23d0a65cf2
the toshiba ACPI driver will, in a failure case, free the rfkill state before stopping the polling timer that would use this state. More interesting, in the same failure case handling, it calls the exit function, which also frees the rfkill state, but after stopping the polling. If the race happens, a NULL pointer is passed to rfkill_force_state() which then causes a nice dereference. Fix the race by just not doing the too-early freeing of the rfkill state. This appears to be the cause of a hot issue on kerneloops.org; while I have no solid evidence of that this patch will fix the issue, the race appears rather real. Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
860 lines
21 KiB
C
860 lines
21 KiB
C
/*
|
|
* toshiba_acpi.c - Toshiba Laptop ACPI Extras
|
|
*
|
|
*
|
|
* Copyright (C) 2002-2004 John Belmonte
|
|
* Copyright (C) 2008 Philip Langdale
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
*
|
|
* The devolpment page for this driver is located at
|
|
* http://memebeam.org/toys/ToshibaAcpiDriver.
|
|
*
|
|
* Credits:
|
|
* Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse
|
|
* engineering the Windows drivers
|
|
* Yasushi Nagato - changes for linux kernel 2.4 -> 2.5
|
|
* Rob Miller - TV out and hotkeys help
|
|
*
|
|
*
|
|
* TODO
|
|
*
|
|
*/
|
|
|
|
#define TOSHIBA_ACPI_VERSION "0.19"
|
|
#define PROC_INTERFACE_VERSION 1
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/types.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/backlight.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/rfkill.h>
|
|
#include <linux/input-polldev.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <acpi/acpi_drivers.h>
|
|
|
|
MODULE_AUTHOR("John Belmonte");
|
|
MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#define MY_LOGPREFIX "toshiba_acpi: "
|
|
#define MY_ERR KERN_ERR MY_LOGPREFIX
|
|
#define MY_NOTICE KERN_NOTICE MY_LOGPREFIX
|
|
#define MY_INFO KERN_INFO MY_LOGPREFIX
|
|
|
|
/* Toshiba ACPI method paths */
|
|
#define METHOD_LCD_BRIGHTNESS "\\_SB_.PCI0.VGA_.LCD_._BCM"
|
|
#define METHOD_HCI_1 "\\_SB_.VALD.GHCI"
|
|
#define METHOD_HCI_2 "\\_SB_.VALZ.GHCI"
|
|
#define METHOD_VIDEO_OUT "\\_SB_.VALX.DSSX"
|
|
|
|
/* Toshiba HCI interface definitions
|
|
*
|
|
* HCI is Toshiba's "Hardware Control Interface" which is supposed to
|
|
* be uniform across all their models. Ideally we would just call
|
|
* dedicated ACPI methods instead of using this primitive interface.
|
|
* However the ACPI methods seem to be incomplete in some areas (for
|
|
* example they allow setting, but not reading, the LCD brightness value),
|
|
* so this is still useful.
