
hp = &srp->header;
if (__copy_from_user(hp, buf, SZ_SG_IO_HDR)) {
sg_remove_request(sfp, srp);
return -EFAULT;
}
if (hp->interface_id != 'S') {
sg_remove_request(sfp, srp);
return -ENOSYS;
}
if (hp->flags & SG_FLAG_MMAP_IO) {
if (hp->dxfer_len > sfp->reserve.bufflen) {
sg_remove_request(sfp, srp);
return -ENOMEM; /* MMAP_IO size must fit in reserve buffer */
}
if (hp->flags & SG_FLAG_DIRECT_IO) {
sg_remove_request(sfp, srp);
return -EINVAL; /* either MMAP_IO or DIRECT_IO (not both) */
}
if (sg_res_in_use(sfp)) {
sg_remove_request(sfp, srp);
return -EBUSY; /* reserve buffer already being used */
}
}
ul_timeout = msecs_to_jiffies(srp->header.timeout);
timeout = (ul_timeout < INT_MAX) ? ul_timeout : INT_MAX;
if ((!hp->cmdp) || (hp->cmd_len < 6) || (hp->cmd_len > sizeof (cmnd))) {
sg_remove_request(sfp, srp);
return -EMSGSIZE;
}
if (!access_ok(VERIFY_READ, hp->cmdp, hp->cmd_len)) {
sg_remove_request(sfp, srp);
return -EFAULT; /* protects following copy_from_user()s + get_user()s */
}
if (__copy_from_user(cmnd, hp->cmdp, hp->cmd_len)) {
sg_remove_request(sfp, srp);
return -EFAULT;
}
if (read_only &&
(!sg_allow_access(cmnd[0], sfp->parentdp->device->type))) {
sg_remove_request(sfp, srp);
return -EPERM;
}
k = sg_common_write(sfp, srp, cmnd, timeout, blocking);
if (k < 0)
return k;
if (o_srp)
*o_srp = srp;
return count;
}
static int
sg_common_write(Sg_fd * sfp, Sg_request * srp,
unsigned char *cmnd, int timeout, int blocking)
{
int k, data_dir;
Sg_device *sdp = sfp->parentdp;
sg_io_hdr_t *hp = &srp->header;
srp->data.cmd_opcode = cmnd[0]; /* hold opcode of command */
hp->status = 0;
hp->masked_status = 0;
hp->msg_status = 0;
hp->info = 0;
hp->host_status = 0;
hp->driver_status = 0;
hp->resid = 0;
SCSI_LOG_TIMEOUT(4, printk("sg_common_write: scsi opcode=0x%02x, cmd_size=%d\n",
(int) cmnd[0], (int) hp->cmd_len));
if ((k = sg_start_req(srp))) {
SCSI_LOG_TIMEOUT(1, printk("sg_write: start_req err=%d\n", k));
sg_finish_rem_req(srp);
return k; /* probably out of space --> ENOMEM */
}
if ((k = sg_write_xfer(srp))) {
SCSI_LOG_TIMEOUT(1, printk("sg_write: write_xfer, bad address\n"));
sg_finish_rem_req(srp);
return k;
}
if (sdp->detached) {
sg_finish_rem_req(srp);
return -ENODEV;
}
switch (hp->dxfer_direction) {
case SG_DXFER_TO_FROM_DEV:
case SG_DXFER_FROM_DEV:
data_dir = DMA_FROM_DEVICE;
break;
case SG_DXFER_TO_DEV:
data_dir = DMA_TO_DEVICE;
break;
case SG_DXFER_UNKNOWN:
data_dir = DMA_BIDIRECTIONAL;
break;
default:
data_dir = DMA_NONE;
break;
}
hp->duration = jiffies_to_msecs(jiffies);
/* Now send everything of to mid-level. The next time we hear about this
packet is when sg_cmd_done() is called (i.e. a callback). */
if (scsi_execute_async(sdp->device, cmnd, hp->cmd_len, data_dir, srp->data.buffer,
hp->dxfer_len, srp->data.k_use_sg, timeout,
SG_DEFAULT_RETRIES, srp, sg_cmd_done,
GFP_ATOMIC)) {
SCSI_LOG_TIMEOUT(1, printk("sg_write: scsi_execute_async failed\n"));
/*
* most likely out of mem, but could also be a bad map
*/
return -ENOMEM;
} else
return 0;
}
static int
sg_srp_done(Sg_request *srp, Sg_fd *sfp)
{
unsigned long iflags;
int done;
read_lock_irqsave(&sfp->rq_list_lock, iflags);
done = srp->done;
read_unlock_irqrestore(&sfp->rq_list_lock, iflags);
return done;
}
static int
sg_ioctl(struct inode *inode, struct file *filp,
unsigned int cmd_in, unsigned long arg)
{
void __user *p = (void __user *)arg;
int __user *ip = p;
int result, val, read_only;
Sg_device *sdp;
Sg_fd *sfp;
Sg_request *srp;
unsigned long iflags;
if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp)))
return -ENXIO;
SCSI_LOG_TIMEOUT(3, printk("sg_ioctl: %s, cmd=0x%x\n",
sdp->disk->disk_name, (int) cmd_in));
read_only = (O_RDWR != (filp->f_flags & O_ACCMODE));
switch (cmd_in) {
case SG_IO:
{
int blocking = 1; /* ignore O_NONBLOCK flag */
if (sdp->detached)
return -ENODEV;
if (!scsi_block_when_processing_errors(sdp->device))
return -ENXIO;
if (!access_ok(VERIFY_WRITE, p, SZ_SG_IO_HDR))
return -EFAULT;
result =
sg_new_write(sfp, p, SZ_SG_IO_HDR,
blocking, read_only, &srp);
if (result < 0)
return result;
srp->sg_io_owned = 1;
while (1) {
result = 0; /* following macro to beat race condition */
__wait_event_interruptible(sfp->read_wait,
(sdp->detached || sfp->closed || sg_srp_done(srp, sfp)),
result);
if (sdp->detached)
return -ENODEV;
if (sfp->closed)
return 0; /* request packet dropped already */
if (0 == result)
break;
srp->orphan = 1;
return result; /* -ERESTARTSYS because signal hit process */
}
write_lock_irqsave(&sfp->rq_list_lock, iflags);
srp->done = 2;
write_unlock_irqrestore(&sfp->rq_list_lock, iflags);
result = sg_new_read(sfp, p, SZ_SG_IO_HDR, srp);
return (result < 0) ? result : 0;
}
case SG_SET_TIMEOUT:
result = get_user(val, ip);
if (result)
return result;
if (val < 0)
return -EIO;
if (val >= MULDIV (INT_MAX, USER_HZ, HZ))
val = MULDIV (INT_MAX, USER_HZ, HZ);
sfp->timeout_user = val;
sfp->timeout = MULDIV (val, HZ, USER_HZ);
return 0;
case SG_GET_TIMEOUT: /* N.B. User receives timeout as return value */
/* strange ..., for backward compatibility */
return sfp->timeout_user;
case SG_SET_FORCE_LOW_DMA:
result = get_user(val, ip);
if (result)
return result;
if (val) {
sfp->low_dma = 1;
if ((0 == sfp->low_dma) && (0 == sg_res_in_use(sfp))) {
val = (int) sfp->reserve.bufflen;
sg_remove_scat(&sfp->reserve);
sg_build_reserve(sfp, val);
}
} else {
if (sdp->detached)
return -ENODEV;
sfp->low_dma = sdp->device->host->unchecked_isa_dma;
}
return 0;
case SG_GET_LOW_DMA:
return put_user((int) sfp->low_dma, ip);
case SG_GET_SCSI_ID:
if (!access_ok(VERIFY_WRITE, p, sizeof (sg_scsi_id_t)))
return -EFAULT;
else {
sg_scsi_id_t __user *sg_idp = p;
if (sdp->detached)
return -ENODEV;
__put_user((int) sdp->device->host->host_no,
&sg_idp->host_no);
__put_user((int) sdp->device->channel,
&sg_idp->channel);
__put_user((int) sdp->device->id, &sg_idp->scsi_id);
__put_user((int) sdp->device->lun, &sg_idp->lun);
__put_user((int) sdp->device->type, &sg_idp->scsi_type);
__put_user((short) sdp->device->host->cmd_per_lun,
&sg_idp->h_cmd_per_lun);
__put_user((short) sdp->device->queue_depth,
&sg_idp->d_queue_depth);
__put_user(0, &sg_idp->unused[0]);
__put_user(0, &sg_idp->unused[1]);
return 0;
}
case SG_SET_FORCE_PACK_ID:
result = get_user(val, ip);
if (result)
return result;
sfp->force_packid = val ? 1 : 0;
return 0;
case SG_GET_PACK_ID:
if (!access_ok(VERIFY_WRITE, ip, sizeof (int)))
return -EFAULT;
read_lock_irqsave(&sfp->rq_list_lock, iflags);
for (srp = sfp->headrp; srp; srp = srp->nextrp) {
if ((1 == srp->done) && (!srp->sg_io_owned)) {
read_unlock_irqrestore(&sfp->rq_list_lock,
iflags);
__put_user(srp->header.pack_id, ip);
return 0;
}
}
read_unlock_irqrestore(&sfp->rq_list_lock, iflags);
__put_user(-1, ip);
return 0;
case SG_GET_NUM_WAITING:
read_lock_irqsave(&sfp->rq_list_lock, iflags);
for (val = 0, srp = sfp->headrp; srp; srp = srp->nextrp) {
if ((1 == srp->done) && (!srp->sg_io_owned))
++val;
}
read_unlock_irqrestore(&sfp->rq_list_lock, iflags);
return put_user(val, ip);
case SG_GET_SG_TABLESIZE:
return put_user(sdp->sg_tablesize, ip);
case SG_SET_RESERVED_SIZE:
result = get_user(val, ip);
if (result)
return result;
if (val < 0)
return -EINVAL;
if (val != sfp->reserve.bufflen) {
if (sg_res_in_use(sfp) || sfp->mmap_called)
return -EBUSY;
sg_remove_scat(&sfp->reserve);
sg_build_reserve(sfp, val);
}
return 0;
case SG_GET_RESERVED_SIZE:
val = (int) sfp->reserve.bufflen;
return put_user(val, ip);
case SG_SET_COMMAND_Q:
result = get_user(val, ip);
if (result)
return result;
sfp->cmd_q = val ? 1 : 0;
return 0;
case SG_GET_COMMAND_Q:
return put_user((int) sfp->cmd_q, ip);
case SG_SET_KEEP_ORPHAN:
result = get_user(val, ip);
if (result)
return result;
sfp->keep_orphan = val;
return 0;
case SG_GET_KEEP_ORPHAN:
return put_user((int) sfp->keep_orphan, ip);
case SG_NEXT_CMD_LEN:
result = get_user(val, ip);
if (result)
return result;
sfp->next_cmd_len = (val > 0) ? val : 0;
return 0;
case SG_GET_VERSION_NUM:
return put_user(sg_version_num, ip);
case SG_GET_ACCESS_COUNT:
/* faked - we don't have a real access count anymore */
val = (sdp->device ? 1 : 0);
return put_user(val, ip);
case SG_GET_REQUEST_TABLE:
if (!access_ok(VERIFY_WRITE, p, SZ_SG_REQ_INFO * SG_MAX_QUEUE))
return -EFAULT;
else {
sg_req_info_t *rinfo;
unsigned int ms;
rinfo = kmalloc(SZ_SG_REQ_INFO * SG_MAX_QUEUE,
GFP_KERNEL);
if (!rinfo)
return -ENOMEM;
read_lock_irqsave(&sfp->rq_list_lock, iflags);
for (srp = sfp->headrp, val = 0; val < SG_MAX_QUEUE;
++val, srp = srp ? srp->nextrp : srp) {
memset(&rinfo[val], 0, SZ_SG_REQ_INFO);
if (srp) {
rinfo[val].req_state = srp->done + 1;
rinfo[val].problem =
srp->header.masked_status &
srp->header.host_status &
srp->header.driver_status;
if (srp->done)
rinfo[val].duration =
srp->header.duration;
else {
ms = jiffies_to_msecs(jiffies);
rinfo[val].duration =
(ms > srp->header.duration) ?