|
|
*/
|
|
|
|
#define HCI_WORDS 6
|
|
|
|
/* operations */
|
|
#define HCI_SET 0xff00
|
|
#define HCI_GET 0xfe00
|
|
|
|
/* return codes */
|
|
#define HCI_SUCCESS 0x0000
|
|
#define HCI_FAILURE 0x1000
|
|
#define HCI_NOT_SUPPORTED 0x8000
|
|
#define HCI_EMPTY 0x8c00
|
|
|
|
/* registers */
|
|
#define HCI_FAN 0x0004
|
|
#define HCI_SYSTEM_EVENT 0x0016
|
|
#define HCI_VIDEO_OUT 0x001c
|
|
#define HCI_HOTKEY_EVENT 0x001e
|
|
#define HCI_LCD_BRIGHTNESS 0x002a
|
|
#define HCI_WIRELESS 0x0056
|
|
|
|
/* field definitions */
|
|
#define HCI_LCD_BRIGHTNESS_BITS 3
|
|
#define HCI_LCD_BRIGHTNESS_SHIFT (16-HCI_LCD_BRIGHTNESS_BITS)
|
|
#define HCI_LCD_BRIGHTNESS_LEVELS (1 << HCI_LCD_BRIGHTNESS_BITS)
|
|
#define HCI_VIDEO_OUT_LCD 0x1
|
|
#define HCI_VIDEO_OUT_CRT 0x2
|
|
#define HCI_VIDEO_OUT_TV 0x4
|
|
#define HCI_WIRELESS_KILL_SWITCH 0x01
|
|
#define HCI_WIRELESS_BT_PRESENT 0x0f
|
|
#define HCI_WIRELESS_BT_ATTACH 0x40
|
|
#define HCI_WIRELESS_BT_POWER 0x80
|
|
|
|
static const struct acpi_device_id toshiba_device_ids[] = {
|
|
{"TOS6200", 0},
|
|
{"TOS6208", 0},
|
|
{"TOS1900", 0},
|
|
{"", 0},
|
|
};
|
|
MODULE_DEVICE_TABLE(acpi, toshiba_device_ids);
|
|
|
|
/* utility
|
|
*/
|
|
|
|
static __inline__ void _set_bit(u32 * word, u32 mask, int value)
|
|
{
|
|
*word = (*word & ~mask) | (mask * value);
|
|
}
|
|
|
|
/* acpi interface wrappers
|
|
*/
|
|
|
|
static int is_valid_acpi_path(const char *methodName)
|
|
{
|
|
acpi_handle handle;
|
|
acpi_status status;
|
|
|
|
status = acpi_get_handle(NULL, (char *)methodName, &handle);
|
|
return !ACPI_FAILURE(status);
|
|
}
|
|
|
|
static int write_acpi_int(const char *methodName, int val)
|
|
{
|
|
struct acpi_object_list params;
|
|
union acpi_object in_objs[1];
|
|
acpi_status status;
|
|
|
|
params.count = ARRAY_SIZE(in_objs);
|
|
params.pointer = in_objs;
|
|
in_objs[0].type = ACPI_TYPE_INTEGER;
|
|
in_objs[0].integer.value = val;
|
|
|
|
status = acpi_evaluate_object(NULL, (char *)methodName, ¶ms, NULL);
|
|
return (status == AE_OK);
|
|
}
|
|
|
|
#if 0
|
|
static int read_acpi_int(const char *methodName, int *pVal)
|
|
{
|
|
struct acpi_buffer results;
|
|
union acpi_object out_objs[1];
|
|
acpi_status status;
|
|
|
|
results.length = sizeof(out_objs);
|
|
results.pointer = out_objs;
|
|
|
|
status = acpi_evaluate_object(0, (char *)methodName, 0, &results);
|
|
*pVal = out_objs[0].integer.value;
|
|
|
|
return (status == AE_OK) && (out_objs[0].type == ACPI_TYPE_INTEGER);
|
|
}
|
|
#endif
|
|
|
|
static const char *method_hci /*= 0*/ ;
|
|
|
|
/* Perform a raw HCI call. Here we don't care about input or output buffer
|
|
* format.
|
|
*/
|
|
static acpi_status hci_raw(const u32 in[HCI_WORDS], u32 out[HCI_WORDS])
|
|
{
|
|
struct acpi_object_list params;
|
|
union acpi_object in_objs[HCI_WORDS];
|
|
struct acpi_buffer results;
|
|
union acpi_object out_objs[HCI_WORDS + 1];
|
|
acpi_status status;
|
|
int i;
|
|
|
|
params.count = HCI_WORDS;
|
|
params.pointer = in_objs;
|
|
for (i = 0; i < HCI_WORDS; ++i) {
|
|
in_objs[i].type = ACPI_TYPE_INTEGER;
|
|
in_objs[i].integer.value = in[i];
|
|
}
|
|
|
|
results.length = sizeof(out_objs);
|
|
results.pointer = out_objs;
|
|
|
|
status = acpi_evaluate_object(NULL, (char *)method_hci, ¶ms,
|
|
&results);
|
|
if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) {
|
|
for (i = 0; i < out_objs->package.count; ++i) {
|
|
out[i] = out_objs->package.elements[i].integer.value;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/* common hci tasks (get or set one or two value)
|
|
*
|
|
* In addition to the ACPI status, the HCI system returns a result which
|
|
* may be useful (such as "not supported").