(ms - srp->header.duration) : 0;
}
rinfo[val].orphan = srp->orphan;
rinfo[val].sg_io_owned =
srp->sg_io_owned;
rinfo[val].pack_id =
srp->header.pack_id;
rinfo[val].usr_ptr =
srp->header.usr_ptr;
}
}
read_unlock_irqrestore(&sfp->rq_list_lock, iflags);
result = __copy_to_user(p, rinfo,
SZ_SG_REQ_INFO * SG_MAX_QUEUE);
result = result ? -EFAULT : 0;
kfree(rinfo);
return result;
}
case SG_EMULATED_HOST:
if (sdp->detached)
return -ENODEV;
return put_user(sdp->device->host->hostt->emulated, ip);
case SG_SCSI_RESET:
if (sdp->detached)
return -ENODEV;
if (filp->f_flags & O_NONBLOCK) {
if (scsi_host_in_recovery(sdp->device->host))
return -EBUSY;
} else if (!scsi_block_when_processing_errors(sdp->device))
return -EBUSY;
result = get_user(val, ip);
if (result)
return result;
if (SG_SCSI_RESET_NOTHING == val)
return 0;
switch (val) {
case SG_SCSI_RESET_DEVICE:
val = SCSI_TRY_RESET_DEVICE;
break;
case SG_SCSI_RESET_BUS:
val = SCSI_TRY_RESET_BUS;
break;
case SG_SCSI_RESET_HOST:
val = SCSI_TRY_RESET_HOST;
break;
default:
return -EINVAL;
}
if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
return -EACCES;
return (scsi_reset_provider(sdp->device, val) ==
SUCCESS) ? 0 : -EIO;
case SCSI_IOCTL_SEND_COMMAND:
if (sdp->detached)
return -ENODEV;
if (read_only) {
unsigned char opcode = WRITE_6;
Scsi_Ioctl_Command __user *siocp = p;
if (copy_from_user(&opcode, siocp->data, 1))
return -EFAULT;
if (!sg_allow_access(opcode, sdp->device->type))
return -EPERM;
}
return scsi_ioctl_send_command(sdp->device, p);
case SG_SET_DEBUG:
result = get_user(val, ip);
if (result)
return result;
sdp->sgdebug = (char) val;
return 0;
case SCSI_IOCTL_GET_IDLUN:
case SCSI_IOCTL_GET_BUS_NUMBER:
case SCSI_IOCTL_PROBE_HOST:
case SG_GET_TRANSFORM:
if (sdp->detached)
return -ENODEV;
return scsi_ioctl(sdp->device, cmd_in, p);
default:
if (read_only)
return -EPERM; /* don't know so take safe approach */
return scsi_ioctl(sdp->device, cmd_in, p);
}
}
#ifdef CONFIG_COMPAT
static long sg_compat_ioctl(struct file *filp, unsigned int cmd_in, unsigned long arg)
{
Sg_device *sdp;
Sg_fd *sfp;
struct scsi_device *sdev;
if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp)))
return -ENXIO;
sdev = sdp->device;
if (sdev->host->hostt->compat_ioctl) {
int ret;
ret = sdev->host->hostt->compat_ioctl(sdev, cmd_in, (void __user *)arg);
return ret;
}
return -ENOIOCTLCMD;
}
#endif
static unsigned int
sg_poll(struct file *filp, poll_table * wait)
{
unsigned int res = 0;
Sg_device *sdp;
Sg_fd *sfp;
Sg_request *srp;
int count = 0;
unsigned long iflags;
if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp))
|| sfp->closed)
return POLLERR;
poll_wait(filp, &sfp->read_wait, wait);
read_lock_irqsave(&sfp->rq_list_lock, iflags);
for (srp = sfp->headrp; srp; srp = srp->nextrp) {
/* if any read waiting, flag it */
if ((0 == res) && (1 == srp->done) && (!srp->sg_io_owned))
res = POLLIN | POLLRDNORM;
++count;
}
read_unlock_irqrestore(&sfp->rq_list_lock, iflags);
if (sdp->detached)
res |= POLLHUP;
else if (!sfp->cmd_q) {
if (0 == count)
res |= POLLOUT | POLLWRNORM;
} else if (count < SG_MAX_QUEUE)
res |= POLLOUT | POLLWRNORM;
SCSI_LOG_TIMEOUT(3, printk("sg_poll: %s, res=0x%x\n",
sdp->disk->disk_name, (int) res));
return res;
}
static int
sg_fasync(int fd, struct file *filp, int mode)
{
int retval;
Sg_device *sdp;
Sg_fd *sfp;
if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp)))
return -ENXIO;
SCSI_LOG_TIMEOUT(3, printk("sg_fasync: %s, mode=%d\n",
sdp->disk->disk_name, mode));
retval = fasync_helper(fd, filp, mode, &sfp->async_qp);
return (retval < 0) ? retval : 0;
}
/* When startFinish==1 increments page counts for pages other than the
first of scatter gather elements obtained from alloc_pages().