|
|
*/
|
|
|
|
static acpi_status hci_write1(u32 reg, u32 in1, u32 * result)
|
|
{
|
|
u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 };
|
|
u32 out[HCI_WORDS];
|
|
acpi_status status = hci_raw(in, out);
|
|
*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
|
|
return status;
|
|
}
|
|
|
|
static acpi_status hci_read1(u32 reg, u32 * out1, u32 * result)
|
|
{
|
|
u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 };
|
|
u32 out[HCI_WORDS];
|
|
acpi_status status = hci_raw(in, out);
|
|
*out1 = out[2];
|
|
*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
|
|
return status;
|
|
}
|
|
|
|
static acpi_status hci_write2(u32 reg, u32 in1, u32 in2, u32 *result)
|
|
{
|
|
u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 };
|
|
u32 out[HCI_WORDS];
|
|
acpi_status status = hci_raw(in, out);
|
|
*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
|
|
return status;
|
|
}
|
|
|
|
static acpi_status hci_read2(u32 reg, u32 *out1, u32 *out2, u32 *result)
|
|
{
|
|
u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 };
|
|
u32 out[HCI_WORDS];
|
|
acpi_status status = hci_raw(in, out);
|
|
*out1 = out[2];
|
|
*out2 = out[3];
|
|
*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
|
|
return status;
|
|
}
|
|
|
|
struct toshiba_acpi_dev {
|
|
struct platform_device *p_dev;
|
|
struct rfkill *rfk_dev;
|
|
struct input_polled_dev *poll_dev;
|
|
|
|
const char *bt_name;
|
|
const char *rfk_name;
|
|
|
|
bool last_rfk_state;
|
|
|
|
struct mutex mutex;
|
|
};
|
|
|
|
static struct toshiba_acpi_dev toshiba_acpi = {
|
|
.bt_name = "Toshiba Bluetooth",
|
|
.rfk_name = "Toshiba RFKill Switch",
|
|
.last_rfk_state = false,
|
|
};
|
|
|
|
/* Bluetooth rfkill handlers */
|
|
|
|
static u32 hci_get_bt_present(bool *present)
|
|
{
|
|
u32 hci_result;
|
|
u32 value, value2;
|
|
|
|
value = 0;
|
|
value2 = 0;
|
|
hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
|
|
if (hci_result == HCI_SUCCESS)
|
|
*present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false;
|
|
|
|
return hci_result;
|
|
}
|
|
|
|
static u32 hci_get_bt_on(bool *on)
|
|
{
|
|
u32 hci_result;
|
|
u32 value, value2;
|
|
|
|
value = 0;
|
|
value2 = 0x0001;
|
|
hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
|
|
if (hci_result == HCI_SUCCESS)
|
|
*on = (value & HCI_WIRELESS_BT_POWER) &&
|
|
(value & HCI_WIRELESS_BT_ATTACH);
|
|
|
|
return hci_result;
|
|
}
|
|
|
|
static u32 hci_get_radio_state(bool *radio_state)
|
|
{
|
|
u32 hci_result;
|
|
u32 value, value2;
|
|
|
|
value = 0;
|
|
value2 = 0x0001;
|
|
hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
|
|
|
|
*radio_state = value & HCI_WIRELESS_KILL_SWITCH;
|
|
return hci_result;
|
|
}
|
|
|
|
static int bt_rfkill_toggle_radio(void *data, enum rfkill_state state)
|
|
{
|
|
u32 result1, result2;
|
|
u32 value;
|
|
bool radio_state;
|
|
struct toshiba_acpi_dev *dev = data;
|
|
|
|
value = (state == RFKILL_STATE_UNBLOCKED);
|
|
|
|
if (hci_get_radio_state(&radio_state) != HCI_SUCCESS)
|
|
return -EFAULT;
|
|
|
|
switch (state) {
|
|
case RFKILL_STATE_UNBLOCKED:
|
|
if (!radio_state)
|
|
return -EPERM;
|
|
break;
|
|
case RFKILL_STATE_SOFT_BLOCKED:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
mutex_lock(&dev->mutex);
|
|
hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1);
|
|
hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2);
|
|
mutex_unlock(&dev->mutex);
|
|
|
|
if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bt_poll_rfkill(struct input_polled_dev *poll_dev)
|
|
{
|
|
bool state_changed;
|
|
bool new_rfk_state;
|
|
bool value;
|
|
u32 hci_result;
|
|
struct toshiba_acpi_dev *dev = poll_dev->private;
|
|
|
|
hci_result = hci_get_radio_state(&value);
|
|
if (hci_result != HCI_SUCCESS)
|
|
return; /* Can't do anything useful */
|
|
|
|
new_rfk_state = value;
|
|
|
|
mutex_lock(&dev->mutex);
|
|
state_changed = new_rfk_state != dev->last_rfk_state;
|
|
dev->last_rfk_state = new_rfk_state;
|
|
mutex_unlock(&dev->mutex);
|
|
|
|
if (unlikely(state_changed)) {
|
|
rfkill_force_state(dev->rfk_dev,
|
|
new_rfk_state ?
|
|
RFKILL_STATE_SOFT_BLOCKED :
|
|
RFKILL_STATE_HARD_BLOCKED);
|
|
input_report_switch(poll_dev->input, SW_RFKILL_ALL,
|
|
new_rfk_state);
|
|
input_sync(poll_dev->input);
|
|
}
|
|
}
|
|
|
|
static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ;
|
|
static struct backlight_device *toshiba_backlight_device;
|
|
static int force_fan;
|
|
static int last_key_event;
|
|
static int key_event_valid;
|
|
|
|
typedef struct _ProcItem {
|
|
const char *name;
|
|
char *(*read_func) (char *);
|
|
unsigned long (*write_func) (const char *, unsigned long);
|
|
} ProcItem;
|
|
|
|
/* proc file handlers
|
|
*/
|
|
|
|
static int
|
|
dispatch_read(char *page, char **start, off_t off, int count, int *eof,
|
|
ProcItem * item)
|
|
{
|
|
char *p = page;
|
|
int len;
|
|
|
|
if (off == 0)
|
|
p = item->read_func(p);
|
|
|
|
/* ISSUE: I don't understand this code */
|
|
len = (p - page);
|
|
if (len <= off + count)
|
|
*eof = 1;
|
|
*start = page + off;
|
|
len -= off;
|
|
if (len > count)
|
|
len = count;
|
|
if (len < 0)
|
|
len = 0;
|
|
return len;
|
|
}
|
|
|
|
static int
|
|
dispatch_write(struct file *file, const char __user * buffer,
|
|
unsigned long count, ProcItem * item)
|
|
{
|
|
int result;
|
|
char *tmp_buffer;
|
|
|
|
/* Arg buffer points to userspace memory, which can't be accessed
|
|
* directly. Since we're making a copy, zero-terminate the
|
|
* destination so that sscanf can be used on it safely.