When startFinish==0 decrements ... */
static void
sg_rb_correct4mmap(Sg_scatter_hold * rsv_schp, int startFinish)
{
struct scatterlist *sg = rsv_schp->buffer;
struct page *page;
int k, m;
SCSI_LOG_TIMEOUT(3, printk("sg_rb_correct4mmap: startFinish=%d, scatg=%d\n",
startFinish, rsv_schp->k_use_sg));
/* N.B. correction _not_ applied to base page of each allocation */
for (k = 0; k < rsv_schp->k_use_sg; ++k, ++sg) {
for (m = PAGE_SIZE; m < sg->length; m += PAGE_SIZE) {
page = sg->page;
if (startFinish)
get_page(page);
else {
if (page_count(page) > 0)
__put_page(page);
}
}
}
}
static struct page *
sg_vma_nopage(struct vm_area_struct *vma, unsigned long addr, int *type)
{
Sg_fd *sfp;
struct page *page = NOPAGE_SIGBUS;
unsigned long offset, len, sa;
Sg_scatter_hold *rsv_schp;
struct scatterlist *sg;
int k;
if ((NULL == vma) || (!(sfp = (Sg_fd *) vma->vm_private_data)))
return page;
rsv_schp = &sfp->reserve;
offset = addr - vma->vm_start;
if (offset >= rsv_schp->bufflen)
return page;
SCSI_LOG_TIMEOUT(3, printk("sg_vma_nopage: offset=%lu, scatg=%d\n",
offset, rsv_schp->k_use_sg));
sg = rsv_schp->buffer;
sa = vma->vm_start;
for (k = 0; (k < rsv_schp->k_use_sg) && (sa < vma->vm_end);
++k, ++sg) {
len = vma->vm_end - sa;
len = (len < sg->length) ? len : sg->length;
if (offset < len) {
page = sg->page;
get_page(page); /* increment page count */
break;
}
sa += len;
offset -= len;
}
if (type)
*type = VM_FAULT_MINOR;
return page;
}
static struct vm_operations_struct sg_mmap_vm_ops = {
.nopage = sg_vma_nopage,
};
static int
sg_mmap(struct file *filp, struct vm_area_struct *vma)
{
Sg_fd *sfp;
unsigned long req_sz, len, sa;
Sg_scatter_hold *rsv_schp;
int k;
struct scatterlist *sg;
if ((!filp) || (!vma) || (!(sfp = (Sg_fd *) filp->private_data)))
return -ENXIO;
req_sz = vma->vm_end - vma->vm_start;
SCSI_LOG_TIMEOUT(3, printk("sg_mmap starting, vm_start=%p, len=%d\n",
(void *) vma->vm_start, (int) req_sz));
if (vma->vm_pgoff)
return -EINVAL; /* want no offset */
rsv_schp = &sfp->reserve;
if (req_sz > rsv_schp->bufflen)
return -ENOMEM; /* cannot map more than reserved buffer */
sa = vma->vm_start;
sg = rsv_schp->buffer;
for (k = 0; (k < rsv_schp->k_use_sg) && (sa < vma->vm_end);
++k, ++sg) {
len = vma->vm_end - sa;
len = (len < sg->length) ? len : sg->length;
sa += len;
}
if (0 == sfp->mmap_called) {
sg_rb_correct4mmap(rsv_schp, 1); /* do only once per fd lifetime */
sfp->mmap_called = 1;
}
vma->vm_flags |= VM_RESERVED;
vma->vm_private_data = sfp;
vma->vm_ops = &sg_mmap_vm_ops;
return 0;
}
/* This function is a "bottom half" handler that is called by the
* mid level when a command is completed (or has failed). */
static void
sg_cmd_done(void *data, char *sense, int result, int resid)
{
Sg_request *srp = data;
Sg_device *sdp = NULL;
Sg_fd *sfp;
unsigned long iflags;
unsigned int ms;
if (NULL == srp) {
printk(KERN_ERR "sg_cmd_done: NULL request\n");
return;
}
sfp = srp->parentfp;
if (sfp)
sdp = sfp->parentdp;
if ((NULL == sdp) || sdp->detached) {
printk(KERN_INFO "sg_cmd_done: device detached\n");
return;
}
SCSI_LOG_TIMEOUT(4, printk("sg_cmd_done: %s, pack_id=%d, res=0x%x\n",
sdp->disk->disk_name, srp->header.pack_id, result));
srp->header.resid = resid;
ms = jiffies_to_msecs(jiffies);
srp->header.duration = (ms > srp->header.duration) ?
(ms - srp->header.duration) : 0;
if (0 != result) {
struct scsi_sense_hdr sshdr;
memcpy(srp->sense_b, sense, sizeof (srp->sense_b));
srp->header.status = 0xff & result;
srp->header.masked_status = status_byte(result);
srp->header.msg_status = msg_byte(result);
srp->header.host_status = host_byte(result);
srp->header.driver_status = driver_byte(result);
if ((sdp->sgdebug > 0) &&
((CHECK_CONDITION == srp->header.masked_status) ||
(COMMAND_TERMINATED == srp->header.masked_status)))
__scsi_print_sense("sg_cmd_done", sense,
SCSI_SENSE_BUFFERSIZE);
/* Following if statement is a patch supplied by Eric Youngdale */
if (driver_byte(result) != 0
&& scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, &sshdr)
&& !scsi_sense_is_deferred(&sshdr)
&& sshdr.sense_key == UNIT_ATTENTION
&& sdp->device->removable) {
/* Detected possible disc change. Set the bit - this */
/* may be used if there are filesystems using this device */
sdp->device->changed = 1;
}
}
/* Rely on write phase to clean out srp status values, so no "else" */
if (sfp->closed) { /* whoops this fd already released, cleanup */
SCSI_LOG_TIMEOUT(1, printk("sg_cmd_done: already closed, freeing ...\n"));
sg_finish_rem_req(srp);
srp = NULL;
if (NULL == sfp->headrp) {
SCSI_LOG_TIMEOUT(1, printk("sg...bh: already closed, final cleanup\n"));
if (0 == sg_remove_sfp(sdp, sfp)) { /* device still present */
scsi_device_put(sdp->device);
}
sfp = NULL;
}
} else if (srp && srp->orphan) {
if (sfp->keep_orphan)
srp->sg_io_owned = 0;
else {
sg_finish_rem_req(srp);
srp = NULL;
}
}
if (sfp && srp) {
/* Now wake up any sg_read() that is waiting for this packet. */
kill_fasync(&sfp->async_qp, SIGPOLL, POLL_IN);
write_lock_irqsave(&sfp->rq_list_lock, iflags);
srp->done = 1;
wake_up_interruptible(&sfp->read_wait);
write_unlock_irqrestore(&sfp->rq_list_lock, iflags);
}
}
static struct file_operations sg_fops = {
.owner = THIS_MODULE,
.read = sg_read,
.write = sg_write,
.poll = sg_poll,
.ioctl = sg_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = sg_compat_ioctl,
#endif
.open = sg_open,
.mmap = sg_mmap,
.release = sg_release,
.fasync = sg_fasync,
};
static struct class *sg_sysfs_class;
static int sg_sysfs_valid = 0;
static int sg_alloc(struct gendisk *disk, struct scsi_device *scsidp)
{
struct request_queue *q = scsidp->request_queue;
Sg_device *sdp;
unsigned long iflags;
void *old_sg_dev_arr = NULL;
int k, error;
sdp = kzalloc(sizeof(Sg_device), GFP_KERNEL);
if (!sdp) {
printk(KERN_WARNING "kmalloc Sg_device failure\n");
return -ENOMEM;
}
write_lock_irqsave(&sg_dev_arr_lock, iflags);
if (unlikely(sg_nr_dev >= sg_dev_max)) { /* try to resize */
Sg_device **tmp_da;
int tmp_dev_max = sg_nr_dev + SG_DEV_ARR_LUMP;
write_unlock_irqrestore(&sg_dev_arr_lock, iflags);
tmp_da = kzalloc(tmp_dev_max * sizeof(Sg_device *), GFP_KERNEL);
if (unlikely(!tmp_da))
goto expand_failed;
write_lock_irqsave(&sg_dev_arr_lock, iflags);
memcpy(tmp_da, sg_dev_arr, sg_dev_max * sizeof(Sg_device *));
old_sg_dev_arr = sg_dev_arr;
sg_dev_arr = tmp_da;
sg_dev_max = tmp_dev_max;
}
for (k = 0; k < sg_dev_max; k++)
if (!sg_dev_arr[k])
break;
if (unlikely(k >= SG_MAX_DEVS))
goto overflow;
SCSI_LOG_TIMEOUT(3, printk("sg_alloc: dev=%d \n", k));
sprintf(disk->disk_name, "sg%d", k);
disk->first_minor = k;
sdp->disk = disk;
sdp->device = scsidp;
init_waitqueue_head(&sdp->o_excl_wait);
sdp->sg_tablesize = min(q->max_hw_segments, q->max_phys_segments);
sg_nr_dev++;
sg_dev_arr[k] = sdp;
write_unlock_irqrestore(&sg_dev_arr_lock, iflags);
error = k;
out:
if (error < 0)
kfree(sdp);
kfree(old_sg_dev_arr);
return error;
expand_failed:
printk(KERN_WARNING "sg_alloc: device array cannot be resized\n");
error = -ENOMEM;
goto out;
overflow:
write_unlock_irqrestore(&sg_dev_arr_lock, iflags);
sdev_printk(KERN_WARNING, scsidp,
"Unable to attach sg device type=%d, minor "
"number exceeds %d\n", scsidp->type, SG_MAX_DEVS - 1);
error = -ENODEV;
goto out;
}
static int
sg_add(struct class_device *cl_dev, struct class_interface *cl_intf)
{
struct scsi_device *scsidp = to_scsi_device(cl_dev->dev);
struct gendisk *disk;
Sg_device *sdp = NULL;
struct cdev * cdev = NULL;
int error, k;
disk = alloc_disk(1);
if (!disk) {
printk(KERN_WARNING "alloc_disk failed\n");
return -ENOMEM;
}
disk->major = SCSI_GENERIC_MAJOR;
error = -ENOMEM;
cdev = cdev_alloc();
if (!cdev) {
printk(KERN_WARNING "cdev_alloc failed\n");
goto out;
}
cdev->owner = THIS_MODULE;
cdev->ops = &sg_fops;
error = sg_alloc(disk, scsidp);
if (error < 0) {
printk(KERN_WARNING "sg_alloc failed\n");
goto out;
}
k = error;
sdp = sg_dev_arr[k];
error = cdev_add(cdev, MKDEV(SCSI_GENERIC_MAJOR, k), 1);
if (error)
goto out;
sdp->cdev = cdev;
if (sg_sysfs_valid) {
struct class_device * sg_class_member;
sg_class_member = class_device_create(sg_sysfs_class, NULL,
MKDEV(SCSI_GENERIC_MAJOR, k),
cl_dev->dev, "%s",
disk->disk_name);
if (IS_ERR(sg_class_member))
printk(KERN_WARNING "sg_add: "
"class_device_create failed\n");
class_set_devdata(sg_class_member, sdp);
error = sysfs_create_link(&scsidp->sdev_gendev.kobj,
&sg_class_member->kobj, "generic");
if (error)
printk(KERN_ERR "sg_add: unable to make symlink "
"'generic' back to sg%d\n", k);
} else
printk(KERN_WARNING "sg_add: sg_sys INvalid\n");
sdev_printk(KERN_NOTICE, scsidp,
"Attached scsi generic sg%d type %d\n", k,scsidp->type);
return 0;
out:
put_disk(disk);
if (cdev)
cdev_del(cdev);
return error;
}
static void
sg_remove(struct class_device *cl_dev, struct class_interface *cl_intf)
{
struct scsi_device *scsidp = to_scsi_device(cl_dev->dev);
Sg_device *sdp = NULL;
unsigned long iflags;
Sg_fd *sfp;
Sg_fd *tsfp;
Sg_request *srp;
Sg_request *tsrp;
int k, delay;
if (NULL == sg_dev_arr)
return;
delay = 0;
write_lock_irqsave(&sg_dev_arr_lock, iflags);
for (k = 0; k < sg_dev_max; k++) {
sdp = sg_dev_arr[k];
if ((NULL == sdp) || (sdp->device != scsidp))
continue; /* dirty but lowers nesting */
if (sdp->headfp) {
sdp->detached = 1;
for (sfp = sdp->headfp; sfp; sfp = tsfp) {
tsfp = sfp->nextfp;
for (srp = sfp->headrp; srp; srp = tsrp) {
tsrp = srp->nextrp;
if (sfp->closed || (0 == sg_srp_done(srp, sfp)))
sg_finish_rem_req(srp);
}
if (sfp->closed) {
scsi_device_put(sdp->device);
__sg_remove_sfp(sdp, sfp);
} else {
delay = 1;
wake_up_interruptible(&sfp->read_wait);
kill_fasync(&sfp->async_qp, SIGPOLL,
POLL_HUP);
}
}
SCSI_LOG_TIMEOUT(3, printk("sg_detach: dev=%d, dirty\n", k));
if (NULL == sdp->headfp) {
sg_dev_arr[k] = NULL;
}
} else { /* nothing active, simple case */
SCSI_LOG_TIMEOUT(3, printk("sg_detach: dev=%d\n", k));
sg_dev_arr[k] = NULL;
}
sg_nr_dev--;
break;
}
write_unlock_irqrestore(&sg_dev_arr_lock, iflags);
if (sdp) {
sysfs_remove_link(&scsidp->sdev_gendev.kobj, "generic");
class_device_destroy(sg_sysfs_class, MKDEV(SCSI_GENERIC_MAJOR, k));
cdev_del(sdp->cdev);
sdp->cdev = NULL;
put_disk(sdp->disk);
sdp->disk = NULL;
if (NULL == sdp->headfp)
kfree((char *) sdp);
}
if (delay)
msleep(10); /* dirty detach so delay device destruction */
}
/* Set 'perm' (4th argument) to 0 to disable module_param's definition
* of sysfs parameters (which module_param doesn't yet support).