|
|
*/
|
|
tmp_buffer = kmalloc(count + 1, GFP_KERNEL);
|
|
if (!tmp_buffer)
|
|
return -ENOMEM;
|
|
|
|
if (copy_from_user(tmp_buffer, buffer, count)) {
|
|
result = -EFAULT;
|
|
} else {
|
|
tmp_buffer[count] = 0;
|
|
result = item->write_func(tmp_buffer, count);
|
|
}
|
|
kfree(tmp_buffer);
|
|
return result;
|
|
}
|
|
|
|
static int get_lcd(struct backlight_device *bd)
|
|
{
|
|
u32 hci_result;
|
|
u32 value;
|
|
|
|
hci_read1(HCI_LCD_BRIGHTNESS, &value, &hci_result);
|
|
if (hci_result == HCI_SUCCESS) {
|
|
return (value >> HCI_LCD_BRIGHTNESS_SHIFT);
|
|
} else
|
|
return -EFAULT;
|
|
}
|
|
|
|
static char *read_lcd(char *p)
|
|
{
|
|
int value = get_lcd(NULL);
|
|
|
|
if (value >= 0) {
|
|
p += sprintf(p, "brightness: %d\n", value);
|
|
p += sprintf(p, "brightness_levels: %d\n",
|
|
HCI_LCD_BRIGHTNESS_LEVELS);
|
|
} else {
|
|
printk(MY_ERR "Error reading LCD brightness\n");
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
static int set_lcd(int value)
|
|
{
|
|
u32 hci_result;
|
|
|
|
value = value << HCI_LCD_BRIGHTNESS_SHIFT;
|
|
hci_write1(HCI_LCD_BRIGHTNESS, value, &hci_result);
|
|
if (hci_result != HCI_SUCCESS)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_lcd_status(struct backlight_device *bd)
|
|
{
|
|
return set_lcd(bd->props.brightness);
|
|
}
|
|
|
|
static unsigned long write_lcd(const char *buffer, unsigned long count)
|
|
{
|
|
int value;
|
|
int ret;
|
|
|
|
if (sscanf(buffer, " brightness : %i", &value) == 1 &&
|
|
value >= 0 && value < HCI_LCD_BRIGHTNESS_LEVELS) {
|
|
ret = set_lcd(value);
|
|
if (ret == 0)
|
|
ret = count;
|
|
} else {
|
|
ret = -EINVAL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static char *read_video(char *p)
|
|
{
|
|
u32 hci_result;
|
|
u32 value;
|
|
|
|
hci_read1(HCI_VIDEO_OUT, &value, &hci_result);
|
|
if (hci_result == HCI_SUCCESS) {
|
|
int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0;
|
|
int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0;
|
|
int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0;
|
|
p += sprintf(p, "lcd_out: %d\n", is_lcd);
|
|
p += sprintf(p, "crt_out: %d\n", is_crt);
|
|
p += sprintf(p, "tv_out: %d\n", is_tv);
|
|
} else {
|
|
printk(MY_ERR "Error reading video out status\n");
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
static unsigned long write_video(const char *buffer, unsigned long count)
|
|
{
|
|
int value;
|
|
int remain = count;
|
|
int lcd_out = -1;
|
|
int crt_out = -1;
|
|
int tv_out = -1;
|
|
u32 hci_result;
|
|
u32 video_out;
|
|
|
|
/* scan expression. Multiple expressions may be delimited with ;
|
|
*
|
|
* NOTE: to keep scanning simple, invalid fields are ignored
|
|
*/
|
|
while (remain) {
|
|
if (sscanf(buffer, " lcd_out : %i", &value) == 1)
|
|
lcd_out = value & 1;
|
|
else if (sscanf(buffer, " crt_out : %i", &value) == 1)
|
|
crt_out = value & 1;
|
|
else if (sscanf(buffer, " tv_out : %i", &value) == 1)
|
|
tv_out = value & 1;
|
|
/* advance to one character past the next ; */
|
|
do {
|
|
++buffer;
|
|
--remain;
|
|
}
|
|
while (remain && *(buffer - 1) != ';');
|
|
}
|
|
|
|
hci_read1(HCI_VIDEO_OUT, &video_out, &hci_result);
|
|
if (hci_result == HCI_SUCCESS) {
|
|
unsigned int new_video_out = video_out;
|
|
if (lcd_out != -1)
|
|
_set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out);
|
|
if (crt_out != -1)
|
|
_set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out);
|
|
if (tv_out != -1)
|
|
_set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out);
|
|
/* To avoid unnecessary video disruption, only write the new
|
|
* video setting if something changed. */
|
|
if (new_video_out != video_out)
|
|
write_acpi_int(METHOD_VIDEO_OUT, new_video_out);
|
|
} else {
|
|
return -EFAULT;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static char *read_fan(char *p)
|
|
{
|
|
u32 hci_result;
|
|
u32 value;
|
|
|
|
hci_read1(HCI_FAN, &value, &hci_result);
|
|
if (hci_result == HCI_SUCCESS) {
|
|
p += sprintf(p, "running: %d\n", (value > 0));
|
|
p += sprintf(p, "force_on: %d\n", force_fan);
|
|
} else {
|
|
printk(MY_ERR "Error reading fan status\n");
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
static unsigned long write_fan(const char *buffer, unsigned long count)
|
|
{
|
|
int value;
|
|
u32 hci_result;
|
|
|
|
if (sscanf(buffer, " force_on : %i", &value) == 1 &&
|
|
value >= 0 && value <= 1) {
|
|
hci_write1(HCI_FAN, value, &hci_result);
|
|
if (hci_result != HCI_SUCCESS)
|
|
return -EFAULT;
|
|
else
|
|
force_fan = value;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static char *read_keys(char *p)
|
|
{
|
|
u32 hci_result;
|
|
u32 value;
|
|
|
|
if (!key_event_valid) {
|
|
hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
|
|
if (hci_result == HCI_SUCCESS) {
|
|
key_event_valid = 1;
|
|
last_key_event = value;
|
|
} else if (hci_result == HCI_EMPTY) {
|
|
/* better luck next time */
|
|
} else if (hci_result == HCI_NOT_SUPPORTED) {
|
|
/* This is a workaround for an unresolved issue on
|
|
* some machines where system events sporadically
|
|
* become disabled. */
|
|
hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
|
|
printk(MY_NOTICE "Re-enabled hotkeys\n");
|
|
} else {
|
|
printk(MY_ERR "Error reading hotkey status\n");
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
p += sprintf(p, "hotkey_ready: %d\n", key_event_valid);
|
|
p += sprintf(p, "hotkey: 0x%04x\n", last_key_event);
|
|
|
|
end:
|
|
return p;
|
|
}
|
|
|
|
static unsigned long write_keys(const char *buffer, unsigned long count)
|
|
{
|
|
int value;
|
|
|
|
if (sscanf(buffer, " hotkey_ready : %i", &value) == 1 && value == 0) {
|
|
key_event_valid = 0;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static char *read_version(char *p)
|
|
{
|
|
p += sprintf(p, "driver: %s\n", TOSHIBA_ACPI_VERSION);
|
|
p += sprintf(p, "proc_interface: %d\n",
|
|
PROC_INTERFACE_VERSION);
|
|
return p;
|
|
}
|
|
|
|
/* proc and module init
|