* Sysfs parameters defined explicitly below.
*/
module_param_named(def_reserved_size, def_reserved_size, int, S_IRUGO);
module_param_named(allow_dio, sg_allow_dio, int, S_IRUGO | S_IWUSR);
MODULE_AUTHOR("Douglas Gilbert");
MODULE_DESCRIPTION("SCSI generic (sg) driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(SG_VERSION_STR);
MODULE_PARM_DESC(def_reserved_size, "size of buffer reserved for each fd");
MODULE_PARM_DESC(allow_dio, "allow direct I/O (default: 0 (disallow))");
static int __init
init_sg(void)
{
int rc;
if (def_reserved_size >= 0)
sg_big_buff = def_reserved_size;
rc = register_chrdev_region(MKDEV(SCSI_GENERIC_MAJOR, 0),
SG_MAX_DEVS, "sg");
if (rc)
return rc;
sg_sysfs_class = class_create(THIS_MODULE, "scsi_generic");
if ( IS_ERR(sg_sysfs_class) ) {
rc = PTR_ERR(sg_sysfs_class);
goto err_out;
}
sg_sysfs_valid = 1;
rc = scsi_register_interface(&sg_interface);
if (0 == rc) {
#ifdef CONFIG_SCSI_PROC_FS
sg_proc_init();
#endif /* CONFIG_SCSI_PROC_FS */
return 0;
}
class_destroy(sg_sysfs_class);
err_out:
unregister_chrdev_region(MKDEV(SCSI_GENERIC_MAJOR, 0), SG_MAX_DEVS);
return rc;
}
static void __exit
exit_sg(void)
{
#ifdef CONFIG_SCSI_PROC_FS
sg_proc_cleanup();
#endif /* CONFIG_SCSI_PROC_FS */
scsi_unregister_interface(&sg_interface);
class_destroy(sg_sysfs_class);
sg_sysfs_valid = 0;
unregister_chrdev_region(MKDEV(SCSI_GENERIC_MAJOR, 0),
SG_MAX_DEVS);
kfree((char *)sg_dev_arr);
sg_dev_arr = NULL;
sg_dev_max = 0;
}
static int
sg_start_req(Sg_request * srp)
{
int res;
Sg_fd *sfp = srp->parentfp;
sg_io_hdr_t *hp = &srp->header;
int dxfer_len = (int) hp->dxfer_len;
int dxfer_dir = hp->dxfer_direction;
Sg_scatter_hold *req_schp = &srp->data;
Sg_scatter_hold *rsv_schp = &sfp->reserve;
SCSI_LOG_TIMEOUT(4, printk("sg_start_req: dxfer_len=%d\n", dxfer_len));
if ((dxfer_len <= 0) || (dxfer_dir == SG_DXFER_NONE))
return 0;
if (sg_allow_dio && (hp->flags & SG_FLAG_DIRECT_IO) &&
(dxfer_dir != SG_DXFER_UNKNOWN) && (0 == hp->iovec_count) &&
(!sfp->parentdp->device->host->unchecked_isa_dma)) {
res = sg_build_direct(srp, sfp, dxfer_len);
if (res <= 0) /* -ve -> error, 0 -> done, 1 -> try indirect */
return res;
}
if ((!sg_res_in_use(sfp)) && (dxfer_len <= rsv_schp->bufflen))
sg_link_reserve(sfp, srp, dxfer_len);
else {
res = sg_build_indirect(req_schp, sfp, dxfer_len);
if (res) {
sg_remove_scat(req_schp);
return res;
}
}
return 0;
}
static void
sg_finish_rem_req(Sg_request * srp)
{
Sg_fd *sfp = srp->parentfp;
Sg_scatter_hold *req_schp = &srp->data;
SCSI_LOG_TIMEOUT(4, printk("sg_finish_rem_req: res_used=%d\n", (int) srp->res_used));
if (srp->res_used)
sg_unlink_reserve(sfp, srp);
else
sg_remove_scat(req_schp);
sg_remove_request(sfp, srp);
}
static int
sg_build_sgat(Sg_scatter_hold * schp, const Sg_fd * sfp, int tablesize)
{
int sg_bufflen = tablesize * sizeof(struct scatterlist);
gfp_t gfp_flags = GFP_ATOMIC | __GFP_NOWARN;
/*
* TODO: test without low_dma, we should not need it since
* the block layer will bounce the buffer for us
*
* XXX(hch): we shouldn't need GFP_DMA for the actual S/G list.
*/
if (sfp->low_dma)
gfp_flags |= GFP_DMA;
schp->buffer = kzalloc(sg_bufflen, gfp_flags);
if (!schp->buffer)
return -ENOMEM;
schp->sglist_len = sg_bufflen;
return tablesize; /* number of scat_gath elements allocated */
}
#ifdef SG_ALLOW_DIO_CODE
/* vvvvvvvv following code borrowed from st driver's direct IO vvvvvvvvv */
/* TODO: hopefully we can use the generic block layer code */
/* Pin down user pages and put them into a scatter gather list. Returns <= 0 if
- mapping of all pages not successful
(i.e., either completely successful or fails)
*/
static int
st_map_user_pages(struct scatterlist *sgl, const unsigned int max_pages,
unsigned long uaddr, size_t count, int rw)
{
unsigned long end = (uaddr + count + PAGE_SIZE - 1) >> PAGE_SHIFT;
unsigned long start = uaddr >> PAGE_SHIFT;
const int nr_pages = end - start;
int res, i, j;
struct page **pages;
/* User attempted Overflow! */
if ((uaddr + count) < uaddr)
return -EINVAL;
/* Too big */
if (nr_pages > max_pages)
return -ENOMEM;
/* Hmm? */
if (count == 0)
return 0;
if ((pages = kmalloc(max_pages * sizeof(*pages), GFP_ATOMIC)) == NULL)
return -ENOMEM;
/* Try to fault in all of the necessary pages */
down_read(&current->mm->mmap_sem);
/* rw==READ means read from drive, write into memory area */
res = get_user_pages(
current,
current->mm,
uaddr,
nr_pages,
rw == READ,
0, /* don't force */
pages,
NULL);
up_read(&current->mm->mmap_sem);
/* Errors and no page mapped should return here */
if (res < nr_pages)
goto out_unmap;
for (i=0; i < nr_pages; i++) {
/* FIXME: flush superflous for rw==READ,
* probably wrong function for rw==WRITE
*/
flush_dcache_page(pages[i]);
/* ?? Is locking needed? I don't think so */
/* if (TestSetPageLocked(pages[i]))
goto out_unlock; */
}
sgl[0].page = pages[0];
sgl[0].offset = uaddr & ~PAGE_MASK;
if (nr_pages > 1) {
sgl[0].length = PAGE_SIZE - sgl[0].offset;
count -= sgl[0].length;
for (i=1; i < nr_pages ; i++) {
sgl[i].page = pages[i];
sgl[i].length = count < PAGE_SIZE ? count : PAGE_SIZE;
count -= PAGE_SIZE;
}
}
else {
sgl[0].length = count;
}
kfree(pages);
return nr_pages;
out_unmap:
if (res > 0) {
for (j=0; j < res; j++)
page_cache_release(pages[j]);
res = 0;
}
kfree(pages);
return res;
}
/* And unmap them... */
static int
st_unmap_user_pages(struct scatterlist *sgl, const unsigned int nr_pages,
int dirtied)
{
int i;
for (i=0; i < nr_pages; i++) {
struct page *page = sgl[i].page;
if (dirtied)
SetPageDirty(page);
/* unlock_page(page); */
/* FIXME: cache flush missing for rw==READ
* FIXME: call the correct reference counting function
*/
page_cache_release(page);
}
return 0;
}
/* ^^^^^^^^ above code borrowed from st driver's direct IO ^^^^^^^^^ */
#endif
/* Returns: -ve -> error, 0 -> done, 1 -> try indirect */
static int
sg_build_direct(Sg_request * srp, Sg_fd * sfp, int dxfer_len)
{
#ifdef SG_ALLOW_DIO_CODE
sg_io_hdr_t *hp = &srp->header;
Sg_scatter_hold *schp = &srp->data;
int sg_tablesize = sfp->parentdp->sg_tablesize;
int mx_sc_elems, res;
struct scsi_device *sdev = sfp->parentdp->device;
if (((unsigned long)hp->dxferp &
queue_dma_alignment(sdev->request_queue)) != 0)
return 1;
mx_sc_elems = sg_build_sgat(schp, sfp, sg_tablesize);
if (mx_sc_elems <= 0) {
return 1;
}
res = st_map_user_pages(schp->buffer, mx_sc_elems,
(unsigned long)hp->dxferp, dxfer_len,
(SG_DXFER_TO_DEV == hp->dxfer_direction) ? 1 : 0);
if (res <= 0)
return 1;
schp->k_use_sg = res;
schp->dio_in_use = 1;
hp->info |= SG_INFO_DIRECT_IO;
return 0;
#else
return 1;
#endif
}
static int
sg_build_indirect(Sg_scatter_hold * schp, Sg_fd * sfp, int buff_size)
{
struct scatterlist *sg;
int ret_sz = 0, k, rem_sz, num, mx_sc_elems;
int sg_tablesize = sfp->parentdp->sg_tablesize;
int blk_size = buff_size;
struct page *p = NULL;
if ((blk_size < 0) || (!sfp))
return -EFAULT;
if (0 == blk_size)
++blk_size; /* don't know why */
/* round request up to next highest SG_SECTOR_SZ byte boundary */
blk_size = (blk_size + SG_SECTOR_MSK) & (~SG_SECTOR_MSK);
SCSI_LOG_TIMEOUT(4, printk("sg_build_indirect: buff_size=%d, blk_size=%d\n",
buff_size, blk_size));
/* N.B. ret_sz carried into this block ... */
mx_sc_elems = sg_build_sgat(schp, sfp, sg_tablesize);
if (mx_sc_elems < 0)
return mx_sc_elems; /* most likely -ENOMEM */
for (k = 0, sg = schp->buffer, rem_sz = blk_size;
(rem_sz > 0) && (k < mx_sc_elems);
++k, rem_sz -= ret_sz, ++sg) {
num = (rem_sz > SG_SCATTER_SZ) ? SG_SCATTER_SZ : rem_sz;
p = sg_page_malloc(num, sfp->low_dma, &ret_sz);
if (!p)
return -ENOMEM;
sg->page = p;
sg->length = ret_sz;
SCSI_LOG_TIMEOUT(5, printk("sg_build_build: k=%d, a=0x%p, len=%d\n",
k, p, ret_sz));
} /* end of for loop */
schp->k_use_sg = k;
SCSI_LOG_TIMEOUT(5, printk("sg_build_indirect: k_use_sg=%d, rem_sz=%d\n", k, rem_sz));
schp->bufflen = blk_size;
if (rem_sz > 0) /* must have failed */
return -ENOMEM;
return 0;
}
static int
sg_write_xfer(Sg_request * srp)
{
sg_io_hdr_t *hp = &srp->header;
Sg_scatter_hold *schp = &srp->data;
struct scatterlist *sg = schp->buffer;
int num_xfer = 0;
int j, k, onum, usglen, ksglen, res;
int iovec_count = (int) hp->iovec_count;
int dxfer_dir = hp->dxfer_direction;
unsigned char *p;
unsigned char __user *up;
int new_interface = ('\0' == hp->interface_id) ? 0 : 1;
if ((SG_DXFER_UNKNOWN == dxfer_dir) || (SG_DXFER_TO_DEV == dxfer_dir) ||
(SG_DXFER_TO_FROM_DEV == dxfer_dir)) {
num_xfer = (int) (new_interface ? hp->dxfer_len : hp->flags);
if (schp->bufflen < num_xfer)
num_xfer = schp->bufflen;
}
if ((num_xfer <= 0) || (schp->dio_in_use) ||
(new_interface
&& ((SG_FLAG_NO_DXFER | SG_FLAG_MMAP_IO) & hp->flags)))
return 0;
SCSI_LOG_TIMEOUT(4, printk("sg_write_xfer: num_xfer=%d, iovec_count=%d, k_use_sg=%d\n",
num_xfer, iovec_count, schp->k_use_sg));
if (iovec_count) {
onum = iovec_count;
if (!access_ok(VERIFY_READ, hp->dxferp, SZ_SG_IOVEC * onum))
return -EFAULT;
} else
onum = 1;
ksglen = sg->length;
p = page_address(sg->page);
for (j = 0, k = 0; j < onum; ++j) {
res = sg_u_iovec(hp, iovec_count, j, 1, &usglen, &up);
if (res)
return res;
for (; p; ++sg, ksglen = sg->length,
p = page_address(sg->page)) {
if (usglen <= 0)
break;
if (ksglen > usglen) {
if (usglen >= num_xfer) {
if (__copy_from_user(p, up, num_xfer))
return -EFAULT;
return 0;
}
if (__copy_from_user(p, up, usglen))
return -EFAULT;
p += usglen;
ksglen -= usglen;
break;
} else {
if (ksglen >= num_xfer) {
if (__copy_from_user(p, up, num_xfer))
return -EFAULT;
return 0;
}
if (__copy_from_user(p, up, ksglen))
return -EFAULT;
up += ksglen;
usglen -= ksglen;
}
++k;
if (k >= schp->k_use_sg)
return 0;
}
}
return 0;
}
static int
sg_u_iovec(sg_io_hdr_t * hp, int sg_num, int ind,
int wr_xf, int *countp, unsigned char __user **up)
{
int num_xfer = (int) hp->dxfer_len;
unsigned char __user *p = hp->dxferp;
int count;
if (0 == sg_num) {
if (wr_xf && ('\0' == hp->interface_id))
count = (int) hp->flags; /* holds "old" input_size */
else
count = num_xfer;
} else {
sg_iovec_t iovec;
if (__copy_from_user(&iovec, p + ind*SZ_SG_IOVEC, SZ_SG_IOVEC))
return -EFAULT;
p = iovec.iov_base;
count = (int) iovec.iov_len;
}
if (!access_ok(wr_xf ? VERIFY_READ : VERIFY_WRITE, p, count))
return -EFAULT;
if (up)
*up = p;
if (countp)
*countp = count;
return 0;
}
static void
sg_remove_scat(Sg_scatter_hold * schp)
{
SCSI_LOG_TIMEOUT(4, printk("sg_remove_scat: k_use_sg=%d\n", schp->k_use_sg));
if (schp->buffer && (schp->sglist_len > 0)) {
struct scatterlist *sg = schp->buffer;
if (schp->dio_in_use) {
#ifdef SG_ALLOW_DIO_CODE
st_unmap_user_pages(sg, schp->k_use_sg, TRUE);