|
*/
|
|
|
|
#define PROC_TOSHIBA "toshiba"
|
|
|
|
static ProcItem proc_items[] = {
|
|
{"lcd", read_lcd, write_lcd},
|
|
{"video", read_video, write_video},
|
|
{"fan", read_fan, write_fan},
|
|
{"keys", read_keys, write_keys},
|
|
{"version", read_version, NULL},
|
|
{NULL}
|
|
};
|
|
|
|
static acpi_status __init add_device(void)
|
|
{
|
|
struct proc_dir_entry *proc;
|
|
ProcItem *item;
|
|
|
|
for (item = proc_items; item->name; ++item) {
|
|
proc = create_proc_read_entry(item->name,
|
|
S_IFREG | S_IRUGO | S_IWUSR,
|
|
toshiba_proc_dir,
|
|
(read_proc_t *) dispatch_read,
|
|
item);
|
|
if (proc)
|
|
proc->owner = THIS_MODULE;
|
|
if (proc && item->write_func)
|
|
proc->write_proc = (write_proc_t *) dispatch_write;
|
|
}
|
|
|
|
return AE_OK;
|
|
}
|
|
|
|
static acpi_status remove_device(void)
|
|
{
|
|
ProcItem *item;
|
|
|
|
for (item = proc_items; item->name; ++item)
|
|
remove_proc_entry(item->name, toshiba_proc_dir);
|
|
return AE_OK;
|
|
}
|
|
|
|
static struct backlight_ops toshiba_backlight_data = {
|
|
.get_brightness = get_lcd,
|
|
.update_status = set_lcd_status,
|
|
};
|
|
|
|
static void toshiba_acpi_exit(void)
|
|
{
|
|
if (toshiba_acpi.poll_dev) {
|
|
input_unregister_polled_device(toshiba_acpi.poll_dev);
|
|
input_free_polled_device(toshiba_acpi.poll_dev);
|
|
}
|
|
|
|
if (toshiba_acpi.rfk_dev)
|
|
rfkill_unregister(toshiba_acpi.rfk_dev);
|
|
|
|
if (toshiba_backlight_device)
|
|
backlight_device_unregister(toshiba_backlight_device);
|
|
|
|
remove_device();
|
|
|
|
if (toshiba_proc_dir)
|
|
remove_proc_entry(PROC_TOSHIBA, acpi_root_dir);
|
|
|
|
platform_device_unregister(toshiba_acpi.p_dev);
|
|
|
|
return;
|
|
}
|
|
|
|
static int __init toshiba_acpi_init(void)
|
|
{
|
|
acpi_status status = AE_OK;
|
|
u32 hci_result;
|
|
bool bt_present;
|
|
bool bt_on;
|
|
bool radio_on;
|
|
int ret = 0;
|
|
|
|
if (acpi_disabled)
|
|
return -ENODEV;
|
|
|
|
/* simple device detection: look for HCI method */
|
|
if (is_valid_acpi_path(METHOD_HCI_1))
|
|
method_hci = METHOD_HCI_1;
|
|
else if (is_valid_acpi_path(METHOD_HCI_2))
|
|
method_hci = METHOD_HCI_2;
|
|
else
|
|
return -ENODEV;
|
|
|
|
printk(MY_INFO "Toshiba Laptop ACPI Extras version %s\n",
|
|
TOSHIBA_ACPI_VERSION);
|
|
printk(MY_INFO " HCI method: %s\n", method_hci);
|
|
|
|
mutex_init(&toshiba_acpi.mutex);
|
|
|
|
toshiba_acpi.p_dev = platform_device_register_simple("toshiba_acpi",
|
|
-1, NULL, 0);
|
|
if (IS_ERR(toshiba_acpi.p_dev)) {
|
|
ret = PTR_ERR(toshiba_acpi.p_dev);
|
|
printk(MY_ERR "unable to register platform device\n");
|
|
toshiba_acpi.p_dev = NULL;
|
|
toshiba_acpi_exit();
|
|
return ret;
|
|
}
|
|
|
|
force_fan = 0;
|
|
key_event_valid = 0;
|
|
|
|
/* enable event fifo */
|
|
hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
|
|
|
|
toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir);
|
|
if (!toshiba_proc_dir) {
|
|
toshiba_acpi_exit();
|
|
return -ENODEV;
|
|
} else {
|
|