#endif
} else {
int k;
for (k = 0; (k < schp->k_use_sg) && sg->page;
++k, ++sg) {
SCSI_LOG_TIMEOUT(5, printk(
"sg_remove_scat: k=%d, a=0x%p, len=%d\n",
k, sg->page, sg->length));
sg_page_free(sg->page, sg->length);
}
}
kfree(schp->buffer);
}
memset(schp, 0, sizeof (*schp));
}
static int
sg_read_xfer(Sg_request * srp)
{
sg_io_hdr_t *hp = &srp->header;
Sg_scatter_hold *schp = &srp->data;
struct scatterlist *sg = schp->buffer;
int num_xfer = 0;
int j, k, onum, usglen, ksglen, res;
int iovec_count = (int) hp->iovec_count;
int dxfer_dir = hp->dxfer_direction;
unsigned char *p;
unsigned char __user *up;
int new_interface = ('\0' == hp->interface_id) ? 0 : 1;
if ((SG_DXFER_UNKNOWN == dxfer_dir) || (SG_DXFER_FROM_DEV == dxfer_dir)
|| (SG_DXFER_TO_FROM_DEV == dxfer_dir)) {
num_xfer = hp->dxfer_len;
if (schp->bufflen < num_xfer)
num_xfer = schp->bufflen;
}
if ((num_xfer <= 0) || (schp->dio_in_use) ||
(new_interface
&& ((SG_FLAG_NO_DXFER | SG_FLAG_MMAP_IO) & hp->flags)))
return 0;
SCSI_LOG_TIMEOUT(4, printk("sg_read_xfer: num_xfer=%d, iovec_count=%d, k_use_sg=%d\n",
num_xfer, iovec_count, schp->k_use_sg));
if (iovec_count) {
onum = iovec_count;
if (!access_ok(VERIFY_READ, hp->dxferp, SZ_SG_IOVEC * onum))
return -EFAULT;
} else
onum = 1;
p = page_address(sg->page);
ksglen = sg->length;
for (j = 0, k = 0; j < onum; ++j) {
res = sg_u_iovec(hp, iovec_count, j, 0, &usglen, &up);
if (res)
return res;
for (; p; ++sg, ksglen = sg->length,
p = page_address(sg->page)) {
if (usglen <= 0)
break;
if (ksglen > usglen) {
if (usglen >= num_xfer) {
if (__copy_to_user(up, p, num_xfer))
return -EFAULT;
return 0;
}
if (__copy_to_user(up, p, usglen))
return -EFAULT;
p += usglen;
ksglen -= usglen;
break;
} else {
if (ksglen >= num_xfer) {
if (__copy_to_user(up, p, num_xfer))
return -EFAULT;
return 0;
}
if (__copy_to_user(up, p, ksglen))
return -EFAULT;
up += ksglen;
usglen -= ksglen;
}
++k;
if (k >= schp->k_use_sg)
return 0;
}
}
return 0;
}
static int
sg_read_oxfer(Sg_request * srp, char __user *outp, int num_read_xfer)
{
Sg_scatter_hold *schp = &srp->data;
struct scatterlist *sg = schp->buffer;
int k, num;
SCSI_LOG_TIMEOUT(4, printk("sg_read_oxfer: num_read_xfer=%d\n",
num_read_xfer));
if ((!outp) || (num_read_xfer <= 0))
return 0;
for (k = 0; (k < schp->k_use_sg) && sg->page; ++k, ++sg) {
num = sg->length;
if (num > num_read_xfer) {
if (__copy_to_user(outp, page_address(sg->page),
num_read_xfer))
return -EFAULT;
break;
} else {
if (__copy_to_user(outp, page_address(sg->page),
num))
return -EFAULT;
num_read_xfer -= num;
if (num_read_xfer <= 0)
break;
outp += num;
}
}
return 0;
}
static void
sg_build_reserve(Sg_fd * sfp, int req_size)
{
Sg_scatter_hold *schp = &sfp->reserve;
SCSI_LOG_TIMEOUT(4, printk("sg_build_reserve: req_size=%d\n", req_size));
do {
if (req_size < PAGE_SIZE)
req_size = PAGE_SIZE;
if (0 == sg_build_indirect(schp, sfp, req_size))
return;
else
sg_remove_scat(schp);
req_size >>= 1; /* divide by 2 */
} while (req_size > (PAGE_SIZE / 2));
}
static void
sg_link_reserve(Sg_fd * sfp, Sg_request * srp, int size)
{
Sg_scatter_hold *req_schp = &srp->data;
Sg_scatter_hold *rsv_schp = &sfp->reserve;
struct scatterlist *sg = rsv_schp->buffer;
int k, num, rem;
srp->res_used = 1;
SCSI_LOG_TIMEOUT(4, printk("sg_link_reserve: size=%d\n", size));
rem = size = (size + 1) & (~1); /* round to even for aha1542 */
for (k = 0; k < rsv_schp->k_use_sg; ++k, ++sg) {
num = sg->length;
if (rem <= num) {
sfp->save_scat_len = num;
sg->length = rem;
req_schp->k_use_sg = k + 1;
req_schp->sglist_len = rsv_schp->sglist_len;
req_schp->buffer = rsv_schp->buffer;
req_schp->bufflen = size;
req_schp->b_malloc_len = rsv_schp->b_malloc_len;
break;
} else
rem -= num;
}
if (k >= rsv_schp->k_use_sg)
SCSI_LOG_TIMEOUT(1, printk("sg_link_reserve: BAD size\n"));
}
static void
sg_unlink_reserve(Sg_fd * sfp, Sg_request * srp)
{
Sg_scatter_hold *req_schp = &srp->data;
Sg_scatter_hold *rsv_schp = &sfp->reserve;
SCSI_LOG_TIMEOUT(4, printk("sg_unlink_reserve: req->k_use_sg=%d\n",
(int) req_schp->k_use_sg));
if ((rsv_schp->k_use_sg > 0) && (req_schp->k_use_sg > 0)) {
struct scatterlist *sg = rsv_schp->buffer;
if (sfp->save_scat_len > 0)
(sg + (req_schp->k_use_sg - 1))->length =
(unsigned) sfp->save_scat_len;
else
SCSI_LOG_TIMEOUT(1, printk ("sg_unlink_reserve: BAD save_scat_len\n"));
}
req_schp->k_use_sg = 0;
req_schp->bufflen = 0;
req_schp->buffer = NULL;
req_schp->sglist_len = 0;
sfp->save_scat_len = 0;
srp->res_used = 0;
}
static Sg_request *
sg_get_rq_mark(Sg_fd * sfp, int pack_id)
{
Sg_request *resp;
unsigned long iflags;
write_lock_irqsave(&sfp->rq_list_lock, iflags);
for (resp = sfp->headrp; resp; resp = resp->nextrp) {
/* look for requests that are ready + not SG_IO owned */
if ((1 == resp->done) && (!resp->sg_io_owned) &&
((-1 == pack_id) || (resp->header.pack_id == pack_id))) {
resp->done = 2; /* guard against other readers */
break;
}
}
write_unlock_irqrestore(&sfp->rq_list_lock, iflags);
return resp;
}
#ifdef CONFIG_SCSI_PROC_FS
static Sg_request *
sg_get_nth_request(Sg_fd * sfp, int nth)
{
Sg_request *resp;
unsigned long iflags;
int k;
read_lock_irqsave(&sfp->rq_list_lock, iflags);
for (k = 0, resp = sfp->headrp; resp && (k < nth);
++k, resp = resp->nextrp) ;
read_unlock_irqrestore(&sfp->rq_list_lock, iflags);
return resp;
}
#endif
/* always adds to end of list */
static Sg_request *
sg_add_request(Sg_fd * sfp)
{
int k;
unsigned long iflags;
Sg_request *resp;
Sg_request *rp = sfp->req_arr;
write_lock_irqsave(&sfp->rq_list_lock, iflags);
resp = sfp->headrp;
if (!resp) {
memset(rp, 0, sizeof (Sg_request));
rp->parentfp = sfp;
resp = rp;
sfp->headrp = resp;
} else {
if (0 == sfp->cmd_q)
resp = NULL; /* command queuing disallowed */
else {
for (k = 0; k < SG_MAX_QUEUE; ++k, ++rp) {
if (!rp->parentfp)
break;
}
if (k < SG_MAX_QUEUE) {
memset(rp, 0, sizeof (Sg_request));
rp->parentfp = sfp;
while (resp->nextrp)
resp = resp->nextrp;
resp->nextrp = rp;
resp = rp;
} else
resp = NULL;
}
}
if (resp) {
resp->nextrp = NULL;
resp->header.duration = jiffies_to_msecs(jiffies);
}
write_unlock_irqrestore(&sfp->rq_list_lock, iflags);
return resp;
}
/* Return of 1 for found; 0 for not found */
static int
sg_remove_request(Sg_fd * sfp, Sg_request * srp)
{
Sg_request *prev_rp;
Sg_request *rp;
unsigned long iflags;
int res = 0;
if ((!sfp) || (!srp) || (!sfp->headrp))
return res;
write_lock_irqsave(&sfp->rq_list_lock, iflags);
prev_rp = sfp->headrp;
if (srp == prev_rp) {
sfp->headrp = prev_rp->nextrp;
prev_rp->parentfp = NULL;
res = 1;
} else {
while ((rp = prev_rp->nextrp)) {
if (srp == rp) {
prev_rp->nextrp = rp->nextrp;
rp->parentfp = NULL;
res = 1;
break;
}
prev_rp = rp;
}
}
write_unlock_irqrestore(&sfp->rq_list_lock, iflags);
return res;
}
#ifdef CONFIG_SCSI_PROC_FS
static Sg_fd *
sg_get_nth_sfp(Sg_device * sdp, int nth)
{
Sg_fd *resp;
unsigned long iflags;
int k;
read_lock_irqsave(&sg_dev_arr_lock, iflags);
for (k = 0, resp = sdp->headfp; resp && (k < nth);
++k, resp = resp->nextfp) ;
read_unlock_irqrestore(&sg_dev_arr_lock, iflags);
return resp;
}
#endif
static Sg_fd *
sg_add_sfp(Sg_device * sdp, int dev)
{
Sg_fd *sfp;
unsigned long iflags;
sfp = kzalloc(sizeof(*sfp), GFP_ATOMIC | __GFP_NOWARN);
if (!sfp)
return NULL;
init_waitqueue_head(&sfp->read_wait);
rwlock_init(&sfp->rq_list_lock);
sfp->timeout = SG_DEFAULT_TIMEOUT;
sfp->timeout_user = SG_DEFAULT_TIMEOUT_USER;
sfp->force_packid = SG_DEF_FORCE_PACK_ID;
sfp->low_dma = (SG_DEF_FORCE_LOW_DMA == 0) ?
sdp->device->host->unchecked_isa_dma : 1;
sfp->cmd_q = SG_DEF_COMMAND_Q;
sfp->keep_orphan = SG_DEF_KEEP_ORPHAN;
sfp->parentdp = sdp;
write_lock_irqsave(&sg_dev_arr_lock, iflags);
if (!sdp->headfp)
sdp->headfp = sfp;
else { /* add to tail of existing list */
Sg_fd *pfp = sdp->headfp;
while (pfp->nextfp)
pfp = pfp->nextfp;
pfp->nextfp = sfp;
}
write_unlock_irqrestore(&sg_dev_arr_lock, iflags);
SCSI_LOG_TIMEOUT(3, printk("sg_add_sfp: sfp=0x%p\n", sfp));
sg_build_reserve(sfp, sg_big_buff);
SCSI_LOG_TIMEOUT(3, printk("sg_add_sfp: bufflen=%d, k_use_sg=%d\n",
sfp->reserve.bufflen, sfp->reserve.k_use_sg));
return sfp;
}
static void
__sg_remove_sfp(Sg_device * sdp, Sg_fd * sfp)
{
Sg_fd *fp;
Sg_fd *prev_fp;
prev_fp = sdp->headfp;
if (sfp == prev_fp)
sdp->headfp = prev_fp->nextfp;
else {
while ((fp = prev_fp->nextfp)) {
if (sfp == fp) {
prev_fp->nextfp = fp->nextfp;
break;
}
prev_fp = fp;
}
}
if (sfp->reserve.bufflen > 0) {
SCSI_LOG_TIMEOUT(6,
printk("__sg_remove_sfp: bufflen=%d, k_use_sg=%d\n",
(int) sfp->reserve.bufflen, (int) sfp->reserve.k_use_sg));
if (sfp->mmap_called)
sg_rb_correct4mmap(&sfp->reserve, 0); /* undo correction */
sg_remove_scat(&sfp->reserve);
}
sfp->parentdp = NULL;
SCSI_LOG_TIMEOUT(6, printk("__sg_remove_sfp: sfp=0x%p\n", sfp));
kfree(sfp);
}
/* Returns 0 in normal case, 1 when detached and sdp object removed */
static int
sg_remove_sfp(Sg_device * sdp, Sg_fd * sfp)
{
Sg_request *srp;
Sg_request *tsrp;
int dirty = 0;
int res = 0;
for (srp = sfp->headrp; srp; srp = tsrp) {
tsrp = srp->nextrp;
if (sg_srp_done(srp, sfp))
sg_finish_rem_req(srp);
else
++dirty;
}
if (0 == dirty) {
unsigned long iflags;
write_lock_irqsave(&sg_dev_arr_lock, iflags);
__sg_remove_sfp(sdp, sfp);
if (sdp->detached && (NULL == sdp->headfp)) {
int k, maxd;
maxd = sg_dev_max;
for (k = 0; k < maxd; ++k) {
if (sdp == sg_dev_arr[k])
break;
}
if (k < maxd)
sg_dev_arr[k] = NULL;
kfree((char *) sdp);
res = 1;
}
write_unlock_irqrestore(&sg_dev_arr_lock, iflags);
} else {
/* MOD_INC's to inhibit unloading sg and associated adapter driver */
/* only bump the access_count if we actually succeeded in
* throwing another counter on the host module */
scsi_device_get(sdp->device); /* XXX: retval ignored? */
sfp->closed = 1; /* flag dirty state on this fd */
SCSI_LOG_TIMEOUT(1, printk("sg_remove_sfp: worrisome, %d writes pending\n",
dirty));
}
return res;
}
static int
sg_res_in_use(Sg_fd * sfp)
{
const Sg_request *srp;
unsigned long iflags;
read_lock_irqsave(&sfp->rq_list_lock, iflags);
for (srp = sfp->headrp; srp; srp = srp->nextrp)
if (srp->res_used)
break;
read_unlock_irqrestore(&sfp->rq_list_lock, iflags);
return srp ? 1 : 0;
}
/* If retSzp==NULL want exact size or fail */
static struct page *
sg_page_malloc(int rqSz, int lowDma, int *retSzp)
{
struct page *resp = NULL;
gfp_t page_mask;
int order, a_size;
int resSz = rqSz;
if (rqSz <= 0)
return resp;
if (lowDma)
page_mask = GFP_ATOMIC | GFP_DMA | __GFP_NOWARN;
else
page_mask = GFP_ATOMIC | __GFP_NOWARN;
for (order = 0, a_size = PAGE_SIZE; a_size < rqSz;
order++, a_size <<= 1) ;
resp = alloc_pages(page_mask, order);
while ((!resp) && order && retSzp) {
--order;
a_size >>= 1; /* divide by 2, until PAGE_SIZE */
resp = alloc_pages(page_mask, order); /* try half */
resSz = a_size;
}
if (resp) {
if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
memset(page_address(resp), 0, resSz);
if (retSzp)
*retSzp = resSz;
}
return resp;
}
static void
sg_page_free(struct page *page, int size)
{
int order, a_size;
if (!page)
return;
for (order = 0, a_size = PAGE_SIZE; a_size < size;
order++, a_size <<= 1) ;
__free_pages(page, order);
}
#ifndef MAINTENANCE_IN_CMD
#define MAINTENANCE_IN_CMD 0xa3
#endif
static unsigned char allow_ops[] = { TEST_UNIT_READY, REQUEST_SENSE,
INQUIRY, READ_CAPACITY, READ_BUFFER, READ_6, READ_10, READ_12,
READ_16, MODE_SENSE, MODE_SENSE_10, LOG_SENSE, REPORT_LUNS,
SERVICE_ACTION_IN, RECEIVE_DIAGNOSTIC, READ_LONG, MAINTENANCE_IN_CMD
};
static int
sg_allow_access(unsigned char opcode, char dev_type)
{
int k;
if (TYPE_SCANNER == dev_type) /* TYPE_ROM maybe burner */
return 1;
for (k = 0; k < sizeof (allow_ops); ++k) {
if (opcode == allow_ops[k])
return 1;
}
return 0;
}
#ifdef CONFIG_SCSI_PROC_FS
static int
sg_last_dev(void)
{
int k;
unsigned long iflags;
read_lock_irqsave(&sg_dev_arr_lock, iflags);
for (k = sg_dev_max - 1; k >= 0; --k)
if (sg_dev_arr[k] && sg_dev_arr[k]->device)
break;
read_unlock_irqrestore(&sg_dev_arr_lock, iflags);
return k + 1; /* origin 1 */
}
#endif
static Sg_device *
sg_get_dev(int dev)
{
Sg_device *sdp = NULL;
unsigned long iflags;
if (sg_dev_arr && (dev >= 0)) {
read_lock_irqsave(&sg_dev_arr_lock, iflags);
if (dev < sg_dev_max)
sdp = sg_dev_arr[dev];
read_unlock_irqrestore(&sg_dev_arr_lock, iflags);
}
return sdp;
}
#ifdef CONFIG_SCSI_PROC_FS
static struct proc_dir_entry *sg_proc_sgp = NULL;
static char sg_proc_sg_dirname[] = "scsi/sg";
static int sg_proc_seq_show_int(struct seq_file *s, void *v);
static int sg_proc_single_open_adio(struct inode *inode, struct file *file);
static ssize_t sg_proc_write_adio(struct file *filp, const char __user *buffer,
size_t count, loff_t *off);
static struct file_operations adio_fops = {
/* .owner, .read and .llseek added in sg_proc_init() */
.open = sg_proc_single_open_adio,
.write = sg_proc_write_adio,
.release = single_release,
};
static int sg_proc_single_open_dressz(struct inode *inode, struct file *file);
static ssize_t sg_proc_write_dressz(struct file *filp,
const char __user *buffer, size_t count, loff_t *off);
static struct file_operations dressz_fops = {
.open = sg_proc_single_open_dressz,
.write = sg_proc_write_dressz,
.release = single_release,
};
static int sg_proc_seq_show_version(struct seq_file *s, void *v);
static int sg_proc_single_open_version(struct inode *inode, struct file *file);
static struct file_operations version_fops = {
.open = sg_proc_single_open_version,
.release = single_release,
};
static int sg_proc_seq_show_devhdr(struct seq_file *s, void *v);
static int sg_proc_single_open_devhdr(struct inode *inode, struct file *file);
static struct file_operations devhdr_fops = {
.open = sg_proc_single_open_devhdr,
.release = single_release,
};
static int sg_proc_seq_show_dev(struct seq_file *s, void *v);
static int sg_proc_open_dev(struct inode *inode, struct file *file);
static void * dev_seq_start(struct seq_file *s, loff_t *pos);
static void * dev_seq_next(struct seq_file *s, void *v, loff_t *pos);
static void dev_seq_stop(struct seq_file *s, void *v);
static struct file_operations dev_fops = {
.open = sg_proc_open_dev,
.release = seq_release,
};
static struct seq_operations dev_seq_ops = {
.start = dev_seq_start,
.next = dev_seq_next,
.stop = dev_seq_stop,
.show = sg_proc_seq_show_dev,
};
static int sg_proc_seq_show_devstrs(struct seq_file *s, void *v);
static int sg_proc_open_devstrs(struct inode *inode, struct file *file);
static struct file_operations devstrs_fops = {
.open = sg_proc_open_devstrs,
.release = seq_release,
};
static struct seq_operations devstrs_seq_ops = {
.start = dev_seq_start,
.next = dev_seq_next,
.stop = dev_seq_stop,
.show = sg_proc_seq_show_devstrs,
};
static int sg_proc_seq_show_debug(struct seq_file *s, void *v);
static int sg_proc_open_debug(struct inode *inode, struct file *file);
static struct file_operations debug_fops = {
.open = sg_proc_open_debug,
.release = seq_release,
};
static struct seq_operations debug_seq_ops = {
.start = dev_seq_start,
.next = dev_seq_next,
.stop = dev_seq_stop,
.show = sg_proc_seq_show_debug,
};
struct sg_proc_leaf {