toshiba_proc_dir->owner = THIS_MODULE;
|
|
status = add_device();
|
|
if (ACPI_FAILURE(status)) {
|
|
toshiba_acpi_exit();
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
toshiba_backlight_device = backlight_device_register("toshiba",
|
|
&toshiba_acpi.p_dev->dev,
|
|
NULL,
|
|
&toshiba_backlight_data);
|
|
if (IS_ERR(toshiba_backlight_device)) {
|
|
ret = PTR_ERR(toshiba_backlight_device);
|
|
|
|
printk(KERN_ERR "Could not register toshiba backlight device\n");
|
|
toshiba_backlight_device = NULL;
|
|
toshiba_acpi_exit();
|
|
return ret;
|
|
}
|
|
toshiba_backlight_device->props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1;
|
|
|
|
/* Register rfkill switch for Bluetooth */
|
|
if (hci_get_bt_present(&bt_present) == HCI_SUCCESS && bt_present) {
|
|
toshiba_acpi.rfk_dev = rfkill_allocate(&toshiba_acpi.p_dev->dev,
|
|
RFKILL_TYPE_BLUETOOTH);
|
|
if (!toshiba_acpi.rfk_dev) {
|
|
printk(MY_ERR "unable to allocate rfkill device\n");
|
|
toshiba_acpi_exit();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
toshiba_acpi.rfk_dev->name = toshiba_acpi.bt_name;
|
|
toshiba_acpi.rfk_dev->toggle_radio = bt_rfkill_toggle_radio;
|
|
toshiba_acpi.rfk_dev->user_claim_unsupported = 1;
|
|
toshiba_acpi.rfk_dev->data = &toshiba_acpi;
|
|
|
|
if (hci_get_bt_on(&bt_on) == HCI_SUCCESS && bt_on) {
|
|
toshiba_acpi.rfk_dev->state = RFKILL_STATE_UNBLOCKED;
|
|
} else if (hci_get_radio_state(&radio_on) == HCI_SUCCESS &&
|
|
radio_on) {
|
|
toshiba_acpi.rfk_dev->state = RFKILL_STATE_SOFT_BLOCKED;
|
|
} else {
|
|
toshiba_acpi.rfk_dev->state = RFKILL_STATE_HARD_BLOCKED;
|
|
}
|
|
|
|
ret = rfkill_register(toshiba_acpi.rfk_dev);
|
|
if (ret) {
|
|
printk(MY_ERR "unable to register rfkill device\n");
|
|
toshiba_acpi_exit();
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
/* Register input device for kill switch */
|
|
toshiba_acpi.poll_dev = input_allocate_polled_device();
|
|
if (!toshiba_acpi.poll_dev) {
|
|
printk(MY_ERR "unable to allocate kill-switch input device\n");
|
|
toshiba_acpi_exit();
|
|
return -ENOMEM;
|
|
}
|
|
toshiba_acpi.poll_dev->private = &toshiba_acpi;
|
|
toshiba_acpi.poll_dev->poll = bt_poll_rfkill;
|
|
toshiba_acpi.poll_dev->poll_interval = 1000; /* msecs */
|
|
|
|
toshiba_acpi.poll_dev->input->name = toshiba_acpi.rfk_name;
|
|
toshiba_acpi.poll_dev->input->id.bustype = BUS_HOST;
|
|
toshiba_acpi.poll_dev->input->id.vendor = 0x0930; /* Toshiba USB ID */
|
|
set_bit(EV_SW, toshiba_acpi.poll_dev->input->evbit);
|
|
set_bit(SW_RFKILL_ALL, toshiba_acpi.poll_dev->input->swbit);
|
|
input_report_switch(toshiba_acpi.poll_dev->input, SW_RFKILL_ALL, TRUE);
|
|
input_sync(toshiba_acpi.poll_dev->input);
|
|
|
|
ret = input_register_polled_device(toshiba_acpi.poll_dev);
|
|
if (ret) {
|
|
printk(MY_ERR "unable to register kill-switch input device\n");
|
|
toshiba_acpi_exit();
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
module_init(toshiba_acpi_init);
|
|
module_exit(toshiba_acpi_exit);
|