const char * name;
struct file_operations * fops;
};
static struct sg_proc_leaf sg_proc_leaf_arr[] = {
{"allow_dio", &adio_fops},
{"debug", &debug_fops},
{"def_reserved_size", &dressz_fops},
{"device_hdr", &devhdr_fops},
{"devices", &dev_fops},
{"device_strs", &devstrs_fops},
{"version", &version_fops}
};
static int
sg_proc_init(void)
{
int k, mask;
int num_leaves =
sizeof (sg_proc_leaf_arr) / sizeof (sg_proc_leaf_arr[0]);
struct proc_dir_entry *pdep;
struct sg_proc_leaf * leaf;
sg_proc_sgp = proc_mkdir(sg_proc_sg_dirname, NULL);
if (!sg_proc_sgp)
return 1;
for (k = 0; k < num_leaves; ++k) {
leaf = &sg_proc_leaf_arr[k];
mask = leaf->fops->write ? S_IRUGO | S_IWUSR : S_IRUGO;
pdep = create_proc_entry(leaf->name, mask, sg_proc_sgp);
if (pdep) {
leaf->fops->owner = THIS_MODULE,
leaf->fops->read = seq_read,
leaf->fops->llseek = seq_lseek,
pdep->proc_fops = leaf->fops;
}
}
return 0;
}
static void
sg_proc_cleanup(void)
{
int k;
int num_leaves =
sizeof (sg_proc_leaf_arr) / sizeof (sg_proc_leaf_arr[0]);
if (!sg_proc_sgp)
return;
for (k = 0; k < num_leaves; ++k)
remove_proc_entry(sg_proc_leaf_arr[k].name, sg_proc_sgp);
remove_proc_entry(sg_proc_sg_dirname, NULL);
}
static int sg_proc_seq_show_int(struct seq_file *s, void *v)
{
seq_printf(s, "%d\n", *((int *)s->private));
return 0;
}
static int sg_proc_single_open_adio(struct inode *inode, struct file *file)
{
return single_open(file, sg_proc_seq_show_int, &sg_allow_dio);
}
static ssize_t
sg_proc_write_adio(struct file *filp, const char __user *buffer,
size_t count, loff_t *off)
{
int num;
char buff[11];
if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
return -EACCES;
num = (count < 10) ? count : 10;
if (copy_from_user(buff, buffer, num))
return -EFAULT;
buff[num] = '\0';
sg_allow_dio = simple_strtoul(buff, NULL, 10) ? 1 : 0;
return count;
}
static int sg_proc_single_open_dressz(struct inode *inode, struct file *file)
{
return single_open(file, sg_proc_seq_show_int, &sg_big_buff);
}
static ssize_t
sg_proc_write_dressz(struct file *filp, const char __user *buffer,
size_t count, loff_t *off)
{
int num;
unsigned long k = ULONG_MAX;
char buff[11];
if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
return -EACCES;
num = (count < 10) ? count : 10;
if (copy_from_user(buff, buffer, num))
return -EFAULT;
buff[num] = '\0';
k = simple_strtoul(buff, NULL, 10);
if (k <= 1048576) { /* limit "big buff" to 1 MB */
sg_big_buff = k;
return count;
}
return -ERANGE;
}
static int sg_proc_seq_show_version(struct seq_file *s, void *v)
{
seq_printf(s, "%d\t%s [%s]\n", sg_version_num, SG_VERSION_STR,
sg_version_date);
return 0;
}
static int sg_proc_single_open_version(struct inode *inode, struct file *file)
{
return single_open(file, sg_proc_seq_show_version, NULL);
}
static int sg_proc_seq_show_devhdr(struct seq_file *s, void *v)
{
seq_printf(s, "host\tchan\tid\tlun\ttype\topens\tqdepth\tbusy\t"
"online\n");
return 0;
}
static int sg_proc_single_open_devhdr(struct inode *inode, struct file *file)
{
return single_open(file, sg_proc_seq_show_devhdr, NULL);
}
struct sg_proc_deviter {
loff_t index;
size_t max;
};
static void * dev_seq_start(struct seq_file *s, loff_t *pos)
{
struct sg_proc_deviter * it = kmalloc(sizeof(*it), GFP_KERNEL);
s->private = it;
if (! it)
return NULL;
if (NULL == sg_dev_arr)
return NULL;
it->index = *pos;
it->max = sg_last_dev();
if (it->index >= it->max)
return NULL;
return it;
}
static void * dev_seq_next(struct seq_file *s, void *v, loff_t *pos)
{
struct sg_proc_deviter * it = s->private;
*pos = ++it->index;
return (it->index < it->max) ? it : NULL;
}
static void dev_seq_stop(struct seq_file *s, void *v)
{
kfree(s->private);
}
static int sg_proc_open_dev(struct inode *inode, struct file *file)
{
return seq_open(file, &dev_seq_ops);
}
static int sg_proc_seq_show_dev(struct seq_file *s, void *v)
{
struct sg_proc_deviter * it = (struct sg_proc_deviter *) v;
Sg_device *sdp;
struct scsi_device *scsidp;
sdp = it ? sg_get_dev(it->index) : NULL;
if (sdp && (scsidp = sdp->device) && (!sdp->detached))
seq_printf(s, "%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n",
scsidp->host->host_no, scsidp->channel,
scsidp->id, scsidp->lun, (int) scsidp->type,
1,
(int) scsidp->queue_depth,
(int) scsidp->device_busy,
(int) scsi_device_online(scsidp));
else
seq_printf(s, "-1\t-1\t-1\t-1\t-1\t-1\t-1\t-1\t-1\n");
return 0;
}
static int sg_proc_open_devstrs(struct inode *inode, struct file *file)
{
return seq_open(file, &devstrs_seq_ops);
}
static int sg_proc_seq_show_devstrs(struct seq_file *s, void *v)
{
struct sg_proc_deviter * it = (struct sg_proc_deviter *) v;
Sg_device *sdp;
struct scsi_device *scsidp;
sdp = it ? sg_get_dev(it->index) : NULL;
if (sdp && (scsidp = sdp->device) && (!sdp->detached))
seq_printf(s, "%8.8s\t%16.16s\t%4.4s\n",
scsidp->vendor, scsidp->model, scsidp->rev);
else
seq_printf(s, "<no active device>\n");
return 0;
}
static void sg_proc_debug_helper(struct seq_file *s, Sg_device * sdp)
{
int k, m, new_interface, blen, usg;
Sg_request *srp;
Sg_fd *fp;
const sg_io_hdr_t *hp;
const char * cp;
unsigned int ms;
for (k = 0; (fp = sg_get_nth_sfp(sdp, k)); ++k) {
seq_printf(s, " FD(%d): timeout=%dms bufflen=%d "
"(res)sgat=%d low_dma=%d\n", k + 1,
jiffies_to_msecs(fp->timeout),
fp->reserve.bufflen,
(int) fp->reserve.k_use_sg,
(int) fp->low_dma);
seq_printf(s, " cmd_q=%d f_packid=%d k_orphan=%d closed=%d\n",
(int) fp->cmd_q, (int) fp->force_packid,
(int) fp->keep_orphan, (int) fp->closed);
for (m = 0; (srp = sg_get_nth_request(fp, m)); ++m) {
hp = &srp->header;
new_interface = (hp->interface_id == '\0') ? 0 : 1;
if (srp->res_used) {
if (new_interface &&
(SG_FLAG_MMAP_IO & hp->flags))
cp = " mmap>> ";
else
cp = " rb>> ";
} else {
if (SG_INFO_DIRECT_IO_MASK & hp->info)
cp = " dio>> ";
else
cp = " ";
}
seq_printf(s, cp);
blen = srp->data.bufflen;
usg = srp->data.k_use_sg;
seq_printf(s, srp->done ?
((1 == srp->done) ? "rcv:" : "fin:")
: "act:");
seq_printf(s, " id=%d blen=%d",
srp->header.pack_id, blen);
if (srp->done)
seq_printf(s, " dur=%d", hp->duration);
else {
ms = jiffies_to_msecs(jiffies);
seq_printf(s, " t_o/elap=%d/%d",
(new_interface ? hp->timeout :
jiffies_to_msecs(fp->timeout)),
(ms > hp->duration ? ms - hp->duration : 0));
}
seq_printf(s, "ms sgat=%d op=0x%02x\n", usg,
(int) srp->data.cmd_opcode);
}
if (0 == m)
seq_printf(s, " No requests active\n");
}
}
static int sg_proc_open_debug(struct inode *inode, struct file *file)
{
return seq_open(file, &debug_seq_ops);
}
static int sg_proc_seq_show_debug(struct seq_file *s, void *v)
{
struct sg_proc_deviter * it = (struct sg_proc_deviter *) v;
Sg_device *sdp;
if (it && (0 == it->index)) {
seq_printf(s, "dev_max(currently)=%d max_active_device=%d "
"(origin 1)\n", sg_dev_max, (int)it->max);
seq_printf(s, " def_reserved_size=%d\n", sg_big_buff);
}
sdp = it ? sg_get_dev(it->index) : NULL;
if (sdp) {
struct scsi_device *scsidp = sdp->device;
if (NULL == scsidp) {
seq_printf(s, "device %d detached ??\n",
(int)it->index);
return 0;
}
if (sg_get_nth_sfp(sdp, 0)) {
seq_printf(s, " >>> device=%s ",
sdp->disk->disk_name);
if (sdp->detached)
seq_printf(s, "detached pending close ");
else
seq_printf
(s, "scsi%d chan=%d id=%d lun=%d em=%d",
scsidp->host->host_no,
scsidp->channel, scsidp->id,
scsidp->lun,
scsidp->host->hostt->emulated);
seq_printf(s, " sg_tablesize=%d excl=%d\n",
sdp->sg_tablesize, sdp->exclude);
}
sg_proc_debug_helper(s, sdp);
}
return 0;
}
#endif /* CONFIG_SCSI_PROC_FS */
module_init(init_sg);
module_exit(exit_sg);
MODULE_ALIAS_CHARDEV_MAJOR(SCSI_GENERIC_MAJOR);